1
|
Du Z, Zhao Q, Wang X, Sota T, Tian L, Song F, Cai W, Zhao P, Li H. Climatic oscillation promoted diversification of spinous assassin bugs during Pleistocene glaciation. Evol Appl 2023; 16:880-894. [PMID: 37124089 PMCID: PMC10130555 DOI: 10.1111/eva.13543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/28/2023] Open
Abstract
Insect speciation is among the most fascinating topics in evolutionary biology; however, its underlying mechanisms remain unclear. Allopatric speciation represents one of the major types of speciation and is believed to have frequently occurred during glaciation periods, when climatic oscillation may have caused suitable habitats to be fragmented repeatedly, creating geographical isolation among populations. However, supporting evidence for allopatric speciation of insects in East Asia during the Pleistocene glaciation remains lacking. We aim to investigate the effect of climatic oscillation during the Pleistocene glaciation on the diversification pattern and evolutionary history of hemipteran insects and to test the hypothesis of Pleistocene species stability using spinous assassin bugs Sclomina (Hemiptera: Reduviidae), a small genus widely distributed in southern China but was later found to have cryptic species diversity. Here, using the whole mitochondrial genome (mitogenome) and nuclear ribosomal RNA genes, we investigated both interspecific and intraspecific diversification patterns of spinous assassin bugs. Approximate Bayesian computation, ecological niche modeling, and demographic history analyses were also applied to understand the diversification process and driven factors. Our data suggest that the five species of Sclomina are highly diverged, despite three of them currently being cryptic. Speciation occurred during the Pleistocene when suitable distribution areas were possibly fragmented. Six phylogeographic groups in the type species S. erinacea were identified, among which two groups underwent expansion during the early Last Glacial Period and after Last Glacier Maximum. Our analyses suggest that this genus may have experienced climate-driven habitat fragmentation and postglacial expansion in the Pleistocene, promoting allopatric speciation and intraspecific diversification. Our results reveal underestimated species diversity in a small insect group and illustrate a remarkable example of allopatric speciation of insects in East Asia promoted by Pleistocene climatic oscillations. These findings provide important insights into the speciation processes and aid the conservation of insect species diversity.
Collapse
Affiliation(s)
- Zhenyong Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Qian Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Xuan Wang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Teiji Sota
- Department of Zoology, Graduate School of ScienceKyoto University, SakyoKyotoJapan
| | - Li Tian
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Fan Song
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Wanzhi Cai
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| | - Ping Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf (Ministry of Education) and Guangxi Key Laboratory of Earth Surface Processes and Intelligent SimulationNanning Normal UniversityNanningChina
| | - Hu Li
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Sanya Institute of China Agricultural UniversitySanyaChina
| |
Collapse
|
2
|
Zhu X, Zheng C, Dong X, Zhang H, Ye Z, Xue H, Bu W. Species boundary and phylogeographical pattern provide new insights into the management efforts of Megacopta cribraria (Hemiptera: Plataspidae), a bean bug invading North America. PEST MANAGEMENT SCIENCE 2022; 78:4871-4881. [PMID: 36181419 DOI: 10.1002/ps.7108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 07/26/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Correct identification together with information on distribution range, geographical origin and evolutionary history are the necessary basis for the management and control of invasive species. The bean bug Megacopta cribraria is a crucial agricultural pest of soybean. Recently, M. cribraria has invaded the United States and spread rapidly, causing severe reductions in soybean yields. However, the species boundary and phylogeographical pattern of this invasive bean bug are still unclear. RESULTS The results of different species delimitation methods (Automatic Barcode Gap Discovery, Assemble Species by Automatic Partitioning, Bayesian Poisson Tree Processes and Bayesian Phylogenetics and Phylogeography) strongly demonstrated that M. cribraria and Megacopta punctatissima represent the same species. M. punctatissima should not be considered a distinct species but rather a variety of M. cribraria. Phylogenetic analyses revealed three well-supported clades (Southeast Asia [SEA], East Asia continent [EAC] and Japan [JA]) with distinct geographical structures in the M. cribraria-M. punctatissima complex. The SEA clade was at the base of the phylogenetic tree, and the sister relationship between the EAC clade and JA clade was strongly supported. The split between the EAC clade and JA clade occurred at approximately 0.71 Ma, corresponding to the submergence period of the East China Sea land bridge. CONCLUSION This study clarified the species boundary between M. cribraria and its closely related species and revealed the phylogeographical pattern and evolutionary history of M. cribraria. The species delimitation and phylogeography results achieved in this study could provide new insights into the monitoring and management of this agricultural pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiuxiu Zhu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Xue Dong
