1
|
Yan Y, Zhang Y, Tang X, Zhuoya Z, Linyu G, Lingyun S. Vγ6 +γδT Cells Participate in Lupus Nephritis in MRL/Lpr Mice. Int J Rheum Dis 2025; 28:e70040. [PMID: 39740062 DOI: 10.1111/1756-185x.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND γδT cells have been implicated in the pathogenesis of autoimmune diseases. The study aims to investigate the abundance of γδT cells in MRL/lpr mice. METHODS MRL/lpr mice were used as lupus models, while C3H/HeJ mice served as normal controls. The abundance of γδT cells in different organs was examined by flow cytometry. Plasma double-stranded DNA antibody levels, blood urea nitrogen, creatinine, and urinary protein levels were measured. Renal histopathology was observed via H&E staining. The correlations between the abundance of γδT cells and lupus manifestations were analyzed. RESULTS Compared with C3H/HeJ mice, the number of γδT cells and Vγ6+γδT cell subset in the peripheral blood of MRL/lpr mice was significantly reduced. However, in the kidney, the number of γδT cells and Vγ6+γδT cell subset was significantly increased. Additionally, the number of Vγ6+γδT cells in the kidney was positively correlated with the urinary protein level. The number of IFN-γ+Vγ6+γδT cells in the kidney was positively correlated with urinary protein level. CONCLUSION In MRL/lpr mice, it is likely that peripheral γδT cells, especially the Vγ6 subset, infiltrate the kidney and secrete IFN-γ, which contributes to the development of lupus nephritis.
Collapse
Affiliation(s)
- Yunxia Yan
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Zhenjiang, China
| | - Xiaojun Tang
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhang Zhuoya
- Department of Rheumatology and Immunology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Geng Linyu
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Sun Lingyun
- Department of Rheumatology and Immunology, The Drum Tower Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Li Q, Yuan Z, Bahabayi A, Zhang Z, Zeng X, Kang R, Xu Q, Guan Z, Wang P, Liu C. Upregulation of CX3CR1 expression in circulating T cells of systemic lupus erythematosus patients as a reflection of autoimmune status through characterization of cytotoxic capacity. Int Immunopharmacol 2024; 126:111231. [PMID: 38016349 DOI: 10.1016/j.intimp.2023.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
OBJECTIVE This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.
Collapse
Affiliation(s)
- Qi Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zihang Yuan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ayibaota Bahabayi
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhonghui Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyue Zeng
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Rui Kang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qinzhu Xu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Zhao Guan
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China; Peking University Center for Human Disease Genomics, Peking University Health Science Center, Beijing, China
| | - Chen Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
3
|
Alves I, Santos-Pereira B, de la Cruz N, Campar A, Pinto V, Rodrigues PM, Araújo M, Santos S, Ramos-Soriano J, Vasconcelos C, Silva R, Afonso N, Mira F, Barrias CC, Alves NL, Rojo J, Santos L, Marinho A, Pinho SS. Host-derived mannose glycans trigger a pathogenic γδ T cell/IL-17a axis in autoimmunity. Sci Transl Med 2023; 15:eabo1930. [PMID: 36921032 DOI: 10.1126/scitranslmed.abo1930] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Autoimmune diseases are life-threatening disorders that cause increasing disability over time. Systemic lupus erythematosus (SLE) and other autoimmune diseases arise when immune stimuli override mechanisms of self-tolerance. Accumulating evidence has demonstrated that protein glycosylation is substantially altered in autoimmune disease development, but the mechanisms by which glycans trigger these autoreactive immune responses are still largely unclear. In this study, we found that presence of microbial-associated mannose structures at the surface of the kidney triggers the recognition of DC-SIGN-expressing γδ T cells, inducing a pathogenic interleukin-17a (IL-17a)-mediated autoimmune response. Mice lacking Mgat5, which have a higher abundance of mannose structures in the kidney, displayed increased γδ T cell infiltration into the kidney that was associated with spontaneous development of lupus in older mice. N-acetylglucosamine supplementation, which promoted biosynthesis of tolerogenic branched N-glycans in the kidney, was found to inhibit γδ T cell infiltration and control disease development. Together, this work reveals a mannose-γδ T cell-IL-17a axis in SLE immunopathogenesis and highlights glycometabolic reprogramming as a therapeutic strategy for autoimmune disease treatment.
