1
|
Ghuman H, Matta R, Tompkins A, Nitzsche F, Badylak SF, Gonzalez AL, Modo M. ECM hydrogel improves the delivery of PEG microsphere-encapsulated neural stem cells and endothelial cells into tissue cavities caused by stroke. Brain Res Bull 2020; 168:120-137. [PMID: 33373665 DOI: 10.1016/j.brainresbull.2020.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
Intracerebral implantation of neural stem cells (NSCs) to treat stroke remains an inefficient process with <5% of injected cells being retained. To improve the retention and distribution of NSCs after a stroke, we investigated the utility of NSCs' encapsulation in polyethylene glycol (PEG) microspheres. We first characterized the impact of the physical properties of different syringes and needles, as well as ejection speed, upon delivery of microspheres to the stroke injured rat brain. A 20 G needle size at a 10 μL/min flow rate achieved the most efficient microsphere ejection. Secondly, we optimized the delivery vehicles for in vivo implantation of PEG microspheres. The suspension of microspheres in extracellular matrix (ECM) hydrogel showed superior retention and distribution in a cortical stroke caused by photothrombosis, as well as in a striatal and cortical cavity ensuing middle cerebral artery occlusion (MCAo). Thirdly, NSCs or NSCs + endothelial cells (ECs) encapsulated into biodegradable microspheres were implanted into a large stroke cavity. Cells in microspheres exhibited a high viability, survived freezing and transport. Implantation of 110 cells/microsphere suspended in ECM hydrogel produced a highly efficient delivery that resulted in the widespread distribution of NSCs in the tissue cavity and damaged peri-infarct tissues. Co-delivery of ECs enhanced the in vivo survival and distribution of ∼1.1 million NSCs. The delivery of NSCs and ECs can be dramatically improved using microsphere encapsulation combined with suspension in ECM hydrogel. These biomaterial innovations are essential to advance clinical efforts to improve the treatment of stroke using intracerebral cell therapy.
Collapse
Affiliation(s)
- Harmanvir Ghuman
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA
| | - Rita Matta
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Franziska Nitzsche
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Radiology, University of Pittsburgh, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, USA; Department of Bioengineering, University of Pittsburgh, USA; Department of Radiology, University of Pittsburgh, USA.
| |
Collapse
|
2
|
Patel A, Abozeid SM, Cullen PJ, Morrow JR. Co(II) Macrocyclic Complexes Appended with Fluorophores as paraCEST and cellCEST Agents. Inorg Chem 2020; 59:16531-16544. [PMID: 33138368 DOI: 10.1021/acs.inorgchem.0c02470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four high-spin macrocyclic Co(II) complexes with hydroxypropyl or amide pendants and appended coumarin or carbostyril fluorophores were prepared as CEST (chemical exchange saturation transfer) MRI probes. The complexes were studied in solution as paramagnetic CEST (paraCEST) agents and after loading into Saccharomyces cerevisiae yeast cells as cell-based CEST (cellCEST) agents. The fluorophores attached to the complexes through an amide linkage imparted an unusual pH dependence to the paraCEST properties of all four complexes through of ionization of a group that was attributed to the amide NH linker. The furthest shifted CEST peak for the hydroxypropyl-based complexes changed by ∼90 ppm upon increasing the pH from 5 to 7.5. At acidic pH, the Co(II) complexes exhibited three to four CEST peaks with the most highly shifted CEST peak at 200 ppm. The complexes demonstrated substantial paramagnetic water proton shifts which is a requirement for the development of cellCEST agents. The large shift in the proton resonance was attributed to an inner-sphere water at neutral pH, as shown by variable temperature 17O NMR spectroscopy studies. Labeling of yeast with one of these paraCEST agents was optimized with fluorescence microscopy and validated by using ICP mass spectrometry quantitation of cobalt. A weak asymmetry in the Z-spectra was observed in the yeast labeled with a Co(II) complex, toward a cellCEST effect, although the Co(II) complexes were toxic to the cells at the concentrations necessary for observation of cellCEST.
