1
|
Kaplan A, Lakkis B, El-Samadi L, Karaayvaz EB, Booz GW, Zouein FA. Cooling Down Inflammation in the Cardiovascular System via the Nicotinic Acetylcholine Receptor. J Cardiovasc Pharmacol 2023; 82:241-265. [PMID: 37539950 DOI: 10.1097/fjc.0000000000001455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
ABSTRACT Inflammation is a major player in many cardiovascular diseases including hypertension, atherosclerosis, myocardial infarction, and heart failure. In many individuals, these conditions coexist and mutually exacerbate each other's progression. The pathophysiology of these diseases entails the active involvement of both innate and adaptive immune cells. Immune cells that possess the α7 subunit of the nicotinic acetylcholine receptor on their surface have the potential to be targeted through both pharmacological and electrical stimulation of the cholinergic system. The cholinergic system regulates the inflammatory response to various stressors in different organ systems by systematically suppressing spleen-derived monocytes and chemokines and locally improving immune cell function. Research on the cardiovascular system has demonstrated the potential for atheroma plaque stabilization and regression as favorable outcomes. Smaller infarct size and reduced fibrosis have been associated with improved cardiac function and a decrease in adverse cardiac remodeling. Furthermore, enhanced electrical stability of the myocardium can lead to a reduction in the incidence of ventricular tachyarrhythmia. In addition, improving mitochondrial dysfunction and decreasing oxidative stress can result in less myocardial tissue damage caused by reperfusion injury. Restoring baroreflex activity and reduction in renal damage can promote blood pressure regulation and help counteract hypertension. Thus, the present review highlights the potential of nicotinic acetylcholine receptor activation as a natural approach to alleviate the adverse consequences of inflammation in the cardiovascular system.
Collapse
Affiliation(s)
- Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- Department of Cardiology, Kemer Public Hospital, Kemer, Antalya, Turkey
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
| | - Bachir Lakkis
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Lana El-Samadi
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
| | - Ekrem Bilal Karaayvaz
- Department of Cardiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Riad El-Solh, Beirut, Lebanon
- The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence, American University of Beirut Medical Center, Riad El-Solh, Beirut, Lebanon
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS; and
- Department of Signaling and Cardiovascular Pathophysiology, UMR-S 1180, Inserm, Université Paris-Saclay, France
| |
Collapse
|
2
|
Wu Z, Xia Y, Wang C, Lu W, Zuo H, Wu D, Li Y, Guo R, Lu J, Zhang L. Electroacupuncture at Neiguan (PC6) attenuates cardiac dysfunction caused by cecal ligation and puncture via the vagus nerve. Biomed Pharmacother 2023; 162:114600. [PMID: 36996679 DOI: 10.1016/j.biopha.2023.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
PURPOSE Previous studies proved the benefits of electroacupuncture (EA) on heart in ischemia reperfusion injury and chronic heart failure. However, the role of EA on sepsis-induced cardiac dysfunction has rarely been elucidated before. In this study, we aimed to investigate the effects of EA on cardiac dysfunction in a rat model of sepsis and to speculate the underlying mechanisms. METHODS Sepsis was induced by cecum ligation and puncture in anesthetized rats. EA at the acupoint "Neiguan (PC6)" was applied 0.5 h after the induction of sepsis for 20 min. Heart rate variability was obtained immediately after EA to evaluate autonomic balance. Echocardiography was performed at 6 h and 24 h after sepsis induction in vivo. Measurements of hemodynamics, blood gases, cytokines and biochemistry were collected at 24 h. Cardiac tissue underwent immunofluorescence staining to determine the expression of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages. RESULTS EA increased vagus nerve activity, prevented the development of hyperlactatemia, attenuated the decline of left ventricle ejection fraction, suppressed systemic and cardiac inflammation and alleviated the histopathological manifestations of heart in sepsis rats. Furthermore, the cardiac tissue from EA treated rats showed increased expressions of α7nAChR on macrophages. The cardio-protective and anti-inflammatory effects of EA were partly or completely prevented in rats with vagotomy. CONCLUSION EA at PC6 attenuates left ventricle dysfunction and decreases inflammation in sepsis-induced cardiac dysfunction. The cardio-protective effects of EA are mediated through vagus nerve mediated cholinergic pathway.
Collapse
Affiliation(s)
- Zhiyang Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yiqiu Xia
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Chaofan Wang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China; Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, China.
| | - Wenjun Lu
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Han Zuo
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Dawei Wu
- Department of Critical Care Medicine, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, Shandong 266035, China.
| | - Yu Li
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Rui Guo
- Department of Physiology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| | - Jun Lu
- Department of Intensive Care Unit, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, China.
| | - Luyao Zhang
- Department of Pathology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 210023 Nanjing, China.