Collapse
Affiliation(s)
- Inês Alves
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Beatriz Santos-Pereira
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Noelia de la Cruz
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Ana Campar
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Vanda Pinto
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Pedro M Rodrigues
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Marco Araújo
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Sofia Santos
- Nephrology Department, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carlos Vasconcelos
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Roberto Silva
- Department of Pathology, Hospital Universitário São João do Porto, 4200-319 Porto, Portugal
| | - Nuno Afonso
- Department of Nephrology, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Filipe Mira
- Department of Nephrology, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Cristina C Barrias
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Nuno L Alves
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Lélita Santos
- Department of Internal Medicine, Centro Hospitalar Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - António Marinho
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal.,Department of Clinical Immunology, Centro Hospitalar Universitário do Porto, 4099-001 Porto, Portugal
| | - Salomé S Pinho
- i3s - Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal.,Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.,ICBAS-School of Medicine and Biomedical Sciences, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Abraham R, Durkee MS, Ai J, Veselits M, Casella G, Asano Y, Chang A, Ko K, Oshinsky C, Peninger E, Giger ML, Clark MR. Specific in situ inflammatory states associate with progression to renal failure in lupus nephritis. J Clin Invest 2022; 132:e155350. [PMID: 35608910 PMCID: PMC9246394 DOI: 10.1172/jci155350] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 05/19/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUNDIn human lupus nephritis (LN), tubulointerstitial inflammation (TII) on biopsy predicts progression to end-stage renal disease (ESRD). However, only about half of patients with moderate-to-severe TII develop ESRD. We hypothesized that this heterogeneity in outcome reflects different underlying inflammatory states. Therefore, we interrogated renal biopsies from LN longitudinal and cross-sectional cohorts.METHODSData were acquired using conventional and highly multiplexed confocal microscopy. To accurately segment cells across whole biopsies, and to understand their spatial relationships, we developed computational pipelines by training and implementing several deep-learning models and other computer vision techniques.RESULTSHigh B cell densities were associated with protection from ESRD. In contrast, high densities of CD8+, γδ, and other CD4-CD8- T cells were associated with both acute renal failure and progression to ESRD. B cells were often organized into large periglomerular neighborhoods with Tfh cells, while CD4- T cells formed small neighborhoods in the tubulointerstitium, with frequency that predicted progression to ESRD.CONCLUSIONThese data reveal that specific in situ inflammatory states are associated with refractory and progressive renal disease.FUNDINGThis study was funded by the NIH Autoimmunity Centers of Excellence (AI082724), Department of Defense (LRI180083), Alliance for Lupus Research, and NIH awards (S10-OD025081, S10-RR021039, and P30-CA14599).
Collapse
Affiliation(s)
- Rebecca Abraham
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| | - Madeleine S. Durkee
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
- Department of Radiology, and
| | - Junting Ai
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| | - Margaret Veselits
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| | - Gabriel Casella
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
- Department of Radiology, and
| | - Yuta Asano
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, Illinois, USA
| | - Kichul Ko
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| | - Charles Oshinsky
- Division of Rheumatology, University of Washington, Seattle, Washington, USA
| | - Emily Peninger
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| | | | - Marcus R. Clark
- Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research
| |
Collapse
|
5
|
Singh RP, Hahn BH, Bischoff DS. Cellular and Molecular Phenotypes of pConsensus Peptide (pCons) Induced CD8 + and CD4 + Regulatory T Cells in Lupus. Front Immunol 2021; 12:718359. [PMID: 34867947 PMCID: PMC8640085 DOI: 10.3389/fimmu.2021.718359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease with widespread inflammation, immune dysregulation, and is associated with the generation of destructive anti-DNA autoantibodies. We have shown previously the immune modulatory properties of pCons peptide in the induction of both CD4+ and CD8+ regulatory T cells which can in turn suppress development of the autoimmune disease in (NZB/NZW) F1 (BWF1) mice, an established model of lupus. In the present study, we add novel protein information and further demonstrate the molecular and cellular phenotypes of pCons-induced CD4+ and CD8+ Treg subsets. Flow cytometry analyses revealed that pCons induced CD8+ Treg cells with the following cell surface molecules: CD25highCD28high and low subsets (shown earlier), CD62Lhigh, CD122low, PD1low, CTLA4low, CCR7low and 41BBhigh. Quantitative real-time PCR (qRT-PCR) gene expression analyses revealed that pCons-induced CD8+ Treg cells downregulated the following several genes: Regulator of G protein signaling (RGS2), RGS16, RGS17, BAX, GPT2, PDE3b, GADD45β and programmed cell death 1 (PD1). Further, we confirmed the down regulation of these genes by Western blot analyses at the protein level. To our translational significance, we showed herein that pCons significantly increased the percentage of CD8+FoxP3+ T cells and further increased the mean fluorescence intensity (MFI) of FoxP3 when healthy peripheral blood mononuclear cells (PBMCs) are treated with pCons (10 μg/ml, for 24-48 hours). In addition, we found that pCons reduced apoptosis in CD4+ and CD8+ T cells and B220+ B cells of BWF1 lupus mice. These data suggest that pCons stimulates cellular, immunological, and molecular changes in regulatory T cells which in turn protect against SLE autoimmunity.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bevra H Hahn
- Division of Rheumatology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
6
|
Madhok A, Bhat SA, Philip CS, Sureshbabu SK, Chiplunkar S, Galande S. Transcriptome Signature of Vγ9Vδ2 T Cells Treated With Phosphoantigens and Notch Inhibitor Reveals Interplay Between TCR and Notch Signaling Pathways. Front Immunol 2021; 12:660361. [PMID: 34526984 PMCID: PMC8435775 DOI: 10.3389/fimmu.2021.660361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Gamma delta (γδ) T cells, especially the Vγ9Vδ2 subtype, have been implicated in cancer therapy and thus have earned the spotlight in the past decade. Although one of the most important properties of γδ T cells is their activation by phosphoantigens, which are intermediates of the Mevalonate and Rohmer pathway of isoprenoid biosynthesis, such as IPP and HDMAPP, respectively, the global effects of such treatments on Vγ9Vδ2 T cells remain elusive. Here, we used the high-throughput transcriptomics approach to elucidate the transcriptional changes in human Vγ9Vδ2 T cells upon HDMAPP, IPP, and anti-CD3 treatments in combination with interleukin 2 (IL2) cytokine stimulation. These activation treatments exhibited a dramatic surge in transcription with distinctly enriched pathways. We further assessed the transcriptional dynamics upon inhibition of Notch signaling coupled with activation treatments. We observed that the metabolic processes are most affected upon Notch inhibition via GSI-X. The key effector genes involved in gamma-delta cytotoxic function were downregulated upon Notch blockade even in combination with activation treatment, suggesting a transcriptional crosstalk between T-cell receptor (TCR) signaling and Notch signaling in Vγ9Vδ2 T cells. Collectively, we demonstrate the effect of the activation of TCR signaling by phosphoantigens or anti-CD3 on the transcriptional status of Vγ9Vδ2 T cells along with IL2 stimulation. We further show that the blockade of Notch signaling antagonistically affects this activation.
Collapse
Affiliation(s)
- Ayush Madhok
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India
| | - Sajad Ahmad Bhat
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Chinna Susan Philip
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shalini Kashipathi Sureshbabu
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Shubhada Chiplunkar
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sanjeev Galande
- Centre of Excellence in Epigenetics, Department of Biology, Indian Institute of Science and Education and Research (IISER), Pune, India.,Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| |
Collapse
|
7
|
Gu XX, Jin Y, Fu T, Zhang XM, Li T, Yang Y, Li R, Zhou W, Guo JX, Zhao R, Li JJ, Dong C, Gu ZF. Relevant Characteristics Analysis Using Natural Language Processing and Machine Learning Based on Phenotypes and T-Cell Subsets in Systemic Lupus Erythematosus Patients With Anxiety. Front Psychiatry 2021; 12:793505. [PMID: 34955935 PMCID: PMC8703039 DOI: 10.3389/fpsyt.2021.793505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
Anxiety is frequently observed in patients with systemic lupus erythematosus (SLE) and the immune system could act as a trigger for anxiety. To recognize abnormal T-cell and B-cell subsets for SLE patients with anxiety, in this study, patient disease phenotypes data from electronic lupus symptom records were extracted by using natural language processing. The Hospital Anxiety and Depression Scale (HADS) was used to distinguish patients, and 107 patients were selected to meet research requirements. Then, peripheral blood was collected from two patient groups for multicolor flow cytometry experiments. The characteristics of 75 T-cell and 15 B-cell subsets were investigated between SLE patients with- (n = 23) and without-anxiety (n = 84) groups by four machine learning methods. The findings showed 13 T-cell subsets were significantly different between the two groups. Furthermore, BMI, fatigue, depression, unstable emotions, CD27+CD28+ Th/Treg, CD27-CD28- Th/Treg, CD45RA-CD27- Th, and CD45RA+HLADR+ Th cells may be important characteristics between SLE patients with- and without-anxiety groups. The findings not only point out the difference of T-cell subsets in SLE patients with or without anxiety, but also imply that T cells might play the important role in patients with anxiety disorder.