Collapse
Affiliation(s)
- Akanksha Patel
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Samira M Abozeid
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
3
|
Saccharomyces cerevisiae and Candida albicans Yeast Cells Labeled with Fe(III) Complexes as MRI Probes. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The development of MRI probes is of interest for labeling antibiotic-resistant fungal infections based on yeast. Our work showed that yeast cells can be labeled with high-spin Fe(III) complexes to produce enhanced T2 water proton relaxation. These Fe(III)-based macrocyclic complexes contained a 1,4,7-triazacyclononane framework, two pendant alcohol groups, and either a non-coordinating ancillary group and a bound water molecule or a third coordinating pendant. The Fe(III) complexes that had an open coordination site associated strongly with Saccharomyces cerevisiae upon incubation, as shown by screening using Z-spectra analysis. The incubation of one Fe(III) complex with either Saccharomyces cerevisiae or Candida albicans yeast led to an interaction with the β-glucan-based cell wall, as shown by the ready retrieval of the complex by the bidentate chelator called maltol. Other conditions, such as a heat shock treatment of the complexes, produced Fe(III) complex uptake that could not be reversed by the addition of maltol. Appending a fluorescence dye to Fe(TOB) led to uptake through secretory pathways, as shown by confocal fluorescence microscopy and by the incomplete retrieval of the Fe(III) complex by the maltol treatment. Yeast cells that were labeled with these Fe(III) complexes displayed enhanced water proton T2 relaxation, both for S. cerevisiae and for yeast and hyphal forms of C. albicans.
Collapse
|
4
|
Ito A, Kubo N, Liang N, Aoyama T, Kuroki H. Regenerative Rehabilitation for Stroke Recovery by Inducing Synergistic Effects of Cell Therapy and Neurorehabilitation on Motor Function: A Narrative Review of Pre-Clinical Studies. Int J Mol Sci 2020; 21:ijms21093135. [PMID: 32365542 PMCID: PMC7247676 DOI: 10.3390/ijms21093135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neurological diseases severely affect the quality of life of patients. Although existing treatments including rehabilitative therapy aim to facilitate the recovery of motor function, achieving complete recovery remains a challenge. In recent years, regenerative therapy has been considered as a potential candidate that could yield complete functional recovery. However, to achieve desirable results, integration of transplanted cells into neural networks and generation of appropriate microenvironments are essential. Furthermore, considering the nascent state of research in this area, we must understand certain aspects about regenerative therapy, including specific effects, nature of interaction when administered in combination with rehabilitative therapy (regenerative rehabilitation), and optimal conditions. Herein, we review the current status of research in the field of regenerative therapy, discuss the findings that could hold the key to resolving the challenges associated with regenerative rehabilitation, and outline the challenges to be addressed with future studies. The current state of research emphasizes the importance of determining the independent effect of regenerative and rehabilitative therapies before exploring their combined effects. Furthermore, the current review highlights the progression in the treatment perspective from a state of compensation of lost function to that of a possibility of complete functional recovery.
Collapse
Affiliation(s)
- Akira Ito
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
- Correspondence:
| | - Naoko Kubo
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| | - Nan Liang
- Cognitive Motor Neuroscience, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Tomoki Aoyama
- Department of Development and Rehabilitation of Motor Function, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan;
| | - Hiroshi Kuroki
- Department of Motor Function Analysis, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; (N.K.); (H.K.)
| |
Collapse
|
5
|
Patel A, Asik D, Spernyak JA, Cullen PJ, Morrow JR. MRI and fluorescence studies of Saccharomyces cerevisiae loaded with a bimodal Fe(III) T 1 contrast agent. J Inorg Biochem 2019; 201:110832. [PMID: 31522137 PMCID: PMC6859208 DOI: 10.1016/j.jinorgbio.2019.110832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 12/30/2022]
Abstract
Labeling of cells with paramagnetic metal complexes produces changes in MRI properties that have applications in cell tracking and identification. Here we show that fungi, specifically the budding yeast Saccharomyces cerevisiae, can be loaded with Fe(III) T1 contrast agents. Two Fe(III) macrocyclic complexes based on 1,4,7-triazacyclononane, with two pendant alcohol groups are prepared and studied as T1 relaxation MRI probes. To better visualize uptake and localization in the yeast cells, Fe(III) complexes have a fluorescent tag, consisting of either carbostyril or fluoromethyl coumarin. The Fe(III) complexes are robust towards dissociation and produce moderate T1 effects, despite lacking inner-sphere water ligands. Fluorescence microscopy and MRI T1 relaxation studies provide evidence of uptake of an Fe(III) complex into Saccharomyces cerevisiae upon electroporation.
Collapse
Affiliation(s)
- Akanksha Patel
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Didar Asik
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Joseph A Spernyak
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Institute, Buffalo, NY 14263, United States of America
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, State University of New York, Amherst, NY 14260, United States of America.
