1
|
Polez RT, Kimiaei E, Madani Z, Österberg M, Baniasadi H. Tragacanth gum hydrogels with cellulose nanocrystals: A study on optimizing properties and printability. Int J Biol Macromol 2024; 280:136182. [PMID: 39357735 DOI: 10.1016/j.ijbiomac.2024.136182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
This study investigates a novel all-polysaccharide hydrogel composed of tragacanth gum (TG) and cellulose nanocrystals (CNCs), eliminating the need for toxic crosslinkers. Designed for potential tissue engineering applications, these hydrogels were fabricated using 3D printing and freeze-drying techniques to create scaffolds with interconnected macropores, facilitating nutrient transport. SEM images revealed that the hydrogels contained macropores with a diameter of 100-115 μm. Notably, increasing the CNC content within the TG matrix (30-50 %) resulted in a decrease in porosity from 83 % to 76 %, attributed to enhanced polymer-nanocrystal interactions that produced denser networks. Despite the reduced porosity, the hydrogels demonstrated high swelling ratios (890-1090 %) due to the high water binding capacity of the hydrogel. Mechanical testing showed that higher CNC concentrations significantly improved compressive strength (27.7-49.5 kPa) and toughness (362-707 kJ/m3), highlighting the enhanced mechanical properties of the hydrogels. Thermal analysis confirmed stability up to 400 °C and verified ionic crosslinking with CaCl₂. Additionally, hemolysis tests indicated minimal hemolytic activity, affirming the biocompatibility of the TG/CNC hydrogels. These findings highlight the potential of these hydrogels as advanced materials for 3D-printed scaffolds and injectable hydrogels, offering customizable porosity, superior mechanical strength, thermal stability, and biocompatibility.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland.
| | - Erfan Kimiaei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Zahra Madani
- Department of Chemistry and Materials Science, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, 02150 Espoo, Finland.
| |
Collapse
|
2
|
Teixeira Polez R, Huynh N, Pridgeon CS, Valle-Delgado JJ, Harjumäki R, Österberg M. Insights into spheroids formation in cellulose nanofibrils and Matrigel hydrogels using AFM-based techniques. Mater Today Bio 2024; 26:101065. [PMID: 38706731 PMCID: PMC11066555 DOI: 10.1016/j.mtbio.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The recent FDA decision to eliminate animal testing requirements emphasises the role of cell models, such as spheroids, as regulatory test alternatives for investigations of cellular behaviour, drug responses, and disease modelling. The influence of environment on spheroid formation are incompletely understood, leading to uncertainty in matrix selection for scaffold-based 3D culture. This study uses atomic force microscopy-based techniques to quantify cell adhesion to Matrigel and cellulose nanofibrils (CNF), and cell-cell adhesion forces, and their role in spheroid formation of hepatocellular carcinoma (HepG2) and induced pluripotent stem cells (iPS(IMR90)-4). Results showed different cell behaviour in CNF and Matrigel cultures. Both cell lines formed compact spheroids in CNF but loose cell aggregates in Matrigel. Interestingly, the type of cell adhesion protein, and not the bond strength, appeared to be a key factor in the formation of compact spheroids. The gene expression of E- and N-cadherins, proteins on cell membrane responsible for cell-cell interactions, was increased in CNF culture, leading to formation of compact spheroids while Matrigel culture induced integrin-laminin binding and downregulated E-cadherin expression, resulting in looser cell aggregates. These findings enhance our understanding of cell-biomaterial interactions in 3D cultures and offer insights for improved 3D cell models, culture biomaterials, and applications in drug research.