| |
Collapse
|
3
|
Wu X, Hu R, Jiang S, Di Z, Chen Y, Shi M, Chen B, He K, Qian K, Guo Q, Ma R. Electroacupuncture attenuates LPS-induced depression-like behavior through kynurenine pathway. Front Behav Neurosci 2023; 16:1052032. [PMID: 36703718 PMCID: PMC9871460 DOI: 10.3389/fnbeh.2022.1052032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Background A growing body of evidence suggests that inflammation and changes in glutamate neurotransmission are two pathophysiological mechanisms underlying depression. Electroacupuncture (EA) is a common therapeutic tool for the treatment of depression. However, the potential antidepressant mechanism of EA remains obscure. The change of the kynurenine pathway (KP) is the research priority of antidepressant mechanisms. This study will investigate the role of EA on lipopolysaccharide (LPS)-induced depression-like behavior and explore its possible mechanism of action. Methods Lipopolysaccharide was used to induce depression-like behavior, and EA was given at Hegu (L14) and Taichong (LR3) acupoints in C57BL/6J mice. Depression-like behaviors were measured by behavioral tests, including tail suspension test (TST), sucrose preference test (SPT), force swim test (FST), and open field test (OFT). The levels of inflammatory cytokines IL-1β, IL-6, and TNF-α, and KP enzyme IDO1 were measured by qPCR and enzyme-linked immunosorbent assay (ELISA), while high-performance liquid chromatography (HPLC) was performed to detect the content of prefrontal cortex and hippocampal as well as serum glutamate, tryptophan (TRP), kynurenic (KYN), and quinolinic acid (QA). Results The results showed that (1) as evidenced by increased spontaneous locomotor activities, decreased immobility duration, and a stronger preference for sucrose in the sucrose preference test, EA reversed LPS-challenged depressive-like behavior. (2) EA at L14 and LR3 decreased the levels of inflammatory cytokines, inhibited IDO1, and regulated KP metabolisms, as well as lowered the concentration of glutamate. (3) EA may exert anti-depression effects by acting on the kynurenine pathway. Conclusion This study evaluated the effects of EA on depression-like behaviors induced by lipopolysaccharide (LPS) and its regulation of inflammation and the glutamatergic system. Our results suggest that EA can ameliorate depression-like behaviors, lower the level of inflammation, and reduce the release of glutamate, possibly through the regulation of the kynurenine pathway in the brain.
Collapse
Affiliation(s)
- Xingying Wu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Rong Hu
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Jiang
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Di
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Mengting Shi
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Bowen Chen
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Kelin He
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Kecheng Qian
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Guo
- Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,*Correspondence: Qin Guo,
| | - Ruijie Ma
- Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Department of Neurobiology and Acupuncture Research, The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, China,Department of Acupuncture and Moxibustion, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China,Ruijie Ma,
| |
Collapse
|
4
|
Electroacupuncture attenuates brain injury through α7 nicotinic acetylcholine receptor-mediated suppression of neuroinflammation in a rat model of asphyxial cardiac arrest. J Neuroimmunol 2022; 367:577873. [DOI: 10.1016/j.jneuroim.2022.577873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/09/2022] [Accepted: 04/17/2022] [Indexed: 11/22/2022]
|
5
|
Andersson U, Tracey KJ, Yang H. Post-Translational Modification of HMGB1 Disulfide Bonds in Stimulating and Inhibiting Inflammation. Cells 2021; 10:cells10123323. [PMID: 34943830 PMCID: PMC8699546 DOI: 10.3390/cells10123323] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/16/2022] Open
Abstract
High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a “damage-associated molecular pattern” molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women’s and Children’s Health, Karolinska Institute, Karolinska University Hospital, 17176 Stockholm, Sweden
- Correspondence: ; Tel.: +46-(70)-7401740
| | - Kevin J. Tracey
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA; (K.J.T.); (H.Y.)
| |
Collapse
|
6
|
Guo HH, Jing XY, Chen H, Xu HX, Zhu BM. STAT3 but Not STAT5 Contributes to the Protective Effect of Electroacupuncture Against Myocardial Ischemia/Reperfusion Injury in Mice. Front Med (Lausanne) 2021; 8:649654. [PMID: 34307396 PMCID: PMC8299366 DOI: 10.3389/fmed.2021.649654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Electroacupuncture (EA) can help reduce infarct size and injury resulting from myocardial ischemia/reperfusion (I/R); however, the underlying molecular mechanism remains unknown. We previously reported that STAT5 plays a critical role in the cardioprotective effect of remote ischemic preconditioning (RIPC). Here, we assessed the effects of electroacupuncture pretreatment (EAP) on myocardial I/R injury in the presence and/or absence of Stat5 in mice and investigated whether EAP exerts its cardioprotective effects in a STAT5-dependent manner. Adult Stat5fl/fl and Stat5-cKO mice were exposed to EAP at Neiguan (PC6) for 7 days before the induction of I/R injury by