| |
Collapse
|
6
|
Abstract
Brain tissue lost after a stroke is not regenerated, although a repair response associated with neurogenesis does occur. A failure to regenerate functional brain tissue is not caused by the lack of available neural cells, but rather the absence of structural support to permit a repopulation of the lesion cavity. Inductive bioscaffolds can provide this support and promote the invasion of host cells into the tissue void. The putative mechanisms of bioscaffold degradation and its pivotal role to permit invasion of neural cells are reviewed and discussed in comparison to peripheral wound healing. Key differences between regenerating and non-regenerating tissues are contrasted in an evolutionary context, with a special focus on the neurogenic response as a conditio sine qua non for brain regeneration. The pivotal role of the immune system in biodegradation and the formation of a neovasculature are contextualized with regeneration of peripheral soft tissues. The application of rehabilitation to integrate newly forming brain tissue is suggested as necessary to develop functional tissue that can alleviate behavioral impairments. Pertinent aspects of brain tissue development are considered to provide guidance to produce a metabolically and functionally integrated de novo tissue. Although little is currently known about mechanisms involved in brain tissue regeneration, this review outlines the various components and their interplay to provide a framework for ongoing and future studies. It is envisaged that a better understanding of the mechanisms involved in brain tissue regeneration will improve the design of biomaterials and the methods used for implantation, as well as rehabilitation strategies that support the restoration of behavioral functions.
Collapse
Affiliation(s)
- Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, United States,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States,Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Michel Modo,
| |
Collapse
|
7
|
Piejko M, Jablonska A, Walczak P, Janowski M. Proteolytic Rafts for Improving Intraparenchymal Migration of Minimally Invasively Administered Hydrogel-Embedded Stem Cells. Int J Mol Sci 2019; 20:E3083. [PMID: 31238564 PMCID: PMC6628268 DOI: 10.3390/ijms20123083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/14/2019] [Indexed: 11/23/2022] Open
Abstract
The physiological spaces (lateral ventricles, intrathecal space) or pathological cavities (stroke lesion, syringomyelia) may serve as an attractive gateway for minimally invasive deployment of stem cells. Embedding stem cells in injectable scaffolds is essential when transplanting into the body cavities as they secure favorable microenvironment and keep cells localized, thereby preventing sedimentation. However, the limited migration of transplanted cells from scaffold to the host tissue is still a major obstacle, which prevents this approach from wider implementation for the rapidly growing field of regenerative medicine. Hyaluronan, a naturally occurring polymer, is frequently used as a basis of injectable scaffolds. We hypothesized that supplementation of hyaluronan with activated proteolytic enzymes could be a viable approach for dissolving the connective tissue barrier on the interface between the scaffold and the host, such as pia mater or scar tissue, thus demarcating lesion cavity. In a proof-of-concept study, we have found that collagenase and trypsin immobilized in hyaluronan-based hydrogel retain 60% and 28% of their proteolytic activity compared to their non-immobilized forms, respectively. We have also shown that immobilized enzymes do not have a negative effect on the viability of stem cells (glial progenitors and mesenchymal stem cells) in vitro. In conclusion, proteolytic rafts composed of hyaluronan-based hydrogels and immobilized enzymes may be an attractive strategy to facilitate migration of stem cells from injectable scaffolds into the parenchyma of surrounding tissue.
Collapse
Affiliation(s)
- Marcin Piejko
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- 3rd Department of General Surgery, Jagiellonian University Medical College, 31202 Krakow, Poland.
| | - Anna Jablonska
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Piotr Walczak
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Miroslaw Janowski
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
8
|
Modo M, Badylak SF. A roadmap for promoting endogenous in situ tissue restoration using inductive bioscaffolds after acute brain injury. Brain Res Bull 2019; 150:136-149. [PMID: 31128250 DOI: 10.1016/j.brainresbull.2019.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 02/08/2023]
Abstract
The regeneration of brain tissue remains one of the greatest unsolved challenges in medicine and by many is considered unfeasible. Indeed, the adult mammalian brain does not regenerate tissue, but there is ongoing endogenous neurogenesis, which is upregulated after injury and contributes to tissue repair. This endogenous repair response is a conditio sine que non for tissue regeneration. However, scarring around the lesion core and cavitation provide unfavorable conditions for tissue regeneration in the brain. Based on the success of using extracellular matrix (ECM)-based bioscaffolds in peripheral soft tissue regeneration, it is plausible that the provision of an inductive ECM-based hydrogel inside the volumetric tissue loss can attract neural cells and create a de novo viable tissue. Following perturbation theory of these successes in peripheral tissues, we here propose 9 perturbation parts (i.e. requirements) that can be solved independently to create an integrated series to build a functional and integrated de novo neural tissue. Necessities for tissue formation, anatomical and functional connectivity are further discussed to provide a new substrate to support the improvement of behavioral impairments after acute brain injury. We also consider potential parallel developments of this tissue engineering effort that can support therapeutic benefits in the absence of de novo tissue formation (e.g. structural support to veterate brain tissue). It is envisaged that eventually top-down inductive "natural" bioscaffolds composed of decellularized tissues (i.e. ECM) will be replaced by bottom-up synthetic designer hydrogels that will provide very defined structural and signaling properties, potentially even opening up opportunities we currently do not envisage using natural materials.