Collapse
Affiliation(s)
- Roberta Teixeira Polez
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Ngoc Huynh
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Chris S. Pridgeon
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Riina Harjumäki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| |
Collapse
|
3
|
Feodoroff M, Mikkonen P, Turunen L, Hassinen A, Paasonen L, Paavolainen L, Potdar S, Murumägi A, Kallioniemi O, Pietiäinen V. Comparison of two supporting matrices for patient-derived cancer cells in 3D drug sensitivity and resistance testing assay (3D-DSRT). SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00025-4. [PMID: 36934951 DOI: 10.1016/j.slasd.2023.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 03/21/2023]
Abstract
Central to the success of functional precision medicine of solid tumors is to perform drug testing of patient-derived cancer cells (PDCs) in tumor-mimicking ex vivo conditions. While high throughput (HT) drug screening methods have been well-established for cells cultured in two-dimensional (2D) format, this approach may have limited value in predicting clinical responses. Here, we describe the results of the optimization of drug sensitivity and resistance testing (DSRT) in three-dimensional (3D) growth supporting matrices in a HT mode (3D-DSRT) using the hepatocyte cell line (HepG2) as an example. Supporting matrices included widely used animal-derived Matrigel and cellulose-based hydrogel, GrowDex, which has earlier been shown to support 3D growth of cell lines and stem cells. Further, the sensitivity of ovarian cancer PDCs, from two patients included in the functional precision medicine study, was tested for 52 drugs in 5 different concentrations using 3D-DSRT. Shortly, in the optimized protocol, the PDCs are embedded with matrices and seeded to 384-well plates to allow the formation of the spheroids prior to the addition of drugs in nanoliter volumes with acoustic dispenser. The sensitivity of spheroids to drug treatments is measured with cell viability readout (here, 72 h after addition of drugs). The quality control and data analysis are performed with openly available Breeze software. We show the usability of both matrices in established 3D-DSRT, and report 2D vs 3D growth condition dependent differences in sensitivities of ovarian cancer PDCs to MEK-inhibitors and cytotoxic drugs. This study provides a proof-of-concept for robust and fast screening of drug sensitivities of PDCs in 3D-DSRT, which is important not only for drug discovery but also for personalized ex vivo drug testing in functional precision medicine studies. These findings suggest that comparing results of 2D- and 3D-DSRT is essential for understanding drug mechanisms and for selecting the most effective treatment for the patient.
Collapse
Affiliation(s)
- Michaela Feodoroff
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; Laboratory of Immunovirotherapy, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland; TRIMM, Translational Immunology Research Program, University of Helsinki, Helsinki, Uusimaa, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Piia Mikkonen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; UPM-Kymmene Oyj, Helsinki, Finland
| | - Laura Turunen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | - Antti Hassinen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | | | - Lassi Paavolainen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland
| | - Astrid Murumägi
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland; Science for Life Laboratory and Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Vilja Pietiäinen
- Institute for Molecular Medicine Finland-FIMM, Helsinki Institute for Life Sciences -HiLIFE, University of Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Lizana-Vasquez GD, Arrieta-Viana LF, Mendez-Vega J, Acevedo A, Torres-Lugo M. Synthetic Thermo-Responsive Terpolymers as Tunable Scaffolds for Cell Culture Applications. Polymers (Basel) 2022; 14:polym14204379. [PMID: 36297960 PMCID: PMC9611013 DOI: 10.3390/polym14204379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
The use of tailored synthetic hydrogels for in vitro tissue culture and biomanufacturing provides the advantage of mimicking the cell microenvironment without issues of batch-to-batch variability. To that end, this work focused on the design, characterization, and preliminary evaluation of thermo-responsive, transparent synthetic terpolymers based on N-isopropylacrylamide, vinylphenylboronic acid, and polyethylene glycol for cell manufacturing and in vitro culture applications. Polymer physical properties were characterized by FT-IR, 1H-NMR, DLS, rheology, and thermal-gravimetric analysis. Tested combinations provided polymers with a lower critical solution temperature (LCST) between 30 and 45 °C. Terpolymer elastic/shear modulus varied between 0.3 and 19.1 kPa at 37 °C. Cellular characterization indicated low cell cytotoxicity on NIH-3T3. Experiments with the ovarian cancer model SKOV-3 and Jurkat T cells showed the terpolymers’ capacity for cell encapsulation without interfering with staining or imaging protocols. In addition, cell growth and high levels of pluripotency demonstrated the capability of terpolymer to culture iPSCs. Characterization results confirmed a promising use of terpolymers as a tunable scaffold for cell culture applications.
Collapse
|
5
|
Ehrlich H, Luczak M, Ziganshin R, Mikšík I, Wysokowski M, Simon P, Baranowska‐Bosiacka I, Kupnicka P, Ereskovsky A, Galli R, Dyshlovoy S, Fischer J, Tabachnick KR, Petrenko I, Jesionowski T, Lubkowska A, Figlerowicz M, Ivanenko VN, Summers AP. Arrested in Glass: Actin within Sophisticated Architectures of Biosilica in Sponges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105059. [PMID: 35156333 PMCID: PMC9009123 DOI: 10.1002/advs.202105059] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Actin is a fundamental member of an ancient superfamily of structural intracellular proteins and plays a crucial role in cytoskeleton dynamics, ciliogenesis, phagocytosis, and force generation in both prokaryotes and eukaryotes. It is shown that actin has another function in metazoans: patterning biosilica deposition, a role that has spanned over 500 million years. Species of glass sponges (Hexactinellida) and demosponges (Demospongiae), representatives of the first metazoans, with a broad diversity of skeletal structures with hierarchical architecture unchanged since the late Precambrian, are studied. By etching their skeletons, organic templates dominated by individual F-actin filaments, including branched fibers and the longest, thickest actin fiber bundles ever reported, are isolated. It is proposed that these actin-rich filaments are not the primary site of biosilicification, but this highly sophisticated and multi-scale form of biomineralization in metazoans is ptterned.