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | | | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Huaijun Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Sun H, Jia F, Zhao W, Zhou Z, Li C, Wang J, Yao Y. Population Genetics Reveals That the Western Tianshan Mountains Populations of Agrilus mali (Coleoptera: Buprestidae) May Have Not been Recently Introduced. Front Genet 2022; 13:857866. [PMID: 35401710 PMCID: PMC8988243 DOI: 10.3389/fgene.2022.857866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Agrilus mali Matsumura is a wood-boring beetle that aggressively attacks species of the genus Malus, that has recently caused serious damage to the wild apple tree M. sieversii (Lebed.) in the western Tianshan Mountains in Xinjiang. It was first detected there in the early 1990s and spread rapidly, being thus considered a regional invasive pest. To explore the possible outbreak mechanism of the local population and characterize the genetic differentiation of A. mali across different regions of China, we used three mitochondrial genes (COI, COII, and CytB) to investigate the genetic diversity and genetic structure of 17 A. mali populations containing 205 individuals collected from five Chinese provinces. Among them, nine populations were from the western Tianshan Mountains. Ultimately, of the 136 pairwise Fst comparisons, 99 showed high genetic differentiation among overall populations, and Tianshan populations exhibited significant differentiation with most of the non-Tianshan populations. Furthermore, A. mali populations represented relatively abundant haplotypes (54 haplotypes). Nine populations from the Tianshan Mountains showed 32 haplotypes (26 of which were unique), displaying relatively high genetic diversity. Additionally, the Mantel test revealed population genetic differentiation among either overall populations or the Tianshan Mountains populations, likely caused by geographical isolation. Phylogenic relationships showed that all populations clustered into three clades, and Tianshan Mountains populations, including CY, occupied one of the three clades. These results suggest that A. mali in the western Tianshan region has possibly been present in the area for a long period, and may not have been introduced recently. Highly frequent gene flows within Tianshan populations are possibly caused by human activities and may enhance the adaptability of A. mali along the western Tianshan Mountains, leading to periodic outbreaks. These findings enhance our understanding of jewel beetle population genetics and provide valuable information for pest management.
Collapse
Affiliation(s)
- Huiquan Sun
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Feiran Jia
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Wenxia Zhao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhongfu Zhou
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Chengjin Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Jianjun Wang
- Liaoning Academy of Forest Science, Shenyang, China
| | - Yanxia Yao
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- *Correspondence: Yanxia Yao,
| |
Collapse
|
4
|
Namyatova AA, Schwartz MD, Cassis G. Determining the position of Diomocoris, Micromimetus and Taylorilygus in the Lygus-complex based on molecular data and first records of Diomocoris and Micromimetus from Australia, including four new species (Insecta : Hemiptera : Miridae : Mirinae). INVERTEBR SYST 2021. [DOI: 10.1071/is20015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Lygus-complex is one of the most taxonomically challenging groups of Miridae (Heteroptera), and its Australian fauna is poorly studied. Here we examine the Australian taxa of the Lygus-complex using morphological and molecular methods. After a detailed morphological study of the material collected throughout Australia, Taylorilygus nebulosus is transferred to Diomocoris, with the genus recorded for the first time in this country. Taylorilygus apicalis, also widely distributed in Australia, is redescribed on the basis of Australian material. The genus Micromimetus is recorded for the first time in Australia, with M. celiae, sp. nov., M. hannahae, sp. nov., M. nikolai, sp. nov. and M. shofneri, sp. nov. described as new to science. Micromimetus pictipes is redescribed and its distributional range is increased. The monophyly of the Lygus-complex and relationships within this group were tested using cytochrome c oxidase subunit I (COI), 16S rRNA, 18S rRNA and 28S rRNA markers. The Lygus-complex has been found to be non-monophyletic. Phylogeny confirmed the monophyly of Micromimetus, and it has shown that Taylorilygus apicalis is closer to Micromimetus species than to Diomocoris nebulosus. This study is the initial step in understanding the Lygus-complex phylogeny; analyses with more taxa, more genes and morphology are needed to reveal the interrelationships within this group, and sister-group relationships of Australian taxa.