Collapse
Affiliation(s)
- Xi-Xi Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Yi Jin
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ting Fu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiao-Ming Zhang
- Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Teng Li
- Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ying Yang
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Rong Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Xin Guo
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Rui Zhao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jing-Jing Li
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Chen Dong
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Zhi-Feng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Joint Research Center, Affiliated Hospital of Nantong University, Nantong, China.,Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
8
|
CD40/CD40L Signaling as a Promising Therapeutic Target for the Treatment of Renal Disease. J Clin Med 2020; 9:jcm9113653. [PMID: 33202988 PMCID: PMC7697100 DOI: 10.3390/jcm9113653] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
The cluster of differentiation 40 (CD40) is activated by the CD40 ligand (CD40L) in a variety of diverse cells types and regulates important processes associated with kidney disease. The CD40/CD40L signaling cascade has been comprehensively studied for its roles in immune functions, whereas the signaling axis involved in local kidney injury has only drawn attention in recent years. Clinical studies have revealed that circulating levels of soluble CD40L (sCD40L) are associated with renal function in the setting of kidney disease. Levels of the circulating CD40 receptor (sCD40), sCD40L, and local CD40 expression are tightly related to renal injury in different types of kidney disease. Additionally, various kidney cell types have been identified as non-professional antigen-presenting cells (APCs) that express CD40 on the cell membrane, which contributes to the interactions between immune cells and local kidney cells during the development of kidney injury. Although the potential for adverse CD40 signaling in kidney cells has been reported in several studies, a summary of those studies focusing on the role of CD40 signaling in the development of kidney disease is lacking. In this review, we describe the outcomes of recent studies and summarize the potential therapeutic methods for kidney disease which target CD40.
Collapse
|
9
|
Liu L, Takeda K, Akkoyunlu M. Disease Stage-Specific Pathogenicity of CD138 (Syndecan 1)-Expressing T Cells in Systemic Lupus Erythematosus. Front Immunol 2020; 11:1569. [PMID: 32849532 PMCID: PMC7401833 DOI: 10.3389/fimmu.2020.01569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
CD138 (syndecan 1), a member of the heparan-sulfate proteoglycan family, regulates diverse biological responses by interacting with chemokines, cytokines, growth factors, and adhesion molecules. Expression of CD138 has been detected on T cells from both healthy and sick mice mimicking systemic lupus erythematosus (SLE) disease. However, the characteristics and the role of CD138+ T cells in SLE pathogenesis remain largely unknown. We analyzed the lupus-prone MRL/Lpr mice and the control MRL/MpJ strain as well as the common laboratory strains Balb/c, and C57BL/6 for CD138-expression and found that only the MRL/Lpr strain harbored TCRβ+CD138+ cells in various organs. The frequency of TCRβ+CD138+ cells progressively expanded in MRL/Lpr mice with age and correlated with disease severity. Majority of the TCRβ+CD138+ cells were CD4 and CD8 double-negative and 20% were CD4. At least a portion of TCRβ+CD138+ cells originated from CD4+ cells because substantial number of CD4+TCRβ+CD138- cells expressed CD138 after in vitro cultivation. Compared to TCRβ+CD138- cells, TCRβ+CD138+ cells exhibited central memory (Tcm) phenotype with reduced ability to proliferate and produce the cytokines IFNγ and IL-17. When co-cultured with B cells, the ability of TCRβ+CD138+ cells to promote plasma cell formation and autoreactive antibody production was dependent on the presence of autoantigen, CD4 co-receptor expression and cell-to-cell contact. Surprisingly, adoptively transferred TCRβ+CD138+ T cells slowed down disease progression in young recipient MRL/Lpr mice but had the opposite effect when DNA was co-administered with TCRβ+CD138+ T cells or when TCRβ+CD138+ cells were transferred to older MRL/Lpr mice with established disease. Thus, CD138-expressing T cells with Tcm phenotype enhance disease progression in SLE by rapidly activating autoreactive B cells when self-antigens are exposed to the immune system.
Collapse
Affiliation(s)
- Lunhua Liu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Lupus erythematosus (LE) is characterized by broad and varied clinical forms ranging from a localized skin lesion to a life-threatening form with severe systemic manifestations. The overlapping between cutaneous LE (CLE) and systemic LE (SLE) brings difficulties to physicians for early accurate diagnosis and sometimes may lead to delayed treatment for patients. We comprehensively review recent progress about the similarities and differences of the main three subsets of LE in pathogenesis and immunological mechanisms, with a particular focus on the skin damage. RECENT FINDINGS Recent studies on the mechanisms contributing to the skin damage in lupus have shown a close association of abnormal circulating inflammatory cells and abundant production of IgG autoantibodies with the skin damage of SLE, whereas few evidences if serum autoantibodies and circulating inflammatory cells are involved in the pathogenesis of CLE, especially for the discoid LE (DLE). Till now, the pathogenesis and molecular/cellular mechanism for the progress from CLE to SLE are far from clear. But more and more factors correlated with the differences among the subsets of LE and progression from CLE to SLE have been found, such as the mutation of IRF5, IFN regulatory factors and abnormalities of plasmacytoid dendritic cells (PDCs), Th1 cells, and B cells, which could be the potential biomarkers for the interventions in the development of LE. A further understanding in pathogenesis and immunological mechanisms for skin damage in different subsets of LE makes us think more about the differences and cross-links in the pathogenic mechanism of CLE and SLE, which will shed a light in predictive biomarkers and therapies in LE.