Collapse
Affiliation(s)
- Hermann Ehrlich
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Center for Advanced TechnologyAdam Mickiewicz UniversityPoznan61614Poland
| | - Magdalena Luczak
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Rustam Ziganshin
- Institute of Bioorganic ChemistryRussian Academy of SciencesMoscow142290Russian Federation
| | - Ivan Mikšík
- Institute of PhysiologyThe Czech Academy of SciencesPrague142 20Czech Republic
| | - Marcin Wysokowski
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Paul Simon
- Max Planck Institute for Chemical Physics of SolidsDresden01187Germany
| | - Irena Baranowska‐Bosiacka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical ChemistryPomeranian Medical University in SzczecinSzczecin70111Poland
| | - Alexander Ereskovsky
- Institut Méditerranéen de Biodiversité et d'Ecologie (IMBE)CNRSIRDAix Marseille UniversitéMarseille13003France
- Biological FacultySt. Petersburg State UniversitySt. Petersburg199034Russian Federation
- Koltzov Institute of Developmental Biology of Russian Academy of SciencesMoscow119334Russian Federation
| | - Roberta Galli
- Clinical Sensoring and MonitoringDepartment of Anesthesiology and Intensive Care MedicineTU DresdenDresden01307Germany
| | - Sergey Dyshlovoy
- Laboratory of Experimental OncologyUniversity Medical Center Hamburg‐EppendorfHamburg20251Germany
- Laboratory of PharmacologyA.V. Zhirmunsky National Scientific Center of Marine BiologyFar Eastern BranchRussian Academy of SciencesVladivostok690041Russian Federation
| | - Jonas Fischer
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | | | - Iaroslav Petrenko
- Institute of Electronic and Sensor MaterialsTU Bergakademie FreibergFreiberg09599Germany
| | - Teofil Jesionowski
- Faculty of Chemical TechnologyInstitute of Chemical Technology and EngineeringPoznan University of TechnologyPoznan60965Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical MedicineFaculty of Health SciencesPomeranian Medical University in SzczecinSzczecin71210Poland
| | - Marek Figlerowicz
- Institute of Bioorganic ChemistryPolish Academy of SciencesPoznan61704Poland
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate ZoologyBiological FacultyLomonosov Moscow State UniversityMoscow119991Russian Federation
| | - Adam P. Summers
- Department of BiologyFriday Harbor LabsUniversity of WashingtonFriday HarborWA98195USA
| |
Collapse
|
6
|
Guo J, Amini S, Lei Q, Ping Y, Agola JO, Wang L, Zhou L, Cao J, Franco S, Noureddine A, Miserez A, Zhu W, Brinker CJ. Robust and Long-Term Cellular Protein and Enzymatic Activity Preservation in Biomineralized Mammalian Cells. ACS NANO 2022; 16:2164-2175. [PMID: 35143166 DOI: 10.1021/acsnano.1c08103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Preservation of evolved biological structure and function in robust engineering materials is of interest for storage of biological samples before diagnosis and development of vaccines, sensors, and enzymatic reactors and has the potential to avoid cryopreservation and its associated cold-chain issues. Here, we demonstrate that "freezing cells in amorphous silica" is a powerful technique for long-term preservation of whole mammalian cell proteomic structure and function at room temperature. Biomimetic silicification employs the crowded protein microenvironment of mammalian cells as a catalytic framework to proximally transform monomeric silicic acid into silicates forming a nanoscopic silica shell over all biomolecular interfaces. Silicification followed by dehydration preserves and passivates proteomic information within a nanoscale thin silica coating that exhibits size selective permeability (<3.6 nm), preventing protein leaching and protease degradation of cellular contents, while providing access of small molecular constituents for cellular enzymatic reaction. Exposure of dehydrated silicified cells to mild etchant or prolonged hydrolysis removes the silica, completely rerevealing biomolecular components and restoring their accessibility and functionality.