http://zoobank.org/urn:lsid:zoobank.org:pub:7393D96B-2BBA-438D-A134-D372EFE7FB9E
Collapse
|
5
|
Xue J, Zhang H, Ning X, Bu W, Yu X. Evolutionary history of a beautiful damselfly, Matrona basilaris, revealed by phylogeographic analyses: the first study of an odonate species in mainland China. Heredity (Edinb) 2018; 122:570-581. [PMID: 30356221 DOI: 10.1038/s41437-018-0158-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 11/09/2022] Open
Abstract
Matrona basilaris Selys, 1853 is a damselfly distributed mainly in mainland China. A total of 423 individuals from 48 populations covering almost the entire range were sampled to explore the genetic diversity, phylogeographic structure, and demographic dynamics of the species using sequences of three mitochondrial genes (COI, COII, and ND1) and a nuclear (ITS1 + 5.8 S + ITS2) gene. Phylogenetic tree, median-joining network, and BAPS analyses indicated a four-group division of the entire population, and the divergence event was estimated to have occurred in the middle Pleistocene. The diverse terrain of mainland China as well as past climatic oscillations were assumed to have shaped the current phylogeographic pattern of M. basilaris. Multiple lines of evidence supported population expansion in Group 1 and Group 2 but not in Group 3 or Group 4. The expansion times corresponded to the transition phase from the LIG (∼0.14-0.12 Mya) to the LGM (∼0.021-0.018 Mya). The pre-LGM expansion model reflected a different pattern affecting the historical dynamics of the population of East Asian species caused by Pleistocene climatic changes. Interestingly, Group 2 exhibited a disjunctive distribution pattern. The possible reasons were introgression caused by female-biased dispersal or human phoresy during construction of the Forbidden City during the Ming Dynasty of China.
Collapse
Affiliation(s)
- Junli Xue
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haiguang Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Ning
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Yu
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, China. .,College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China.
| |
Collapse
|
6
|
Population genetic structure of the land snail Camaena cicatricosa (Stylommatophora, Camaenidae) in China inferred from mitochondrial genes and ITS2 sequences. Sci Rep 2017; 7:15590. [PMID: 29142227 PMCID: PMC5688059 DOI: 10.1038/s41598-017-15758-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 11/01/2017] [Indexed: 02/01/2023] Open
Abstract
The phylogeographic structure of the land snail Camaena cicatricosa was analyzed in this study based on mitochondrial gene (COI and 16srRNA, mt DNA) and internal transcribed spacer (ITS2) sequences in 347 individuals. This snail is the vector of the zoonotic food-borne parasite Angiostrongylus cantonensis and one of the main harmful snails distributed exclusively in China. The results revealed significant fixation indices of genetic differentiation and high gene flow between most populations except several populations. An isolation-by-distance test showed no significant correlation between genetic distance and geographical distance among C. cicatricosa populations, which suggested that gene flow was not restricted by distance. The levels of haplotype and nucleotide diversity of C. cicatricosa were generally high, except those in some special populations, according to the mt DNA and ITS2 data. Furthermore, the phylogenetic trees and asteroid networks of haplotypes indicated nonobvious genetic structure, the same as results got based on the synonymous and non synonymous sites of 347 sequences of the COI gene. All lines of evidence indicated that climatic changes and geographical and human barriers do not substantially affect the current population structure and distribution of the investigated snails.