Collapse
|
11
|
Shao M, He J, Zhang R, Zhang X, Yang Y, Li C, Liu X, Sun X, Li Z. Interleukin-2 Deficiency Associated with Renal Impairment in Systemic Lupus Erythematosus. J Interferon Cytokine Res 2020; 39:117-124. [PMID: 30721117 DOI: 10.1089/jir.2018.0016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Impaired interleukin-2 (IL-2) production was reported in systemic lupus erythematosus (SLE). The aim of this study was to investigate the clinical relevance of serum IL-2 and therapeutic effects of recombinant IL-2 (rIL-2) in SLE, especially in lupus nephritis (LN). Decreased serum IL-2 was found in patients with active LN (P = 0.014) and correlated with 24-h urine protein excretion (r = -0.281, P = 0.026). Compared with LN patients with decreased levels of serum IL-2, patients with increased levels had better remission rate (P = 0.041). Furthermore, patients with exogenous low-dose IL-2 supplement demonstrated better improved nephritis and higher remission rate (55.56%, P = 0.058) than those with conventional therapy. In addition, the percentages of regulator T (Treg) cells expanded in LN patients with low-dose recombinant human IL-2 treatment (P = 0.007), especially in LN patients achieving remission (P = 0.010). IL-2 deficiency is associated with renal impairment that can be improved by exogenous IL-2 supplement.
Collapse
Affiliation(s)
- Miao Shao
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Jing He
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Ruijun Zhang
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xia Zhang
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Yue Yang
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Chun Li
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Xiaoyun Liu
- 3 Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaolin Sun
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China
| | - Zhanguo Li
- 1 Department of Rheumatology and Immunology, Peking University People's Hospital, Beijing, China.,2 Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, China.,4 Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
12
|
Guo JQ, Liu J, Lu B. [Expression of gamma-delta T cells in immune microenvironment in children with Henoch-Schönlein purpura]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2019; 21:960-965. [PMID: 31642427 PMCID: PMC7389730 DOI: 10.7499/j.issn.1008-8830.2019.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To study the role of gamma-delta T (γδ T) cells and its subsets in the immunopathogenesis of Henoch-Schönlein purpura (HSP) in children, and to provide new ideas for the treatment of HSP in children from the aspect of γδ T cell regulation. METHODS A total of 33 children with HSP were enrolled as the HSP group, and 21 healthy children were enrolled as the healthy control group. The percentages of γδ T cells and its subsets Vδ1+ T and Vδ2+ T cells among peripheral blood mononuclear cells (PBMCs) were measured, as well as the apoptosis rate of γδ T cell and plasma level of interleukin-17 (IL-17). RESULTS Compared with the healthy control group, the HSP group had significantly lower percentages of lymphocytes in PBMCs and Vδ2+ T cells in γδ T cells (P<0.05). The HSP group had significantly higher percentage of Vδ1+ T cells in γδ T cells and plasma level of IL-17 than the healthy control group. The HSP group had a significantly higher overall apoptosis rate of γδ T cells than the healthy control group (P<0.05), especially early apoptosis. The percentage of Vδ2+ T cells was positively correlated with overall apoptosis rate (rs=0.615, P<0.05) and was negatively correlated with IL-17 level (rs=-0.398, P<0.05). CONCLUSIONS Vδ1+/Vδ2+ T cell immune imbalance mediated by γδ T cells and over-activation of IL-17 may be involved in the development of HSP, among which the disturbance of immune tolerance induced by Vδ2+ T cells plays an important role in the pathophysiology of the disease.
Collapse
Affiliation(s)
- Jia-Qi Guo
- Ningxia Medical University, Yinchuan 750004, China.
| | | | | |
Collapse
|
13
|
Inoue SI, Niikura M, Asahi H, Kawakami Y, Kobayashi F. γδ T cells modulate humoral immunity against Plasmodium berghei infection. Immunology 2018; 155:519-532. [PMID: 30144035 DOI: 10.1111/imm.12997] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/22/2023] Open
Abstract
It is unclear whether γδ T cells are involved in humoral immunity against Plasmodium infection. Here, we show that B-cell-immunodeficient mice and γδ T-cell-deficient mice were incapable of protecting against Plasmodium berghei XAT parasites. γδ T-cell-deficient mice developed reduced levels of antigen-specific antibodies during the late phase of infection. The numbers of follicular helper T cells and germinal centre B cells in γδ T-cell-deficient mice were lower than in wild-type mice during the late phase of infection. Expression profiling of humoral immunity-related cytokines in γδ T cells showed that interleukin-21 (IL-21) and interferon-γ (IFN-γ) are increased during the early stage of infection. Furthermore, blockade of IL-21 and IFN-γ signalling during the early stage of infection led to reduction in follicular helper T cells and germinal centre B cells. γδ T-cell production of IL-21 and IFN-γ is crucial for the development and maintenance of follicular helper T cells and germinal centre B cells during the late phase of infection. Our data suggest that γδ T cells modulate humoral immunity against Plasmodium infection.