Collapse
Affiliation(s)
- Jimin Guo
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
- Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Shahrouz Amini
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jacob Ongudi Agola
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Liang Zhou
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - Stefan Franco
- Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Achraf Noureddine
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Ali Miserez
- Center for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Singapore
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, People's Republic of China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials and the Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
7
|
Abstract
Cell spheroids have been studied as a biomimic medicine for tissue healing using cell sources. Rapid cell spheroid production increases cell survival and activity as well as the efficiency of mass production by reducing processing time. In this study, two-dimensional MXene (Ti3C2) particles were used to form mesenchymal stem cell spheroids, and the optimal MXene concentration, spheroid-production times, and bioactivity levels of spheroid cells during this process were assessed. A MXene concentration range of 1 to 10 μg/mL induced spheroid formation within 6 h. The MXene-induced spheroids exhibited osteogenic-differentiation behavior, with the highest activity levels at a concentration of 5 μg/mL. We report a novel and effective method for the rapid formation of stem cell spheroids using MXene.
Collapse
|
8
|
Lee J, Lee S, Kim SM, Shin H. Size-controlled human adipose-derived stem cell spheroids hybridized with single-segmented nanofibers and their effect on viability and stem cell differentiation. Biomater Res 2021; 25:14. [PMID: 33902733 PMCID: PMC8074457 DOI: 10.1186/s40824-021-00215-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Fabrication of three-dimensional stem cell spheroids have been studied to improve stem cell function, but the hypoxic core and limited penetration of nutrients and signaling cues to the interior of the spheroid were challenges. The incorporation of polymers such as silica and gelatin in spheroids resulted in relatively relaxed assembly of composite spheroids, and enhancing transport of nutrient and biological gas. However, because of the low surface area between cells and since the polymers were heterogeneously distributed throughout the spheroid, these polymers cannot increase the cell to extracellular matrix interactions needed to support differentiation. METHODS We developed the stem cell spheroids that incorporate poly(ι-lactic acid) single-segmented fibers synthesized by electrospinning and physical and chemical fragmentation. The proper mixing ratio was 2000 cells/μg fibers (average length of the fibers was 50 μm - 100 μm). The SFs were coated with polydopamine to increase cell binding affinity and to synthesize various-sized spheroids. The function of spheroids was investigated by in vitro analysis depending on their sizes. For statistical analysis, Graphpad Prism 5 software (San Diego, CA, USA) was used to perform one-way analysis of variance ANOVA with Tukey's honest significant difference test and a Student's t-test (for two variables) (P < 0.05). RESULTS Spheroids of different sizes were created by modulating the amount of cells and fibers (0.063 mm2-0.322 mm2). The fibers in the spheroid were homogenously distributed and increased cell viability, while cell-only spheroids showed a loss of DNA contents, internal degradation, and many apoptotic signals. Furthermore, we investigated stemness and various functions of various-sized fiber-incorporated spheroids. In conclusion, the spheroid with the largest size showed the greatest release of angiogenic factors (released VEGF: 0.111 ± 0.004 pg/ng DNA), while the smallest size showed greater effects of osteogenic differentiation (mineralized calcium: 18.099 ± 0.271 ng/ng DNA). CONCLUSION The spheroids incorporating polydopamine coated single-segmented fibers showed enhanced viability regardless of sizes and increased their functionality by regulating the size of spheroids which may be used for various tissue reconstruction and therapeutic applications.
Collapse
Affiliation(s)
- Jinkyu Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sung Min Kim
- BK21 FOUR, Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea.
- Department of Physical Education and Active Aging Industry, Hanyang University, Seoul, 04763, Republic of Korea.
- Center for Artificial Intelligence Muscle, Hanyang University, Seoul, 04763, Republic of Korea.
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, Seoul, 04763, Republic of Korea.
- BK21 FOUR, Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Lei Q, Guo J, Kong F, Cao J, Wang L, Zhu W, Brinker CJ. Bioinspired Cell Silicification: From Extracellular to Intracellular. J Am Chem Soc 2021; 143:6305-6322. [PMID: 33826324 DOI: 10.1021/jacs.1c00814] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In nature, biosilicification directs the formation of elaborate amorphous silica exoskeletons that provide diatoms mechanically strong, chemically inert, non-decomposable silica armor conferring chemical and thermal stability as well as resistance to microbial attack, without changing the optical transparency or adversely effecting nutrient and waste exchange required for growth. These extraordinary silica/cell biocomposites have inspired decades of biomimetic research aimed at replication of diatoms' hierarchically organized exoskeletons, immobilization of cells or living organisms within silica matrices and coatings to protect them against harmful external stresses, genetic re-programming of cellular functions by virtue of physico-chemical confinement within silica, cellular integration into devices, and endowment of cells with non-native, abiotic properties through facile silica functionalization. In this Perspective, we focus our discussions on the development and concomitant challenges of bioinspired cell silicification ranging from "cells encapsulated within 3D silica matrices" and "cells encapsulated within 2D silica shells" to extra- and intracellular silica replication, wherein all biomolecular interfaces are encased within nanoscopic layers of amorphous silica. We highlight notable examples of advances in the science and technology of biosilicification and consider challenges to advancing the field, where we propose cellular "mineralization" with arbitrary nanoparticle exoskeletons as a generalizable means to impart limitless abiotic properties and functions to cells, and, based on the interchangeability of water and silicic acid and analogies between amorphous ice and amorphous silica, we consider "freezing" cells within amorphous silica as an alternative to cryo-preservation.