Collapse
|
7
|
Zhang LJ, Cai WZ, Luo JY, Zhang S, Wang CY, Lv LM, Zhu XZ, Wang L, Cui JJ. Phylogeographic patterns of Lygus pratensis (Hemiptera: Miridae): Evidence for weak genetic structure and recent expansion in northwest China. PLoS One 2017; 12:e0174712. [PMID: 28369108 PMCID: PMC5378377 DOI: 10.1371/journal.pone.0174712] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 03/14/2017] [Indexed: 12/02/2022] Open
Abstract
Lygus pratensis (L.) is an important cotton pest in China, especially in the northwest region. Nymphs and adults cause serious quality and yield losses. However, the genetic structure and geographic distribution of L. pratensis is not well known. We analyzed genetic diversity, geographical structure, gene flow, and population dynamics of L. pratensis in northwest China using mitochondrial and nuclear sequence datasets to study phylogeographical patterns and demographic history. L. pratensis (n = 286) were collected at sites across an area spanning 2,180,000 km2, including the Xinjiang and Gansu-Ningxia regions. Populations in the two regions could be distinguished based on mitochondrial criteria but the overall genetic structure was weak. The nuclear dataset revealed a lack of diagnostic genetic structure across sample areas. Phylogenetic analysis indicated a lack of population level monophyly that may have been caused by incomplete lineage sorting. The Mantel test showed a significant correlation between genetic and geographic distances among the populations based on the mtDNA data. However the nuclear dataset did not show significant correlation. A high level of gene flow among populations was indicated by migration analysis; human activities may have also facilitated insect movement. The availability of irrigation water and ample cotton hosts makes the Xinjiang region well suited for L. pratensis reproduction. Bayesian skyline plot analysis, star-shaped network, and neutrality tests all indicated that L. pratensis has experienced recent population expansion. Climatic changes and extensive areas occupied by host plants have led to population expansion of L. pratensis. In conclusion, the present distribution and phylogeographic pattern of L. pratensis was influenced by climate, human activities, and availability of plant hosts.
Collapse
Affiliation(s)
- Li-Juan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Wan-Zhi Cai
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jun-Yu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuai Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Chun-Yi Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Li-Min Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiang-Zhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jin-Jie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
- * E-mail:
| |
Collapse
|
8
|
Zhang D, Ye Z, Yamada K, Zhen Y, Zheng C, Bu W. Pleistocene sea level fluctuation and host plant habitat requirement influenced the historical phylogeography of the invasive species Amphiareus obscuriceps (Hemiptera: Anthocoridae) in its native range. BMC Evol Biol 2016; 16:174. [PMID: 27582259 PMCID: PMC5007872 DOI: 10.1186/s12862-016-0748-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/18/2016] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND On account of repeated exposure and submergence of the East China Sea (ECS) land bridge, sea level fluctuation played an important role in shaping the population structure of many temperate species across the ECS during the glacial period. The flower bug Amphiareus obscuriceps (Poppius, 1909) (Hemiptera: Anthocoridae) is an invasive species native to the Sino-Japanese Region (SJR) of East Asia. We tested the hypothesis of the ECS land bridge acting as a dispersal corridor or filter for A. obscuriceps during the glacial period. Specifically, we tested whether and the extent to which dispersal ability and host plant habitat requirement influenced the genetic structure of A. obscuriceps during the exposure of the ECS land bridge. RESULTS Phylogenetic and network analyses indicated that A. obscuriceps is composed of two major lineages, i.e., China and Japan. Divergence time on both sides of the ECS was estimated to be approximately 1.07 (0.79-1.32) Ma, which was about the same period that the sea level increased. No significant Isolation by Distance (IBD) relationship was found between Фst and Euclidean distances in the Mantel tests, which is consistent with the hypothesis that this species has a good dispersal ability. Our Last Glacial Maximum (LGM) niche modeling of plants that constitute preferred habitats for A. obscuriceps exhibited a similar habitat gap on the exposed ECS continental shelf between China and Japan, but showed a continuous distribution across the Taiwan Strait. CONCLUSION Our results suggest that ecological properties (habitat requirement and dispersal ability), together with sea level fluctuation during the Pleistocene across the ECS, have shaped the genetic structure and demographic history of A. obscuriceps in its native area. The host plant habitat requirement could also be a key to the colonization of the A. obscuriceps species during the exposure of the ECS land bridge. Our findings will shed light on the potential role of habitat requirement in the process of biological invasion in future studies.