Collapse
Affiliation(s)
- Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Mamoru Niikura
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroko Asahi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan
| | - Yasushi Kawakami
- Laboratory of Parasitology, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Fumie Kobayashi
- Department of Infectious Diseases, Kyorin University School of Medicine, Tokyo, Japan.,Laboratory of Parasitology, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| |
Collapse
|
14
|
Li Q, Wu H, Liao W, Zhao M, Chan V, Li L, Zheng M, Chen G, Zhang J, Lau CS, Lu Q. A comprehensive review of immune-mediated dermatopathology in systemic lupus erythematosus. J Autoimmun 2018; 93:1-15. [DOI: 10.1016/j.jaut.2018.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/15/2022]
|
15
|
Jain S, Stock A, Macian F, Putterman C. A Distinct T Follicular Helper Cell Subset Infiltrates the Brain in Murine Neuropsychiatric Lupus. Front Immunol 2018; 9:487. [PMID: 29593732 PMCID: PMC5859360 DOI: 10.3389/fimmu.2018.00487] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/23/2018] [Indexed: 11/30/2022] Open
Abstract
Neuropsychiatric symptoms in systemic lupus erythematosus (SLE) are not uncommon, yet the mechanisms underlying disease initiation and progression in the brain are incompletely understood. Although the role of T cells in other lupus target organs such as the kidney is well defined, which T cells contribute to the pathogenesis of neuropsychiatric SLE is not known. The present study was aimed at characterizing the CD4 T cell populations that are present in the choroid plexus (CP) of MRL/MpJ-faslpr mice, the primary site of brain infiltration in this classic lupus mouse model which exhibits a prominent neurobehavioral phenotype. T cells infiltrating the CP of MRL/MpJ-faslpr mice were characterized and subset identification was done by multiparameter flow cytometry. We found that the infiltrating CD4 T cells are activated and have an effector phenotype. Importantly, CD4 T cells have a T follicular helper cell (TFH) like phenotype, as evidenced by their surface markers and signature cytokine, IL-21. In addition, CD4 TFH cells also secrete significant levels of IFN-γ and express Bcl-6, thereby conforming to a potentially pathogenic T helper population that can drive the disease progression. Interestingly, the regulatory axis comprising CD4 T regulatory cells is diminished. These results suggest that accumulation of CD4 TFH in the brain of MRL/MpJ-faslpr mice may contribute to the neuropsychiatric manifestations of SLE, and point to this T cell subset as a possible novel therapeutic candidate.
Collapse
Affiliation(s)
- Shweta Jain
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ariel Stock
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chaim Putterman
- Division of Rheumatology, Albert Einstein College of Medicine, Bronx, NY, United States.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
16
|
Tan CTY, Wistuba-Hamprecht K, Xu W, Nyunt MSZ, Vasudev A, Lee BTK, Pawelec G, Puan KJ, Rotzschke O, Ng TP, Larbi A. Vδ2+ and α/ß T cells show divergent trajectories during human aging. Oncotarget 2018; 7:44906-44918. [PMID: 27384987 PMCID: PMC5216693 DOI: 10.18632/oncotarget.10096] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/29/2016] [Indexed: 12/21/2022] Open
Abstract
Chronological aging and a variety of stressors are driving forces towards immunosenescence. While much attention was paid to the main T cell component, α/β T cells, few studies concentrate on the impact of age on γ/δ T cells' characteristics. The latter are important players of adaptive immunity but also have features associated with innate immunity. Vδ2+ are the main component of γ/δ while Vδ1+ T cells expand upon Cytomegalovirus (CMV) infection and with age. The Vδ2+ T cells are not influenced by persistent infections but do contribute to immunosurveillance against bacterial pathogens. Here, we focus on Vδ2+ T cells and report that their composition and functionality is not altered in older adults. We have performed a side-by-side comparison of α/β and Vδ2 cells by using two robust markers of T cell replicative history and cell differentiation (CD28 and CD27), and cytokine secretion (IFN-γ and TNF-α). Significant differences in Vδ2 versus α/β homeostasis, as well as phenotypic and functional changes emerged. However, the data strongly suggest a sustained functionality of the Vδ2 population with age, independently of the challenge. This suggests differential trajectories towards immunosenescence in α/β and Vδ2+ T cells, most likely explained by their intrinsic functions.