Collapse
Affiliation(s)
- Qi Lei
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jimin Guo
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States.,Department of Internal Medicine, Molecular Medicine, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Fanhui Kong
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Jiangfan Cao
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Lu Wang
- Department of Biochemistry and Molecular Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - C Jeffrey Brinker
- Center for Micro-Engineered Materials, Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
10
|
Martinez H, Martinez NJD, Guo J, Lujan VR, Depoy J, Brumbach MT, Brinker CJ, Bachand GD. Effects of Surface Chemistry and Topology on the Kinesin-Driven Motility of Microtubule Shuttles. ACS APPLIED BIO MATERIALS 2020; 3:7908-7918. [DOI: 10.1021/acsabm.0c01035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Haneen Martinez
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - Jimin Guo
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Victoria R. Lujan
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Jessica Depoy
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | | | - C. Jeffrey Brinker
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - George D. Bachand
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| |
Collapse
|
11
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [PMID: 33071711 DOI: 10.1002/adfm.201909539] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
12
|
Novel Breast Cancer Brain Metastasis Patient-Derived Orthotopic Xenograft Model for Preclinical Studies. Cancers (Basel) 2020; 12:cancers12020444. [PMID: 32074948 PMCID: PMC7072242 DOI: 10.3390/cancers12020444] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
The vast majority of mortality in breast cancer results from distant metastasis. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Pre-clinical animal models that reliably reflect the biology of breast cancer brain metastasis are needed to develop and test new treatments for this deadly condition. The patient-derived xenograft (PDX) model maintains many features of a donor tumor, such as intra-tumor heterogeneity, and permits the testing of individualized treatments. However, the establishment of orthotopic PDXs of brain metastasis is procedurally difficult. We have developed a method for generating such PDXs with high tumor engraftment and growth rates. Here, we describe this method and identify variables that affect its outcomes. We also compare the brain-orthotopic PDXs with ectopic PDXs grown in mammary pads of mice, and show that the responsiveness of PDXs to chemotherapeutic reagents can be dramatically affected by the site that they are in.
Collapse
|
13
|
Harjumäki R, Zhang X, Nugroho RWN, Farooq M, Lou YR, Yliperttula M, Valle-Delgado JJ, Österberg M. AFM Force Spectroscopy Reveals the Role of Integrins and Their Activation in Cell–Biomaterial Interactions. ACS APPLIED BIO MATERIALS 2020; 3:1406-1417. [DOI: 10.1021/acsabm.9b01073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Riina Harjumäki
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Robertus Wahyu N. Nugroho
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Muhammad Farooq
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131 Padova, Italy
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
14
|
Auvinen VV, Merivaara A, Kiiskinen J, Paukkonen H, Laurén P, Hakkarainen T, Koivuniemi R, Sarkanen R, Ylikomi T, Laaksonen T, Yliperttula M. Effects of nanofibrillated cellulose hydrogels on adipose tissue extract and hepatocellular carcinoma cell spheroids in freeze-drying. Cryobiology 2019; 91:137-145. [DOI: 10.1016/j.cryobiol.2019.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/21/2022]
|
15
|
Harjumäki R, Nugroho RWN, Zhang X, Lou YR, Yliperttula M, Valle-Delgado JJ, Österberg M. Quantified forces between HepG2 hepatocarcinoma and WA07 pluripotent stem cells with natural biomaterials correlate with in vitro cell behavior. Sci Rep 2019; 9:7354. [PMID: 31089156 PMCID: PMC6517585 DOI: 10.1038/s41598-019-43669-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
In vitro cell culture or tissue models that mimic in vivo cellular response have potential in tissue engineering and regenerative medicine, and are a more economical and accurate option for drug toxicity tests than animal experimentation. The design of in vivo-like cell culture models should take into account how the cells interact with the surrounding materials and how these interactions affect the cell behavior. Cell-material interactions are furthermore important in cancer metastasis and tumor progression, so deeper understanding of them can support the development of new cancer treatments. Herein, the colloidal probe microscopy technique was used to quantify the interactions of two cell lines (human pluripotent stem cell line WA07 and human hepatocellular carcinoma cell line HepG2) with natural, xeno-free biomaterials of different chemistry, morphology, and origin. Key components of extracellular matrices -human collagens I and IV, and human recombinant laminin-521-, as well as wood-derived, cellulose nanofibrils -with evidenced potential for 3D cell culture and tissue engineering- were analysed. Both strength of adhesion and force curve profiles depended on biomaterial nature and cell characteristics. The successful growth of the cells on a particular biomaterial required cell-biomaterial adhesion energies above 0.23 nJ/m. The information obtained in this work supports the development of new materials or hybrid scaffolds with tuned cell adhesion properties for tissue engineering, and provides a better understanding of the interactions of normal and cancerous cells with biomaterials in the human body.