left anterior descending (LAD) coronary artery ligation. The myocardial infarct size (IS), area at risk, and apoptotic rate of cardiomyocytes were detected. RT-qPCR and western blotting were used to measure gene and protein expression, respectively, in homogenized heart tissues. RNA-seq was used to identify candidate genes and pathways. Our results showed that EAP decreased IS and the rate of cardiomyocyte apoptosis. We further found that STAT5 was activated by EAP in Stat5fl/fl mice but not in Stat5-cKO mice, whereas the opposite was observed for STAT3. Following EAP, the levels of the antiapoptotic proteins Bcl-xL, Bcl-2, and p-AKT were increased in the presence of Stat5, while that of interleukin 10 (IL-10) was increased in both Stat5fl/fl and Stat5-cKO. The gene expression profile in heart tissues was different between Stat5fl/fl and the Stat5-cKO mice with EAP. Importantly, the top 30 DEGs under EAP in the Stat5-cKO mice were enriched in the IL-6/STAT3 signaling pathway. Our results revealed for the first time that the protective effect of EAP following myocardial I/R injury was attributable to, but not dependent on, STAT5. Additionally, we found that EAP could activate STAT3 signaling in the absence of the Stat5 gene, and could also activate antiapoptotic, survival, and anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Rehabilitation Medicine Department, YE DA Hospital of Yantai, Yantai, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Lu J, Wu W. Cholinergic modulation of the immune system - A novel therapeutic target for myocardial inflammation. Int Immunopharmacol 2021; 93:107391. [PMID: 33548577 DOI: 10.1016/j.intimp.2021.107391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/26/2020] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
The immune system and the nervous system depend on each other for their fine tuning and working, thus cooperating to maintain physiological homeostasis and prevent infections. The cholinergic system regulates the mobilization, differentiation, secretion, and antigen presentation of adaptive and innate immune cells mainly through α7 nicotinic acetylcholine receptors (α7nAChRs). The neuro-immune interactions are established and maintained by the following mechanisms: colocalization of immune and neuronal cells at defined anatomical sites, expression of the non-neuronal cholinergic system by immune cells, and the acetylcholine receptor-mediated activation of intracellular signaling pathways. Based on these immunological mechanisms, the protective effects of cholinergic system in animal models of diseases were summarized in this paper, such as myocardial infarction/ischemia-reperfusion, viral myocarditis, and endotoxin-induced myocardial damage. In addition to maintaining hemodynamic stability and improving the energy metabolism of the heart, both non-neuronal acetylcholine and neuronal acetylcholine in the heart can alleviate myocardial inflammation and remodeling to exert a significant cardioprotective effect. The new findings on the role of cholinergic agonists and vagus nerve stimulation in immune regulation are updated, so as to develop improved approaches to treat inflammatory heart disease.
Collapse
Affiliation(s)
- Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
8
|
Yang Y, Li Y, Wang J, Hong L, Qiao S, Wang C, An J. Cholinergic receptors play a role in the cardioprotective effects of anesthetic preconditioning: Roles of nitric oxide and the CaMKKβ/AMPK pathway. Exp Ther Med 2021; 21:137. [PMID: 33456504 PMCID: PMC7791965 DOI: 10.3892/etm.2020.9569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/13/2020] [Indexed: 11/06/2022] Open
Abstract
Vagus nerve activation may have important therapeutic significance for myocardial ischemia-reperfusion (IR) injury. Nitric oxide (NO) plays a vital role in the cardioprotective effects of anesthetic preconditioning (APC). Moreover, acetylcholine (ACh) prevents cardiomyocyte damage by activating AMP-activated protein kinase (AMPK) and increasing the phosphorylation of Ca2+/calmodulin-dependent protein kinase β (CaMKKβ). The aim of the present study was to determine whether APC could protect heart function by antagonizing IR damage via the cholinergic system. It was hypothesized that the NO synthase (NOS)/CaMKKβ/AMPK pathway might be involved in the cardioprotective effects induced by cholinergic receptor activation. Isolated rat hearts were subjected to ischemia for 30 min followed by 120 min of reperfusion. Volatile anesthetic sevoflurane (3.5%) was administered for 15 min before ischemia, then rinsed for 15 min. The muscarinic acetylcholine receptor (mAChR) antagonist atropine (ATR; 100 nM) and the nicotinic acetylcholine receptor (nAChR) antagonist hexamethonium (HEM; 50 µM) were administered 10 min before APC. Both mAChR and nAChR were involved in APC-induced cardioprotection. ATR and HEM treatment both abolished the protective effects of APC on IR damage in isolated hearts, demonstrating the importance of cholinergic receptors in the protection mechanism of APC. The present study thus suggests that APC plays a cardioprotective role, in part, by regulating neurohumoral pathways. In addition, there may be functional coupling between the two cholinergic receptors, and the NOS and CaMKKβ/AMPK pathways may play roles in shared pathways that mediate the cardioprotective effects of APC. These findings may provide insight into potential new mechanisms of APC-induced cardioprotection against IR injury.