Collapse
Affiliation(s)
- Crystal Tze Ying Tan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Kilian Wistuba-Hamprecht
- Department of Internal Medicine II, Centre for Medical Research, University Medical Center, Tübingen, Germany.,Department of Dermatology, University Medical Center, Tübingen, Germany
| | - Weili Xu
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Ma Schwe Zin Nyunt
- Gerontology Research Programme, Department of Psychological Medicine, National University Health System, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anusha Vasudev
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Bernett Teck Kwong Lee
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Graham Pawelec
- Department of Internal Medicine II, Centre for Medical Research, University Medical Center, Tübingen, Germany
| | - Kia Joo Puan
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Olaf Rotzschke
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore
| | - Tze Pin Ng
- Gerontology Research Programme, Department of Psychological Medicine, National University Health System, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Biopolis, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Microbiology, National University of Singapore, Singapore
| |
Collapse
|
17
|
Moulton VR, Suarez-Fueyo A, Meidan E, Li H, Mizui M, Tsokos GC. Pathogenesis of Human Systemic Lupus Erythematosus: A Cellular Perspective. Trends Mol Med 2017. [PMID: 28623084 DOI: 10.1016/j.molmed.2017.05.006] [Citation(s) in RCA: 284] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affecting multiple organs. A complex interaction of genetics, environment, and hormones leads to immune dysregulation and breakdown of tolerance to self-antigens, resulting in autoantibody production, inflammation, and destruction of end-organs. Emerging evidence on the role of these factors has increased our knowledge of this complex disease, guiding therapeutic strategies and identifying putative biomarkers. Recent findings include the characterization of genetic/epigenetic factors linked to SLE, as well as cellular effectors. Novel observations have provided an improved understanding of the contribution of tissue-specific factors and associated damage, T and B lymphocytes, as well as innate immune cell subsets and their corresponding abnormalities. The intricate web of involved factors and pathways dictates the adoption of tailored therapeutic approaches to conquer this disease.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | - Abel Suarez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Esra Meidan
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; Department of Rheumatology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Hao Li
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Masayuki Mizui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
18
|
Suárez-Fueyo A, Bradley SJ, Klatzmann D, Tsokos GC. T cells and autoimmune kidney disease. Nat Rev Nephrol 2017; 13:329-343. [PMID: 28287110 DOI: 10.1038/nrneph.2017.34] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glomerulonephritis is traditionally considered to result from the invasion of the kidney by autoantibodies and immune complexes from the circulation or following their formation in situ, and by cells of the innate and the adaptive immune system. The inflammatory response leads to the proliferation and dysfunction of cells of the glomerulus, and invasion of the interstitial space with immune cells, resulting in tubular cell malfunction and fibrosis. T cells are critical drivers of autoimmunity and related organ damage, by supporting B-cell differentiation and antibody production or by directly promoting inflammation and cytotoxicity against kidney resident cells. T cells might become activated by autoantigens in the periphery and become polarized to secrete inflammatory cytokines before entering the kidney where they have the opportunity to expand owing to the presence of costimulatory molecules and activating cytokines. Alternatively, naive T cells could enter the kidney where they become activated after encountering autoantigen and expand locally. As not all individuals with a peripheral autoimmune response to kidney antigens develop glomerulonephritis, the contribution of local kidney factors expressed or produced by kidney cells is probably of crucial importance. Improved understanding of the biochemistry and molecular biology of T cells in patients with glomerulonephritis offers unique opportunities for the recognition of treatment targets for autoimmune kidney disease.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - Sean J Bradley
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| | - David Klatzmann
- Sorbonne Universités, Pierre and Marie Curie University, INSERM UMR_S 959, 83 Boulevard de l'Hôpital, F-75013, Paris, France.,AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department (DHU i2B), 83 boulevard de l'Hôpital, F-75013, Paris, France
| | - George C Tsokos
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, CLS-937, Boston, Massachusetts 02215, USA
| |
Collapse
|
19
|
Wang H, Li M, Zhang X, He F, Zhang S, Zhao J. Impairment of peripheral Vdelta2 T cells in human cystic echinococcosis. Exp Parasitol 2017; 174:17-24. [PMID: 28153802 DOI: 10.1016/j.exppara.2017.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/09/2017] [Accepted: 01/22/2017] [Indexed: 10/25/2022]
Abstract