Collapse
Affiliation(s)
- Michel Modo
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Radiology, Pittsburgh, PA, USA.
| | - Stephen F Badylak
- University of Pittsburgh, McGowan Institute for Regenerative Medicine, Pittsburgh, Pennsylvania, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Pittsburgh, Department of Surgery, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Srivastava RK, Jablonska A, Chu C, Gregg L, Bulte JWM, Koehler RC, Walczak P, Janowski M. Biodistribution of Glial Progenitors in a Three Dimensional-Printed Model of the Piglet Cerebral Ventricular System. Stem Cells Dev 2019; 28:515-527. [PMID: 30760110 DOI: 10.1089/scd.2018.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
White matter damage persists in hypoxic-ischemic newborns even when treated with hypothermia. We have previously shown that intraventricular delivery of human glial progenitors (GPs) at the neonatal stage is capable of replacing abnormal host glia and rescuing the lifespan of dysmyelinated mice. However, such transplantation in the human brain poses significant challenges as related to high-volume ventricles and long cell migration distances. These challenges can only be studied in large animal model systems. In this study, we developed a three dimensional (3D)-printed model of the ventricular system sized to a newborn pig to investigate the parameters that can maximize a global biodistribution of injected GPs within the ventricular system, while minimizing outflow to the subarachnoid space. Bioluminescent imaging and magnetic resonance imaging were used to image the biodistribution of luciferase-transduced GPs in simple fluid containers and a custom-designed, 3D-printed model of the piglet ventricular system. Seven independent variables were investigated. The results demonstrated that a low volume (0.1 mL) of cell suspension is essential to keep cells within the ventricular system. If higher volumes (1 mL) are needed, a very slow infusion speed (0.01 mL/min) is necessary. Real-time magnetic resonance imaging demonstrated that superparamagnetic iron oxide (SPIO) labeling significantly alters the rheological properties of the GP suspension, such that, even at high speeds and high volumes, the outflow to the subarachnoid space is reduced. Several other factors, including GP species (human vs. mouse), type of catheter tip (end hole vs. side hole), catheter length (0.3 vs. 7.62 m), and cell concentration, had less effect on the overall distribution of GPs. We conclude that the use of a 3D-printed phantom model represents a robust, reproducible, and cost-saving alternative to in vivo large animal studies for determining optimal injection parameters.
Collapse
Affiliation(s)
- Rohit K Srivastava
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anna Jablonska
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chengyan Chu
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lydia Gregg
- 3 Visualization Core Laboratory, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff W M Bulte
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raymond C Koehler
- 4 Department of Anesthesiology and Critical Care Medicine, Translational Tissue Engineering Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,5 Department of Neurology and Neurosurgery, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- 1 Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,2 Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,6 NeuroRepair Department, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
10
|
Ferrauto G, Delli Castelli D, Leone L, Botta M, Aime S, Baranyai Z, Tei L. Modifying LnHPDO3A Chelates for Improved
T
1
and CEST MRI Applications. Chemistry 2019; 25:4184-4193. [DOI: 10.1002/chem.201806023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging CentreUniversity of Torino via Nizza 52 10125 Torino Italy
| | - Daniela Delli Castelli
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging CentreUniversity of Torino via Nizza 52 10125 Torino Italy
| | - Loredana Leone
- Department of Sciences and Technological InnovationUniversity of Eastern Piedmont viale T. Michel 11 50121 Alessandria Italy
| | - Mauro Botta
- Department of Sciences and Technological InnovationUniversity of Eastern Piedmont viale T. Michel 11 50121 Alessandria Italy
| | - Silvio Aime
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging CentreUniversity of Torino via Nizza 52 10125 Torino Italy
| | - Zsolt Baranyai
- Department of Inorganic and Analytical ChemistryUniversity of Debrecen Egyetem tér 1 10010 H-4032 Hungary
- Bracco Research Centre, Bracco Imaging S.p.A. Via Ribes 5 10010 Colleretto Giacosa Italy
| | - Lorenzo Tei
- Department of Sciences and Technological InnovationUniversity of Eastern Piedmont viale T. Michel 11 50121 Alessandria Italy
| |
Collapse
|
11
|
Herynek V, Turnovcová K, Gálisová A, Kaman O, Mareková D, Koktan J, Vosmanská M, Kosinová L, Jendelová P. Manganese-Zinc Ferrites: Safe and Efficient Nanolabels for Cell Imaging and Tracking In Vivo. ChemistryOpen 2019; 8:155-165. [PMID: 30740290 PMCID: PMC6356160 DOI: 10.1002/open.201800261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022] Open
Abstract
Manganese-zinc ferrite nanoparticles were synthesized by using a hydrothermal treatment, coated with silica, and then tested as efficient cellular labels for cell tracking, using magnetic resonance imaging (MRI) in vivo. A toxicity study was performed on rat mesenchymal stem cells and C6 glioblastoma cells. Adverse effects on viability and cell proliferation were observed at the highest concentration (0.55 mM) only; cell viability was not compromised at lower concentrations. Nanoparticle internalization was confirmed by transmission electron microscopy. The particles were found in membranous vesicles inside the cytoplasm. Although the metal content (0.42 pg Fe/cell) was lower compared to commercially available iron oxide nanoparticles, labeled cells reached a comparable relaxation rate R 2, owing to higher nanoparticle relaxivity. Cells from transgenic luciferase-positive rats were used for in vivo experiments. Labeled cells were transplanted into the muscles of non-bioluminescent rats and visualized by MRI. The cells produced a distinct hypointense signal in T2- or T2*-weighted MR images in vivo. Cell viability in vivo was verified by bioluminescence.