Collapse
Affiliation(s)
- Yang Yang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Ying Li
- Department of Cardiology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jie Wang
- Department of Anesthesiology, Wujiang Hospital Affiliated to Nantong University, Suzhou, Jiangsu 215200, P.R. China
| | - Lei Hong
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Chen Wang
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
- Department of Anesthesiology and Perioperative Medicine, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| | - Jianzhong An
- Institute of Clinical Medicine Research, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, Jiangsu 215153, P.R. China
| |
Collapse
|
9
|
Sun YH, Bu R, Wang YW, Hu YC, Wang XM, Dong X, Zu W, Niu Y, Zhao PW, Sun P, Ru SH, Lu JK, Na SS. Validation of efficacy and mechanism of Sanwei-Tanxiang powder in improving myocardial ischemia reperfusion injuries. Sci Rep 2021; 11:664. [PMID: 33437022 PMCID: PMC7804470 DOI: 10.1038/s41598-020-80861-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Sanwei-Tanxiang powder (SWTX), a traditional Mongolian and Tibetan medicine containing a cocktail of active molecules, relieves angina pectoris and improves recovery in patients with coronary heart disease (CHD). The pharmacological effect of SWTX on CHD was analyzed at a systemic point of view in our previous studies. The bioinformatics prediction showed that the PI3K/Akt/FoxO3a pathway was one of important pathways of SWTX on treatment of coronary heart disease. Based on it, the aim of this study was to evaluate the benefits of SWTX in acute myocardial ischemic-reperfused (MIR) rat in vivo and H9c2 cardiomyoblast cells under oxidative stress induced by H2O2 in vitro, and further investigate the involvement of PI3K/Akt/FoxO3a pathway in these processes. Ex vivo, under physiological conditions, SWTX did not show any modification in the heart rate and contraction amplitude. However, against a MIR injury, SWTX pretreatment provided significant protection, including reduced ST-segment elevation, pathological changes and myocardial infarct size in vivo, meanwhile, some monomers of SWTX showed antioxidant capacity and inhibited cardiomyocytic apoptosis in vitro. The effect was correlated with the activation of the PI3K/Akt/FoxO3a signaling pathway downstream and the regulation of downstream pro-apoptotic Bim of FoxO3a experimental verified by qRT-PCR, Western blot and immunofluorescent assay. In vitro, blocking Akt and p-FoxO3a activation with the PI3K inhibitor LY294002 effectively suppressed the protective effects of several active monomers (including quercetin, macelignan,methyleugenol and Santol) of SWTX against H2O2-induced injury. Collectively, these results suggest that SWTX decreases I/R injury, and the PI3K/Akt/FoxO3a pathway takes part in protection during this process, gallogen (G3) and quercetin (G8) of GZ, methyleugenol (R2) and macelignan (R7) of RDK, santol (T1) of TX are responsible at least in part for SWTX’s cardioprotection effect.
Collapse
Affiliation(s)
- Yu-Hui Sun
- Department of Pharmacy, Chifeng Municipal Hospital, Chifeng, China
| | - Ren Bu
- School of Pharmacy, Inner Mongolia Medical University, Huhehot, China
| | - Yue-Wu Wang
- Center for New Drug Safety Evaluation and Research, Inner Mongolia Medical University, Huhehot, China
| | - Yu-Chong Hu
- Inner Mongolia Autonomous Region People's Hospital, Huhehot, China
| | - Xu-Mei Wang
- Department of Pharmacy, Chifeng Municipal Hospital, Chifeng, China
| | - Xin Dong
- School of Pharmacy, Inner Mongolia Medical University, Huhehot, China
| | - Wen Zu
- Inner Mongolia Medical University, Huhehot, China
| | - Yan Niu
- School of Basic Medicine, Inner Mongolia Medical University, Huhehot, China
| | - Peng-Wei Zhao
- School of Basic Medicine, Inner Mongolia Medical University, Huhehot, China
| | - Peng Sun
- School of Basic Medicine, Inner Mongolia Medical University, Huhehot, China
| | - Shi-Hang Ru
- Radiotherapy Department, Chifeng Municipal Hospital, Chifeng, China
| | - Jing-Kun Lu
- School of Basic Medicine, Inner Mongolia Medical University, Huhehot, China.
| | - Sheng-Sang Na
- Institute of Mongolian Medicine, Inner Mongolia Medical University, Huhehot, China.
| |
Collapse
|
10
|
Jiaji (EX-B2)-Based Electroacupuncture Preconditioning Attenuates Early Ischaemia Reperfusion Injury in the Rat Myocardium. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8854033. [PMID: 33376501 PMCID: PMC7738790 DOI: 10.1155/2020/8854033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/06/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022]
Abstract
Background Acupuncture preconditioning was able to reduce the extent of ischaemia reperfusion (I/R) injury. Previous studies have shown that electroacupuncture (EA) pretreatment at T4-T5 Jiaji (EX-B2) acupoints had cardioprotective effects against myocardial I/R injury. However, the molecular mechanism remains inconclusive. Methods Wistar rats were pretreated with electroacupuncture for 7 days at the Neiguan (PC6), T4-T5 Jiaji (EX-B2), Yanglingquan (GB34), and Quchi (LI11) acupoints, which belong to different meridians. Then, we investigated the genome-wide gene expression profiles of rats prestimulated at these acupoints after I/R injury. Results Our study revealed previously unknown cardioprotective roles of T4-T5 Jiaji (EX-B2) acupoints in the I/R progression. The extent of myocardial injury was significantly decreased in the Jiaji group compared with the I/R group. In addition, our data are among the first to link the EA preconditioning at Neiguan (PC6) acupoints and circadian rhythm in the I/R model. Also, for the first time, we explored the meridian and acupoint specificity involved in EA pretreatment at the heart meridian, in which Yanglingquan and Quchi acupoints were selected as the control group for heart-divergent-meridian and nonheart-meridian acupoints. Conclusions The present study suggested that EA pretreatment at Jiaji alters genome-wide gene expression and protects the rat myocardium against I/R injury, which are most likely through neurohumoral regulation.