Collapse
Affiliation(s)
- Riina Harjumäki
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Robertus Wahyu N Nugroho
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Xue Zhang
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, I-35131, Padova, Italy
| | - Juan José Valle-Delgado
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| | - Monika Österberg
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076, Aalto, Finland.
| |
Collapse
|
16
|
Giannoni P, Fais F, Cutrona G, Totero DD. Hepatocyte Growth Factor: A Microenvironmental Resource for Leukemic Cell Growth. Int J Mol Sci 2019; 20:ijms20020292. [PMID: 30642077 PMCID: PMC6359660 DOI: 10.3390/ijms20020292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/08/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the progressive expansion of B lymphocytes CD5+/CD23+ in peripheral blood, lymph-nodes, and bone marrow. The pivotal role played by the microenvironment in disease pathogenesis has become increasingly clear. We demonstrated that bone marrow stromal cells and trabecular bone cells sustain survival of leukemic B cells through the production of hepatocyte growth factor (HGF). Indeed the trans-membrane kinase receptor for HGF, c-MET, is expressed on CLL cells and STAT3 TYR705 or AKT phosphorylation is induced after HGF/c-MET interaction. We have further observed that c-MET is also highly expressed in a peculiar type of cells of the CLL-microenvironment showing nurturing features for the leukemic clone (nurse-like cells: NLCs). Since HGF treatment drives monocytes toward the M2 phenotype and NLCs exhibit features of tumor associated macrophages of type 2 we suggested that HGF, released either by cells of the microenvironment or leukemic cells, exerts a double effect: (i) enhances CLL cells survival and (ii) drives differentiation of monocytes-macrophages to an oriented immune suppressive phenotype. We here discuss how paracrine, but also autocrine production of HGF by malignant cells, may favor leukemic clone expansion and resistance to conventional drug treatments in CLL, as well as in other hematological malignancies. Novel therapeutic approaches aimed to block HGF/c-MET interactions are further proposed.
Collapse
Affiliation(s)
- Paolo Giannoni
- Stem Cell Laboratory, Department of Experimental Medicine, University of Genoa, V. Pastore 3, 16132 Genova, Italy.
| | - Franco Fais
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Giovanna Cutrona
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| | - Daniela de Totero
- Molecular Pathology Unit, IRCCS Polyclinic Hospital San Martino, L.go R. Benzi n.10, 16132 Genova, Italy.
| |
Collapse
|
17
|
Bioinstructive microparticles for self-assembly of mesenchymal stem Cell-3D tumor spheroids. Biomaterials 2018; 185:155-173. [DOI: 10.1016/j.biomaterials.2018.09.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
|
18
|
Galloway JM, Senior L, Fletcher JM, Beesley JL, Hodgson LR, Harniman RL, Mantell JM, Coombs J, Rhys GG, Xue WF, Mosayebi M, Linden N, Liverpool TB, Curnow P, Verkade P, Woolfson DN. Bioinspired Silicification Reveals Structural Detail in Self-Assembled Peptide Cages. ACS NANO 2018; 12:1420-1432. [PMID: 29275624 PMCID: PMC5967840 DOI: 10.1021/acsnano.7b07785] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/24/2017] [Indexed: 05/25/2023]
Abstract
Understanding how molecules in self-assembled soft-matter nanostructures are organized is essential for improving the design of next-generation nanomaterials. Imaging these assemblies can be challenging and usually requires processing, e.g., staining or embedding, which can damage or obscure features. An alternative is to use bioinspired mineralization, mimicking how certain organisms use biomolecules to template mineral formation. Previously, we have reported the design and characterization of Self-Assembled peptide caGEs (SAGEs) formed from de novo peptide building blocks. In SAGEs, two complementary, 3-fold symmetric, peptide hubs combine to form a hexagonal lattice, which curves and closes to form SAGE nanoparticles. As hexagons alone cannot tile onto spheres, the network must also incorporate nonhexagonal shapes. While the hexagonal ultrastructure of the SAGEs has been imaged, these defects have not been observed. Here, we show that positively charged SAGEs biotemplate a thin, protective silica coating. Electron microscopy shows that these SiO2-SAGEs do not collapse, but maintain their 3D shape when dried. Atomic force microscopy reveals a network of hexagonal and irregular features on the SiO2-SAGE surface. The dimensions of these (7.2 nm ± 1.4 nm across, internal angles 119.8° ± 26.1°) are in accord with the designed SAGE network and with coarse-grained modeling of the SAGE assembly. The SiO2-SAGEs are permeable to small molecules (<2 nm), but not to larger biomolecules (>6 nm). Thus, bioinspired silicification offers a mild technique that preserves soft-matter nanoparticles for imaging, revealing structural details <10 nm in size, while also maintaining desirable properties, such as permeability to small molecules.