Cystic echinococcosis (CE) induced by metacestodes (larval stages) of Echinococcus granulosus (E.granulosus) represents a severe endemic disease worldwide. Gamma delta (γδ) T cells, one of innate immune cells, play pivotal role in pathogenic infections. However, whether γδ T cells are involved in CE remains unclear. This study firstly investigated the role of peripheral γδ T cells in CE. The results showed that the percentage of peripheral γδ T cells from CE patients was decreased, compared with healthy controls (HC) (p < 0.01). This decrease was primarily due to a reduction in Vδ2 subset. Furthermore, Vδ2 T cells in CE expressed lower Natural Killer Group 2D (NKG2D) (p < 0.01). The abundance of Vδ2 T cells correlated negatively with cyst burden. To further identify the function of decreased Vδ2 T cells in CE, proliferation rate, cytokine secretion and cytotoxin were detected subsequently in vitro. As a result, the proliferation rate of Vδ2 cells in CE patients was lower than that in HC (p < 0.01). Meanwhile, Vδ2 T cells from CE patients released significantly decreased interferon (IFN)-γ, compared with HC (p < 0.05). Moreover, the levels of perforin and granzyme B of Vδ2 T cells from the patients were decreased significantly (p < 0.05), suggesting impaired cytotoxin generation of Vδ2 cells in CE. Collectively, our findings indicated that circulating Vδ2 T cells in CE was impaired, and these aberrations may contribute to disease pathogenesis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, China; Key Lab of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Ming Li
- Department of Hepatobiliary Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoxia Zhang
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Fang He
- Department of Gastroenterology, General Hospital of Ningxia Medical University, China
| | - Shengbin Zhang
- Department of General Surgery, Baogang Hospital, Baotou, Inner Mongolia, China
| | - Jiaqing Zhao
- Department of Pathogenic Biology and Medical Immunology, Ningxia Medical University, Yinchuan, Ningxia, China; Key Lab of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
20
|
Wang H, Zhai K, Xue Y, Yang J, Yang Q, Fu Y, Hu Y, Liu F, Wang W, Cui L, Chen H, Zhang J, He W. Global Deletion of TSPO Does Not Affect the Viability and Gene Expression Profile. PLoS One 2016; 11:e0167307. [PMID: 27907096 PMCID: PMC5131929 DOI: 10.1371/journal.pone.0167307] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/12/2016] [Indexed: 01/30/2023] Open
Abstract
Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis.
Collapse
Affiliation(s)
- Huaishan Wang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Kangle Zhai
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yingchao Xue
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jia Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Qi Yang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yi Fu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Yu Hu
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Fang Liu
- Beijing Thorgene Medical Laboratory, Yizhuang Biomedical Park, Beijing, China
| | - Weiqing Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Lianxian Cui
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Hui Chen
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Jianmin Zhang
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
- * E-mail: (WH); (JZ)
| | - Wei He
- Department of Immunology, Research Center on Pediatric Development and Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
- * E-mail: (WH); (JZ)
| |
Collapse
|
21
|
Suárez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol 2016; 43:32-38. [PMID: 27636649 DOI: 10.1016/j.coi.2016.09.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/28/2016] [Accepted: 09/02/2016] [Indexed: 11/27/2022]
Abstract
Systemic Lupus Erythematosus is an autoimmune disorder caused by a complex combination of genetic, epigenetic and environmental factors. Different polymorphisms and epigenetic modifications lead to altered gene expression and function of several molecules which lead to abnormal T cell responses. Metabolic and functional alterations result in peripheral tolerance failures and biased differentiation of T cells into pro-inflammatory and B cell-helper phenotypes as well as the accumulation of disease-promoting memory T cells. Understanding these T cell alterations and their origins is necessary to develop more accurate patient classification systems and to discover new therapeutic targets.
Collapse
Affiliation(s)
- Abel Suárez-Fueyo
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Sean J Bradley
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Dinallo V, Di Fusco D, Izzo R, Monteleone G. Therapy implications for the role of IL-21 in lupus. Expert Rev Clin Immunol 2016; 12:487-8. [DOI: 10.1586/1744666x.2016.1152183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
The Role of γδ T Cells in Systemic Lupus Erythematosus. J Immunol Res 2016; 2016:2932531. [PMID: 26981547 PMCID: PMC4766344 DOI: 10.1155/2016/2932531] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/25/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the overproduction of autoantibodies against an array of nuclear and cytoplasmic antigens and affects multiple organs, such as the skin, joints, kidneys, and neuronal tissues. T cells have been recognized as important players in the development of SLE due to their functions in cytokine secretion, antigen presentation, and supporting B cells for antibody production. γδ T cells are a minor population of T cells that play important roles in infection and tumor-associated disease. In recent years, the role of γδ T cells in autoimmune diseases has been investigated. In this review, we discussed the role of γδ T cells in the pathogenesis of SLE.
Collapse
|