Collapse
|
11
|
Wang K, Yong Y, Zhou J, Zhou WX, Guo J, Chen TY. Electroacupuncture Attenuates Surgical Stress-Induced Reduction of T Lymphocytes through Modulation of Peripheral Opioid System. Chin J Integr Med 2020; 27:98-105. [PMID: 32980931 DOI: 10.1007/s11655-020-3158-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To investigate the action mechanisms of electroacupuncture (EA) on postoperative immunosuppression. METHODS Male C57BL/6 mice (5`-7 weeks old) were randomly divided into: the sham injury group, the surgical trauma stressed group, the EA group [surgery + 2/100 Hz EA at Neiguan (PC 6)], and the EA+ Nal (surgery + EA + intraperitoneal injection of naloxone). Abdominal surgical trauma stress mice model was established. EA was performed on bilateral PC 6 acupoints by an EA apparatus (2/100 Hz) for 20 min once a day for 3 days. The mRNA expressions of MOR, DOR, and KOR in thymus and L3`-L5 dorsal root ganglions (DRG) were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and the protein expressions of MOR, DOR, and KOR in thymus were measured by Western blot. Flow cytometry assay was used to detect the levels of T lymphocyte subtypes in the peripheral blood. RESULTS Surgical trauma induced decreased the mRNA expression level of MOR in both thymus (P<0.01) and L3`-L5 DRGs (P<0.05). Moreover, EA treatment not only significantly attenuated the MOR protein and mRNA expression in the thymus (both P<0.05), but also markedly increased expression of DOR and KOR opioid receptor in thymus (P<0.01). However, the mRNA expressions of opioid receptors were not regulated by EA in the DRG (all P>0.05). Furthermore, T lymphocyte population of CD3+ and CD4+ was decreased in the peripheral blood after surgical trauma (both P<0.01). EA treatment can significantly elevate the population of CD3+ (P<0.01), CD4+ (P<0.05) and CD8+ T cells (P<0.01). Intraperitoneal injection of the non-selective opioid receptor antagonist naloxone blocked the up-regulation of T lymphocytes by EA. CONCLUSION EA may improve postoperative immunosuppression through the peripheral opioid system.
Collapse
Affiliation(s)
- Ke Wang
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.,Institute of Clinical Immunology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jia Zhou
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Wen-Xiong Zhou
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jun Guo
- Department of Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Tong-Yu Chen
- Department of Cardiothoracic Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
12
|
Wang J, Li D, Tang W, Guo J, Chen W, Yong Y, Song W, Yu G, Feng R, Yuan L, Fu G, Song J, Fan L. Pretreatment with transcutaneous electrical acupoint stimulation to prevent postoperative ileus in patients undergoing laparoscopic colon surgery: study protocol for a randomised controlled trial. BMJ Open 2020; 10:e030694. [PMID: 32819923 PMCID: PMC7440825 DOI: 10.1136/bmjopen-2019-030694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Postoperative ileus (POI), a common complication after surgery, severely affects postoperative recovery. It is unclear whether pretreatment with transcutaneous electrical acupoint stimulation (TEAS) can improve recovery from POI. This trial will evaluate the effects of pretreatment with TEAS on POI. METHODS AND ANALYSIS This will be a prospective, randomised controlled trial. American Society of Anesthesiologists (ASA) physical status classification I-III level patients, aged 18-75 years and scheduled for laparoscopic colon surgery, will be included in the study. It is planned that 146 subjects will be randomised to the TEAS and sham TEAS (STEAS) groups. The groups will undergo two sessions of TEAS/STEAS daily for 3 days before surgery, with a final TEAS/STEAS treatment 30 min before anaesthesia. The primary endpoint of the study will be time to first defaecation. Secondary endpoints will include time to first flatus, time to tolerance of oral diet, GI-2 (composite outcome of time to first defaecation and time to tolerance of oral diet), time to independent walking, length of hospital stay, postoperative pain Visual Analogue Scale score on the first 3 days after surgery, analgesic requirements, complications and plasma concentrations of interferon-β (IFN-β), IFN-γ, interleukin-6 (IL-6) and IL-1β. Multiple linear regression will be used to identify independent predictors of outcome measures. ETHICS AND DISSEMINATION This study has been approved by the Chinese Registered Clinical Trial Ethics Review Committee (No. ChiECRCT-20170084). The results of the trial will be published in an international peer-reviewed journal. TRIAL REGISTRATION NUMBER This study has been registered with the Chinese Clinical Trial Registry (No. ChiCTR-INR-17013184). TRIAL STATUS The study was in the recruitment phase at the time of manuscript submission.