Collapse
Affiliation(s)
- Johanna M. Galloway
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Laura Senior
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Jordan M. Fletcher
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Joseph L. Beesley
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Lorna R. Hodgson
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Robert L. Harniman
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Judith M. Mantell
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
| | - Jennifer Coombs
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- Bristol
Centre for Functional Nanomaterials, NSQI, University of Bristol, Tyndall Avenue, Bristol, BS8 1FD, U.K.
| | - Guto G. Rhys
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
| | - Wei-Feng Xue
- School
of Biosciences, Stacy Building, University
of Kent, Canterbury, CT2 7NJ, U.K.
| | - Majid Mosayebi
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
- School of
Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, U.K.
| | - Noah Linden
- School of
Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, U.K.
| | - Tanniemola B. Liverpool
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
- School of
Mathematics, University of Bristol, University Walk, Bristol, BS8 1TW, U.K.
| | - Paul Curnow
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Paul Verkade
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- Wolfson
Bioimaging Facility, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| | - Derek N. Woolfson
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS, U.K.
- School
of Biochemistry, University of Bristol, Biomedical Sciences Building, University
Walk, Bristol, BS8 1TD, U.K.
- BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, U.K.
| |
Collapse
|
19
|
Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. Int J Pharm 2017; 532:269-280. [DOI: 10.1016/j.ijpharm.2017.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 11/24/2022]
|
20
|
Laurén P, Somersalo P, Pitkänen I, Lou YR, Urtti A, Partanen J, Seppälä J, Madetoja M, Laaksonen T, Mäkitie A, Yliperttula M. Nanofibrillar cellulose-alginate hydrogel coated surgical sutures as cell-carrier systems. PLoS One 2017; 12:e0183487. [PMID: 28829830 PMCID: PMC5567492 DOI: 10.1371/journal.pone.0183487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 08/05/2017] [Indexed: 12/18/2022] Open
Abstract
Hydrogel nanomaterials, especially those that are of non-human and non-animal origins, have great potential in biomedical and pharmaceutical sciences due to their versatility and inherent soft-tissue like properties. With the ability to simulate native tissue function, hydrogels are potentially well suited for cellular therapy applications. In this study, we have fabricated nanofibrillar cellulose-alginate (NFCA) suture coatings as biomedical devices to help overcome some of the limitations related to cellular therapy, such as low cell survivability and distribution out of target tissue. The addition of sodium alginate 8% (w/v) increased the NFCA hydrogel viscosity, storage and loss moduli by slightly under one order of magnitude, thus contributing significantly to coating strength. Confocal microscopy showed nearly 100% cell viability throughout the 2-week incubation period within and on the surface of the coating. Additionally, typical morphologies in the dual cell culture of spheroid forming HepG2 and monolayer type SK-HEP-1 were observed. Twelve out of 14 NFCA coated surgical sutures remained intact during the suturing operation with various mice and rat tissue; however, partial peeling off was observed in 2 of the coated sutures. We conclude that NFCA suture coatings could perform as cell-carrier systems for cellular based therapy and post-surgical treatment.
Collapse
Affiliation(s)
- Patrick Laurén
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Petter Somersalo
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Irina Pitkänen
- Department of Engineering Design and Production, School of Engineering, Aalto University, Espoo, Finland
| | - Yan-Ru Lou
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Arto Urtti
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jouni Partanen
- Department of Engineering Design and Production, School of Engineering, Aalto University, Espoo, Finland
| | - Jukka Seppälä
- Department of Engineering Design and Production, School of Engineering, Aalto University, Espoo, Finland
| | | | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Department of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Antti Mäkitie
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marjo Yliperttula
- Division of Pharmaceutical Biosciences, Centre for Drug Research, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Leong WY, Soon CF, Wong SC, Tee KS, Cheong SC, Gan SH, Youseffi M. In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique. Bioengineering (Basel) 2017; 4:E43. [PMID: 28952522 PMCID: PMC5590479 DOI: 10.3390/bioengineering4020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/03/2022] Open
Abstract
Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.