Collapse
Affiliation(s)
- Danli Zhang
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Zhen Ye
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Kazutaka Yamada
- Tokushima Prefectural Museum, Bunka-no-Mori Park, Hachiman-chô, Tokushima 770-8070 Japan
| | - Yahui Zhen
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Chenguang Zheng
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| | - Wenjun Bu
- Institute of Entomology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071 China
| |
Collapse
|
9
|
Havill NP, Shiyake S, Lamb Galloway A, Foottit RG, Yu G, Paradis A, Elkinton J, Montgomery ME, Sano M, Caccone A. Ancient and modern colonization of North America by hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), an invasive insect from East Asia. Mol Ecol 2016; 25:2065-80. [PMID: 26880353 DOI: 10.1111/mec.13589] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 02/05/2016] [Accepted: 02/09/2016] [Indexed: 01/15/2023]
Abstract
Hemlock woolly adelgid, Adelges tsugae, is an invasive pest of hemlock trees (Tsuga) in eastern North America. We used 14 microsatellites and mitochondrial COI sequences to assess its worldwide genetic structure and reconstruct its colonization history. The resulting information about its life cycle, biogeography and host specialization could help predict invasion by insect herbivores. We identified eight endemic lineages of hemlock adelgids in central China, western China, Ulleung Island (South Korea), western North America, and two each in Taiwan and Japan, with the Japanese lineages specializing on different Tsuga species. Adelgid life cycles varied at local and continental scales with different sexual, obligately asexual and facultatively asexual lineages. Adelgids in western North America exhibited very high microsatellite heterozygosity, which suggests ancient asexuality. The earliest lineages diverged in Asia during Pleistocene glacial periods, as estimated using approximate Bayesian computation. Colonization of western North America was estimated to have occurred prior to the last glacial period by adelgids directly ancestral to those in southern Japan, perhaps carried by birds. The modern invasion from southern Japan to eastern North America caused an extreme genetic bottleneck with just two closely related clones detected throughout the introduced range. Both colonization events to North America involved host shifts to unrelated hemlock species. These results suggest that genetic diversity, host specialization and host phylogeny are not predictive of adelgid invasion. Monitoring non-native sentinel host trees and focusing on invasion pathways might be more effective methods of preventing invasion than making predictions using species traits or evolutionary history.
Collapse
Affiliation(s)
- Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, Connecticut 06514, USA
| | | | - Ashley Lamb Galloway
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | - Robert G Foottit
- Canadian National Collection of Insects, Agriculture and Agri-Food Canada, Ottawa, Ontario K1A 0C6, Canada
| | - Guoyue Yu
- Institute of Plant & Environmental Protection, Beijing Academy of Agricultural & Forestry Science, Beijing 100097, China
| | - Annie Paradis
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Joseph Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - Masakazu Sano
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Hokkaido, Japan
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|