Collapse
Affiliation(s)
- Jian Wang
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Dongli Li
- Anesthesiology, Wenzhou Medical University, the sixth Affiliated Hospital, Lishui, China
| | - Wei Tang
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jun Guo
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenting Chen
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yong
- Research Institute of Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Song
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guijie Yu
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rui Feng
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Yuan
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoqiang Fu
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiangang Song
- Anesthesiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Fan
- Anesthesiology, Wenzhou Medical University, the sixth Affiliated Hospital, Lishui, China
| |
Collapse
|
13
|
Ye Y, Birnbaum Y, Widen SG, Zhang Z, Zhu S, Bajaj M, Chen H. Acupuncture Reduces Hypertrophy and Cardiac Fibrosis, and Improves Heart Function in Mice with Diabetic Cardiomyopathy. Cardiovasc Drugs Ther 2020; 34:835-848. [PMID: 32767170 DOI: 10.1007/s10557-020-07043-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE To assess the effects of electro-acupuncture (EA) on glycemic control, myocardial inflammation, and the progression of diabetic cardiomyopathy in mice with type 2 diabetes. METHODS Db/Db mice received EA at PC6+ST36 (DM-Acu), non-acupoint simulation (DM-Sham), or no treatment (DM). EA was applied for 30 min per day, 5 days a week for 4 weeks. Heart function was assessed by echocardiography. Myocardium was assessed by RT-PCR, immunoblotting, and histology. Serum TNF-α, IL-1α, IL-1β, IL-6, and IL-8 were measured. RESULTS DM-Acu, but not DM-Sham, reduced fasting blood glucose without affecting body weight. DM decreased systolic function. DM-Acu, but not DM-Sham, attenuated the decrease in systolic function. Heart weight was significantly smaller in the DM-Acu than in the DM and DM-Sham groups. Percent fibrosis and apoptosis were reduced in the DM-Acu, but not the DM-Sham, group. Serum levels of IL-1α, IL-1β, IL-6, IL-8, ICAM-1, MCP-1, and TNF-α were significantly lower in the DM-Acu than in the DM or DM-Sham groups. Protein levels of P-Akt and P-AMPK and mRNA levels of phosphoinositide-3-kinase regulatory subunit 6 (PIK3r6) were significantly higher in the DM-Acu group. Myocardial mRNA and protein levels of insulin-like growth factor 1 receptor (IGF1R) were significantly lower in the DM and DM-Sham groups compared with the DM-Acu group. CONCLUSIONS EA reduced serum glucose; prevented DM-induced hypertrophy and deterioration of systolic function, inflammation, and fibrosis; and restored IGF1R, P-Akt, and P-AMPK levels in mice with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yumei Ye
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Yochai Birnbaum
- The Section of Cardiology, Department of Medicine, Baylor College of Medicine, One Baylor Plaza MS, BCM620, Houston, TX, USA.
| | - Steven G Widen
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Zhaohui Zhang
- Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shipeng Zhu
- Second Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mandeep Bajaj
- Section of Endocrinology, Baylor College of Medicine, Houston, TX, USA
| | - Huan Chen
- The Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA. .,Department of Acupuncture, First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
14
|
Electroacupuncture Pretreatment as a Novel Avenue to Protect Heart against Ischemia and Reperfusion Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9786482. [PMID: 32508960 PMCID: PMC7254080 DOI: 10.1155/2020/9786482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
In recent years, the efficacy of electroacupuncture (EA) pretreatment generating ischemic tolerance mimicking ischemic pretreatment (IP) has been continuously confirmed, which was first found in the brain and then in the heart. Furthermore, researchers have observed the intensive cardioprotection impact of EA pretreatment on patients undergoing percutaneous coronary intervention (PCI) and heart valve replacement, indicating that EA pretreatment tends to be a valuable and advantageous avenue for preventing acute myocardial ischemia/reperfusion (I/R) injury or treatment of ischemic heart disease (IHD). In reality, the heart protection mechanism of EA pretreatment is robust and pleiotropic, of which the regulatory molecular pathways are involved in multichannel, multilevel, and multitarget, including energy metabolism, inflammatory response, calcium overload, oxidative stress, autophagy, and apoptosis. Through a growing number of clinical tests and basic experiments with animal models, researchers progressively explored the optimal acupoints and parameters, where EA pretreatment induced acute and delayed ischemic tolerance for myocardial protection. Thereby, this article aims to collect the relevant evidence on EA pretreatment against myocardial ischemia/reperfusion injury (MIRI) and summarize the mechanism of cardioprotection of EA pretreatment to provide ideas and methods for further clinical applications.