Collapse
Affiliation(s)
- Wai Yean Leong
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Chin Fhong Soon
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
- Biosensor and Bioengineering Laboratory, MiNT-SRC Research Center, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Soon Chuan Wong
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Sok Ching Cheong
- Cancer Research Malaysia, 1, Jalan SS12/1A, Subang Jaya 47500, Malaysia.
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bahru, Malaysia.
| | - Mansour Youseffi
- School of Engineering, Design and Technology, Medical Engineering, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
22
|
Baek S, Han NR, Yun JI, Hwang JY, Kim M, Park CK, Lee E, Lee ST. Effects of Culture Dimensions on Maintenance of Porcine Inner Cell Mass-Derived Cell Self-Renewal. Mol Cells 2017; 40:117-122. [PMID: 28196411 PMCID: PMC5339502 DOI: 10.14348/molcells.2017.2223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/02/2023] Open
Abstract
Despite the fact that porcine embryonic stem cells (ESCs) are a practical study tool, in vitro long-term maintenance of these cells is difficult in a two-dimensional (2D) microenvironment using cellular niche or extracellular matrix proteins. However, a three-dimensional (3D) microenvironment, similar to that enclosing the inner cell mass of the blastocyst, may improve in vitro maintenance of self-renewal. Accordingly, as a first step toward constructing a 3D microenvironment optimized to maintain porcine ESC self-renewal, we investigated different culture dimensions for porcine ICM-derived cells to enhance the maintenance of self-renewal. Porcine ICM-derived cells were cultured in agarose-based 3D hydrogel with self-renewal-friendly mechanics and in 2D culture plates with or without feeder cells. Subsequently, the effects of the 3D microenvironment on maintenance of self-renewal were identified by analyzing colony formation and morphology, alkaline phosphatase (AP) activity, and transcriptional and translational regulation of self-renewal-related genes. The 3D microenvironment using a 1.5% (w/v) agarose-based 3D hydrogel resulted in significantly more colonies with stereoscopic morphology, significantly improved AP activity, and increased protein expression of self-renewal-related genes compared to those in the 2D microenvironment. These results demonstrate that self-renewal of porcine ICM-derived cells can be maintained more effectively in a 3D microenvironment than in a 2D microenvironment. These results will help develop novel culture systems for ICM-derived cells derived from diverse species, which will contribute to stimulating basic and applicable studies related to ESCs.
Collapse
Affiliation(s)
- Song Baek
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Na Rae Han
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Jung Im Yun
- Division of Animal Resource Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Jae Yeon Hwang
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven 06510,
USA
| | - Minseok Kim
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju 55365,
Korea
| | - Choon Keun Park
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon 24341,
Korea
| | - Eunsong Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon 24341,
Korea
| | - Seung Tae Lee
- Department of Animal Life Science, Kangwon National University, Chuncheon 24341,
Korea
- Division of Applied Animal Science, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
23
|
Hakkarainen T, Koivuniemi R, Kosonen M, Escobedo-Lucea C, Sanz-Garcia A, Vuola J, Valtonen J, Tammela P, Mäkitie A, Luukko K, Yliperttula M, Kavola H. Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J Control Release 2016; 244:292-301. [DOI: 10.1016/j.jconrel.2016.07.053] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/20/2016] [Accepted: 07/29/2016] [Indexed: 12/11/2022]
|
24
|
Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J. Composites of Polymer Hydrogels and Nanoparticulate Systems for Biomedical and Pharmaceutical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2015; 5:2054-2130. [PMID: 28347111 PMCID: PMC5304774 DOI: 10.3390/nano5042054] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/25/2022]
Abstract
Due to their unique structures and properties, three-dimensional hydrogels and nanostructured particles have been widely studied and shown a very high potential for medical, therapeutic and diagnostic applications. However, hydrogels and nanoparticulate systems have respective disadvantages that limit their widespread applications. Recently, the incorporation of nanostructured fillers into hydrogels has been developed as an innovative means for the creation of novel materials with diverse functionality in order to meet new challenges. In this review, the fundamentals of hydrogels and nanoparticles (NPs) were briefly discussed, and then we comprehensively summarized recent advances in the design, synthesis, functionalization and application of nanocomposite hydrogels with enhanced mechanical, biological and physicochemical properties. Moreover, the current challenges and future opportunities for the use of these promising materials in the biomedical sector, especially the nanocomposite hydrogels produced from hydrogels and polymeric NPs, are discussed.
Collapse
Affiliation(s)
- Fuli Zhao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Dan Yao
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Ruiwei Guo
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jianhua Zhang
- Department of Polymer Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|