Collapse
Affiliation(s)
- Vít Herynek
- Radiodiagnostic and Interventional Radiology Department Institute for Clinical and Experimental Medicine Vídeňská 1958/9 140 21 Prague Czech Republic.,Center for Advanced Preclinical Imaging First Faculty of Medicine Charles University Salmovská 3 Prague Czech Republic
| | - Karolína Turnovcová
- Department of Tissue Culture and Stem Cells Institute of Experimental Medicine, Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
| | - Andrea Gálisová
- Radiodiagnostic and Interventional Radiology Department Institute for Clinical and Experimental Medicine Vídeňská 1958/9 140 21 Prague Czech Republic
| | - Ondřej Kaman
- Institute of Physics, Czech Academy of Sciences Cukrovarnická 10 Prague Czech Republic
| | - Dana Mareková
- Department of Tissue Culture and Stem Cells Institute of Experimental Medicine, Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
| | - Jakub Koktan
- Institute of Physics, Czech Academy of Sciences Cukrovarnická 10 Prague Czech Republic.,Faculty of Chemical Engineering University of Chemistry and Technology Technická 5 Prague Czech Republic
| | - Magda Vosmanská
- Faculty of Chemical Engineering University of Chemistry and Technology Technická 5 Prague Czech Republic
| | - Lucie Kosinová
- Experimental Medicine Centre Institute for Clinical and Experimental Medicine Vídeňská 1958/9 Prague Czech Republic
| | - Pavla Jendelová
- Department of Tissue Culture and Stem Cells Institute of Experimental Medicine, Czech Academy of Sciences Vídeňská 1083 Prague Czech Republic
| |
Collapse
|
12
|
Ferrauto G, Beauprez F, Di Gregorio E, Carrera C, Aime S, Terreno E, Delli Castelli D. Development and characterization of lanthanide-HPDO3A-C16-based micelles as CEST-MRI contrast agents. Dalton Trans 2019; 48:5343-5351. [DOI: 10.1039/c8dt04621b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The synthesis and characterization of a novel HPDO3A-based ligand having a C16 alkyl chain and its Eu3+, Gd3+and Yb3+complexes are reported.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Frederik Beauprez
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Enza Di Gregorio
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Carla Carrera
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Silvio Aime
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Enzo Terreno
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| | - Daniela Delli Castelli
- Molecular Imaging Center
- Department of Molecular Biotechnology and Health Sciences
- University of Torino- Via Nizza 52
- 10126 Torino
- Italy
| |
Collapse
|
13
|
Ferrauto G, Di Gregorio E, Auboiroux V, Petit M, Berger F, Aime S, Lahrech H. CEST-MRI for glioma pH quantification in mouse model: Validation by immunohistochemistry. NMR IN BIOMEDICINE 2018; 31:e4005. [PMID: 30256478 DOI: 10.1002/nbm.4005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
In glioma, the acidification of the extracellular tumor microenvironment drives proliferation, angiogenesis, immunosuppression, invasion and chemoresistance. Therefore, quantification of glioma extracellular pH (pHe) is of crucial importance. This study is focused on the application of the YbHPDO3A (ytterbium 1,4,7-triscarboxymethyl-1,4,7,10-tetraazacyclododecane) probe for in vivo glioma pHe quantification using chemical exchange saturation transfer (CEST)-MRI and its correlation with tumor metabolism assessed by immunohistochemistry. The U87 glioma mouse model was used (n = 18) and MRI performed at 4.7 T. CEST-MRI of YbHPDO3A solutions at different pH values showed two resolved CEST spectra at 71 ppm and 99 ppm, both sensitive to pH variations, allowing therefore calculation of the ratiometric curve for in vivo pH quantification. In vivo MRI sequences consisted of T2w for tumor localization, T2w * to assess YbHPDO3A biodistribution by exploiting its magnetic susceptibility effect and CEST for glioma pHe mapping. T2w * images show that YbHPDO3A extravasates in tumor in regions with damaged blood-brain barrier. The pHe is calculated only in