Collapse
|
15
|
Xiao Y, Chen W, Zhong Z, Ding L, Bai H, Chen H, Zhang H, Gu Y, Lu S. Electroacupuncture preconditioning attenuates myocardial ischemia-reperfusion injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway. Biomed Pharmacother 2020; 127:110148. [PMID: 32344255 DOI: 10.1016/j.biopha.2020.110148] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/30/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) is an important complication of reperfusion therapy for myocardial infarction, and trimetazidine is used successfully for treatment of ischemic cardiomyopathy by regulating mitochondrial function. Moreover, electroacupuncture (EA) preconditioning was demonstrated to be cardioprotective in both in vivo rodent models and in patients undergoing heart valve replacement surgery. However, the mechanisms have not been well elucidated. Mitophagy, mediated by the mTORC1-ULK1-FUNDC1 (mTOR complex 1-unc-51-like autophagy-activating kinase 1-FUN14 domain-containing 1) pathway, can regulate mitochondrial mass and cell survival effectively to restrain the development of myocardial ischemia/reperfusion injury (MIRI). In this study, we hypothesized that EA preconditioning ameliorated MIRI via mitophagy. To test this, rapamycin, an mTOR inhibitor, was used. The results showed that EA preconditioning could reduce the infarct size and risk size, and decrease the ventricular arrhythmia score and serum creatine kinase-myocardial band isoenzyme (CK-MB), lactate dehydrogenase (LDH), and cardiac troponin T (cTnT) in MIRI rats. Moreover, it also attenuated MIRI-induced apoptosis and mitophagy accompanied by elevated mTORC1 level and decreased ULK1 and FUNDC1 levels. However, these effects of EA preconditioning were blocked by rapamycin, which aggravated MIRI, reduced adenosine triphosphate (ATP) production, and antagonized infarct size reduction. In conclusion, our results indicated that EA preconditioning protected the myocardium against I/R injury by inhibiting mitophagy mediated by the mTORC1-ULK1-FUNDC1 pathway.
Collapse
Affiliation(s)
- Yan Xiao
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Wanying Chen
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Zehao Zhong
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Liang Ding
- Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, 39 Xiashatang Road, Wuzhong District, Suzhou, Jiangsu, 215101, China
| | - Hua Bai
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hao Chen
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Hongru Zhang
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yihuang Gu
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| | - Shengfeng Lu
- Acupuncture and Tuina College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
16
|
Chen WT, Wei JF, Wang L, Zhang DW, Tang W, Wang J, Yong Y, Wang J, Zhou YL, Yuan L, Fu GQ, Wang S, Song JG. Effects of perioperative transcutaneous electrical acupoint stimulation on monocytic HLA-DR expression in patients undergoing coronary artery bypass grafting with cardiopulmonary bypass: study protocol for a double-blind randomized controlled trial. Trials 2019; 20:789. [PMID: 31888744 PMCID: PMC6937832 DOI: 10.1186/s13063-019-3889-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 11/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cardiac surgery involving cardiopulmonary bypass (CPB) is known to be associated with a transient postoperative immunosuppression. When severe and persistent, this immune dysfunction predisposes patients to infectious complications, which contributes to a prolonged stay in the intensive care unit (ICU), and even mortality. Effective prevention and treatment methods are still lacking. Recent studies revealed that acupuncture-related techniques, such as electroacupuncture and transcutaneous electrical acupoint stimulation (TEAS), are able to produce effective cardioprotection and immunomodulation in adult and pediatric patients undergoing cardiac surgery with CPB, which leads to enhanced recovery. However, whether perioperative application of TEAS, a non-invasive technique, is able to improve immunosuppression of the patients with post-cardiosurgical conditions is unknown. Thus, as a preliminary study, the main objective is to evaluate the effects of TEAS on the postoperative expression of monocytic human leukocyte antigen (-D related) (mHLA-DR), a standardized "global" biomarker of injury or sepsis-associated immunosuppression, in patients receiving on-pump coronary artery bypass grafting (CABG). METHODS This study is a single-center clinical trial. The 88 patients scheduled to receive CABG under CPB will be randomized into two groups: the group receiving TEAS, and the group receiving transcutaneous acupoint pseudo-electric stimulation (Sham TEAS). Expression of mHLA-DR serves as a primary endpoint, and other laboratory parameters (e.g., interleukin [IL]-6, IL-10) and clinical outcomes (e.g., postoperative infectious complications, ICU stay time, and mortality) as the secondary endpoints. In addition, immune indicators, such as high mobility group box 1 protein and regulatory T cells will also be measured. DISCUSSION The current study is a preliminary monocentric clinical trial with a non-clinical primary endpoint, expression of mHLA-DR, aiming at determining whether perioperative application of TEAS has a potential to reverse CABG-associated immunosuppression. Although the immediate clinical impact of this study is limited, its results would inform further large-sample clinical trials using relevant patient-centered clinical outcomes as primary endpoints. TRIAL REGISTRATION ClinicalTrials.gov, NCT02933996. Registered on 13 October 2016.