these regions. Hematoxylin/eosin histology and Ki-67, CA-IX (carbonic anhydrase 9) and NHE-1 immunohistochemical staining were performed; their expression rates were compared with the in vivo pHe values. On the basis of the cell proliferation marker Ki-67, two groups were defined: one group with a lower mitotic index (MI% < 20% = mean value) and a mean pHe value of 7.00 (low-proliferation/high-pH group) and the other with MI% > 20% and an acidic pHe of 6.6 (high-proliferation/low-pH group). CA-IX and NHE-1 were over-expressed in the high-proliferation/low-pH group (CA-IX, 92 ± 7% versus 30 ± 13%; NHE-1, 84 ± 8% versus 35 ± 11%), indicating an acidic/hypoxic microenvironment. These immunohistochemical results are consistent with our pHe mapping (Pearson correlation coefficient > 0.70) and provide evidence for the feasibility of the CEST-MRI method with the YbHPDO3A probe for glioma pHe quantification at 4.7 T. Importantly, the YbHPDO3A probe has similar chemical and biological properties to the clinically approved MRI contrast agent GdHPDO3A. This makes the method promising for a clinical translation.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin, Italy
| | - Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin, Italy
| | | | - Manuel Petit
- BrainTech Lab-INSERM U12O5-University of Grenoble Alpes, Grenoble, France
| | - François Berger
- BrainTech Lab-INSERM U12O5-University of Grenoble Alpes, Grenoble, France
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Turin, Italy
| | - Hana Lahrech
- BrainTech Lab-INSERM U12O5-University of Grenoble Alpes, Grenoble, France
| |
Collapse
|
14
|
Leone L, Ferrauto G, Cossi M, Botta M, Tei L. Optimizing the Relaxivity of MRI Probes at High Magnetic Field Strengths With Binuclear Gd III Complexes. Front Chem 2018; 6:158. [PMID: 29868561 PMCID: PMC5962812 DOI: 10.3389/fchem.2018.00158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/19/2018] [Indexed: 12/05/2022] Open
Abstract
The key criteria to optimize the relaxivity of a Gd(III) contrast agent at high fields (defined as the region ≥ 1.5 T) can be summarized as follows: (i) the occurrence of a rotational correlation time τR in the range of ca. 0.2–0.5 ns; (ii) the rate of water exchange is not critical, but a τM < 100 ns is preferred; (iii) a relevant contribution from water molecules in the second sphere of hydration. In addition, the use of macrocycle-based systems ensures the formation of thermodynamically and kinetically stable Gd(III) complexes. Binuclear Gd(III) complexes could potentially meet these requirements. Their efficiency depends primarily on the degree of flexibility of the linker connecting the two monomeric units, the absence of local motions and the presence of contribution from the second sphere water molecules. With the aim to maximize relaxivity (per Gd) over a wide range of magnetic field strengths, two binuclear Gd(III) chelates derived from the well-known macrocyclic systems DOTA-monopropionamide and HPDO3A (Gd2L1 and Gd2L2, respectively) were synthesized through a multistep synthesis. Chemical Exchange Saturation Transfer (CEST) experiments carried out on Eu2L2 at different pH showed the occurrence of a CEST effect at acidic pH that disappears at neutral pH, associated with the deprotonation of the hydroxyl groups. Then, a complete 1H and 17O NMR relaxometric study was carried out in order to evaluate the parameters that govern the relaxivity associated with these complexes. The relaxivities of Gd2L1 and Gd2L2 (20 MHz, 298 K) are 8.7 and 9.5 mM−1 s−1, respectively, +77% and +106% higher than the relaxivity values of the corresponding mononuclear GdDOTAMAP-En and GdHPDO3A complexes. A significant contribution of second sphere water molecules was accounted for the strong relaxivity enhancement of Gd2L2. MR phantom images of the dinuclear complexes compared to GdHPDO3A, recorded at 7 T, confirmed the superiority of Gd2L2. Finally, ab initio (DFT) calculations were performed to obtain information about the solution structure of the dinuclear complexes.
Collapse
Affiliation(s)
- Loredana Leone
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Alessandria, Italy
| | - Giuseppe Ferrauto
- Department of Molecular Biotechnology and Health Sciences, Molecular Imaging Centre, University of Torino, Torino, Italy
| | - Maurizio Cossi
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Alessandria, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Alessandria, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", Alessandria, Italy
| |
Collapse
|
15
|
Ferrauto G, Di Gregorio E, Delli Castelli D, Aime S. CEST-MRI studies of cells loaded with lanthanide shift reagents. Magn Reson Med 2018. [PMID: 29516549 DOI: 10.1002/mrm.27157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Magnetic resonance imaging has been used extensively to track in vivo implanted cells that have been previously labeled with relaxation enhancers. However, this approach is not suitable to track multiple cell populations, as it may lead to confounding results in case the contrast agent is released from the labeled cells. This paper demonstrates how the use of CEST agents can overcome these issues. After encapsulating paramagnetic lanthanide shift reagents, we may shift the absorption frequency of the intracellular water resonance (δIn ), thus generating frequency-encoding CEST responsive cells that can be visualized in the MR image by applying the proper RF irradiation. METHODS Eu-HPDO3A, Dy-HPDO3A, and Tm-HPDO3A were used as shift reagents for labeling murine breast cancer cells and murine macrophages by hypotonic swelling and pinocytosis. The CEST-MR images were acquired at 7 T, and the saturation transfer effect was measured. Samples at different dilution of cells were analyzed to quantify the detection threshold. In vitro experiments of cell proliferation were carried out. Finally, murine breast cancer cells were injected subcutaneously in mice, and MR images were acquired to assess the proliferation index in vivo. RESULTS It was found that entrapment of the paramagnetic complexes into endosomes (i.e., using the pinocytosis route) leads to an enhanced shift of the intracellular water resonance. δIn appears to be proportional to the effective magnetic moment (μeff ) and to the concentration of the loaded lanthanide complex. Moreover, a higher shift is present when the complexes are entrapped in the endosomes. The cell proliferation index was assessed both in vitro and in vivo by evaluating the reduction of δIn value in the days after the cell labeling. CONCLUSION Cells can be visualized by CEST MRI after loading with paramagnetic shift reagent, by exploiting the large ensemble of the properly shifted intracellular water molecules. A better performance is obtained when the complexes are entrapped inside the endosomes. The observed (δIn ) value is strongly correlated to the chemical nature of the probe, and to its concentration and cellular localization. Two applications of this method are reported in this paper: (1) for in vivo cell visualization and (2) for the monitoring of the cellular proliferation process, as this method is accompanied by a change in δIn that may be exploited as a longitudinal reporter of the proliferation rate.
Collapse
Affiliation(s)
- Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Enza Di Gregorio
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Daniela Delli Castelli
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies and Health Sciences, University of Torino, Italy
| |
Collapse
|
16
|
Srivastava K, Ferrauto G, Young VG, Aime S, Pierre VC. Eight-Coordinate, Stable Fe(II) Complex as a Dual 19F and CEST Contrast Agent for Ratiometric pH Imaging. Inorg Chem 2017; 56:12206-12213. [DOI: 10.1021/acs.inorgchem.7b01629] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Kriti Srivastava
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Giuseppe Ferrauto
- Molecular Imaging Center, Department of Molecular Biotechnologies & Health Sciences, University of Torino, 10126 Torino, Italy
| | - Victor G. Young
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnologies & Health Sciences, University of Torino, 10126 Torino, Italy
| | - Valérie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
17
|
Amer MH, Rose FRAJ, Shakesheff KM, Modo M, White LJ. Translational considerations in injectable cell-based therapeutics for neurological applications: concepts, progress and challenges. NPJ Regen Med 2017; 2:23. [PMID: 29302358 PMCID: PMC5677964 DOI: 10.1038/s41536-017-0028-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 06/27/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Significant progress has been made during the past decade towards the clinical adoption of cell-based therapeutics. However, existing cell-delivery approaches have shown limited success, with numerous studies showing fewer than 5% of injected cells persisting at the site of injection within days of transplantation. Although consideration is being increasingly given to clinical trial design, little emphasis has been given to tools and protocols used to administer cells. The different behaviours of various cell types, dosing accuracy, precise delivery, and cell retention and viability post-injection are some of the obstacles facing clinical translation. For efficient injectable cell transplantation, accurate characterisation of cellular health post-injection and the development of standardised administration protocols are required. This review provides an overview of the challenges facing effective delivery of cell therapies, examines key studies that have been carried out to investigate injectable cell delivery, and outlines opportunities for translating these findings into more effective cell-therapy interventions.
Collapse
Affiliation(s)
- Mahetab H. Amer
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | | | | | - Michel Modo
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA USA
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA USA
| | - Lisa J. White
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
18
|
Zheng H, Cao N, Yin Y, Feng W. Stroke recovery and rehabilitation in 2016: a year in review of basic science and clinical science. Stroke Vasc Neurol 2017; 2:222-229. [PMID: 29507783 PMCID: PMC5829939 DOI: 10.1136/svn-2017-000069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 12/12/2022] Open
Affiliation(s)
- Haiqing Zheng
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ning Cao
- Department of Physical Medicine and Rehabilitation, MosRehab, Elkins Park, Pennsylvania, USA
| | - Yu Yin
- Department of Rehabilitation Medicine, Hebei Provincial General Hospital, Shijiazhuang, China
| | - Wuwei Feng
- Department of Neurology, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
19
|
Advances in Monitoring Cell-Based Therapies with Magnetic Resonance Imaging: Future Perspectives. Int J Mol Sci 2017; 18:ijms18010198. [PMID: 28106829 PMCID: PMC5297829 DOI: 10.3390/ijms18010198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 01/07/2023] Open
Abstract
Cell-based therapies are currently being developed for applications in both regenerative medicine and in oncology. Preclinical, translational, and clinical research on cell-based therapies will benefit tremendously from novel imaging approaches that enable the effective monitoring of the delivery, survival, migration, biodistribution, and integration of transplanted cells. Magnetic resonance imaging (MRI) offers several advantages over other imaging modalities for elucidating the fate of transplanted cells both preclinically and clinically. These advantages include the ability to image transplanted cells longitudinally at high spatial resolution without exposure to ionizing radiation, and the possibility to co-register anatomical structures with molecular processes and functional changes. However, since cellular MRI is still in its infancy, it currently faces a number of challenges, which provide avenues for future research and development. In this review, we describe the basic principle of cell-tracking with MRI; explain the different approaches currently used to monitor cell-based therapies; describe currently available MRI contrast generation mechanisms and strategies for monitoring transplanted cells; discuss some of the challenges in tracking transplanted cells; and suggest future research directions.
Collapse
|
20
|
Nicholls FJ, Liu JR, Modo M. A Comparison of Exogenous Labels for the Histological Identification of Transplanted Neural Stem Cells. Cell Transplant 2016; 26:625-645. [PMID: 27938486 DOI: 10.3727/096368916x693680] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The interpretation of cell transplantation experiments is often dependent on the presence of an exogenous label for the identification of implanted cells. The exogenous labels Hoechst 33342, 5-bromo-2'-deoxyuridine (BrdU), PKH26, and Qtracker were compared for their labeling efficiency, cellular effects, and reliability to identify a human neural stem cell (hNSC) line implanted intracerebrally into the rat brain. Hoechst 33342 (2 mg/ml) exhibited a delayed cytotoxicity that killed all cells within 7 days. This label was hence not progressed to in vivo studies. PKH26 (5 μM), Qtracker (15 nM), and BrdU (0.2 μM) labeled 100% of the cell population at day 1, although BrdU labeling declined by day 7. BrdU and Qtracker exerted effects on proliferation and differentiation. PKH26 reduced viability and proliferation at day 1, but this normalized by day 7. In an in vitro coculture assay, all labels transferred to unlabeled cells. After transplantation, the reliability of exogenous labels was assessed against the gold standard of a human-specific nuclear antigen (HNA) antibody. BrdU, PKH26, and Qtracker resulted in a very small proportion (<2%) of false positives, but a significant amount of false negatives (∼30%), with little change between 1 and 7 days. Exogenous labels can therefore be reliable to identify transplanted cells without exerting major cellular effects, but validation is required. The interpretation of cell transplantation experiments should be presented in the context of the label's limitations.
Collapse
|
21
|
Gaining Mechanistic Insights into Cell Therapy Using Magnetic Resonance Imaging. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0059-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Human neural stem cell-induced endothelial morphogenesis requires autocrine/paracrine and juxtacrine signaling. Sci Rep 2016; 6:29029. [PMID: 27374240 PMCID: PMC4931512 DOI: 10.1038/srep29029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/09/2016] [Indexed: 12/25/2022] Open
Abstract
Transplanted neural stem cells (NSC) interact with the host brain microenvironment. A neovascularization is commonly observed in the vicinity of the cell deposit, which is correlated with behavioral improvements. To elucidate the signaling mechanisms between human NSCs and endothelial cells (ECs), these were cocultured in an in vitro model in which NSC-induced endothelial morphogenesis produced a neurovascular environment. Soluble (autocrine/paracrine) and contact–mediated (juxtacrine) signaling molecules were evaluated for two conditionally immortalized fetal NSC lines derived from the cortical anlage (CTXOE03) and ganglionic eminence (STROC05), as well as an adult EC line (D3) derived from the cerebral microvasculature of a hippocampal biopsy. STROC05 were 4 times as efficient to induce endothelial morphogenesis compared to CTXOE03. The cascade of reciprocal interactions between NSCs and ECs in this process was determined by quantifying soluble factors, receptor mapping, and immunocytochemistry for extracellular matrix molecules. The mechanistic significance of these was further evaluated by pharmacological blockade. The sequential cell-specific regulation of autocrine/paracrine and juxtacrine signaling accounted for the differential efficiency of NSCs to induce endothelial morphogenesis. These in vitro studies shed new light on the reciprocal interactions between NSCs and ECs, which are pivotal for our mechanistic understanding of the efficacy of NSC transplantation.
Collapse
|