Collapse
Affiliation(s)
- Wen-ting Chen
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jin-feng Wei
- Guangdong Cardiovascular Institute & Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province China
- Shantou University Medical College, Shantou, Guangdong Province China
| | - Lan Wang
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deng-wen Zhang
- Guangdong Cardiovascular Institute & Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province China
| | - Wei Tang
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wang
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yong
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Wang
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-lan Zhou
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lan Yuan
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guo-qiang Fu
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Sheng Wang
- Guangdong Cardiovascular Institute & Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong Province China
| | - Jian-gang Song
- Anesthesiology Department, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Acupuncture and Anesthesia Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Hype or hope: Vagus nerve stimulation against acute myocardial ischemia-reperfusion injury. Trends Cardiovasc Med 2019; 30:481-488. [PMID: 31740206 DOI: 10.1016/j.tcm.2019.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
Abstract
Acute myocardial infarction (MI) is a major cause of death worldwide. Although timely and successful reperfusion could reduce myocardial ischemia injury, limit infarct size, and improve ventricular dysfunction and reduce acute mortality, restoring blood flow might also lead to unwanted myocardial ischemic-reperfusion (I/R) injury. Pre-clinical studies have demonstrated that multiple approaches are capable of attenuating the myocardial I/R injury. However, there is still no effective therapy for preventing myocardial I/R injury for the clinical setting. It is known that myocardial I/R injury could induce cardiac autonomic imbalance with over-activated sympathetic tone and reduced vagal activity, in turn, contributing to pathogenesis of myocardial I/R injury. Cumulative evidence shows that the enhancement of vagal activity, so called vagus nerve stimulation (VNS), is able to reduce injury and promote recovery of injured myocardium. Therefore, VNS might be a potentially novel strategy choice for preventing/attenuating myocardial I/R injury. In this review, we describe the protective role of VNS in myocardial I/R injury and related potential mechanisms. Then, we discuss the challenge and the opportunity of VNS in the treatment of acute myocardial I/R injury.
Collapse
|
18
|
The Effect of Acupuncture and Moxibustion on Heart Function in Heart Failure Patients: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:6074967. [PMID: 31772597 PMCID: PMC6854931 DOI: 10.1155/2019/6074967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/16/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022]
Abstract
Background Acupuncture and moxibustion (A&M) has been used for treating heart failure in China since the Han Dynasty. This ancient therapy can be applied to many diseases according to the WHO recommendations. Although there are many clinical reports on the treatment of heart failure by A&M, its effectiveness is still not fully demonstrated. We aimed to systematically review the related randomized controlled trial (RCT) studies and conduct a meta-analysis. Methods The PubMed, MEDLINE, EMBASE, AMED, CENTRAL, CNKI, Wanfang, and Weipu databases were searched electronically until December 2018. The data were extracted, and the risk of bias was evaluated. Meta-analysis, subgroup analysis, and metaregression were performed. Heart function was the main outcome assessed. The details of the intervention were also investigated. Results Thirty-two RCTs involving 2499 patients were included. Most studies had an unclear risk regarding blinding and allocation concealment. Compared with the traditional treatment group, the experimental group had a higher efficacy rate (odds ratio (OR) = 2.61, 95% confidence interval (95%CI): = [1.84; 3.72], I2 = 0%, p < 0.0001) and a significantly improved left ventricular ejection fraction (LVEF) (mean difference (MD) = 6.34, 95%CI = [4.11, 8.57], I2 = 93%, p < 0.0001), cardiac output (CO) (MD = 1.02, 95%CI = [0.65, 1.39], I2 = 94%, p < 0.0001), 6-minute walk test (6MWT) (MD = 43.6, 95%CI = [37.43, 49.77], I2 = 0%, p < 0.0001), and reduced brain-type natriuretic peptide (BNP) (MD = −227.99, 95%CI = [−337.30, −118.68], I2 = 96%, p < 0.0001). Adverse events were inadequately reported in most studies. Conclusions A&M may be a promising intervention as an adjunctive therapy to medication for treating heart failure. However, the evidence was inconclusive. Further large and rigorously designed RCTs are needed for verification.
Collapse
|
19
|
Gong LR, Kan YX, Lian Y, Dong SA, Zhao DH, Shi J, Yu JB. Electroacupuncture Attenuates Limb Ischemia-Reperfusion-Induced Lung Injury Via p38 Mitogen-Activated Protein Kinase-Nuclear Factor Erythroid-2-Related Factor-2/Heme Oxygenase Pathway. J Surg Res 2019; 246:170-181. [PMID: 31590030 DOI: 10.1016/j.jss.2019.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/31/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Electroacupuncture has been reported to protect the body from organ damages, but its mechanisms remain to be explored. This research was designed to investigate the function of electroacupuncture in lung injury resulted from hind limb ischemia-reperfusion (LIR) and whether p38 mitogen-activated protein kinase (p38 MAPK)-mediated nuclear factor erythroid-2-related factor-2 (Nrf2)/heme oxygenase (HO)-1 pathway contributes to the protective effect of electroacupuncture on LIR-originated lung damage. MATERIALS AND METHODS Rabbits were subjected to occluding femoral artery for 2 h. Then they received reperfusion for 4 h to establish lung injury model. Electroacupuncture stimulation was performed bilaterally at Feishu and Zusanli acupoints for 15 min once a day for 5 d before the experiment and throughout the hind LIR model performing in the experimental day. Blood samples and lung tissues were collected to examine the role of electroacupuncture treatment in inflammatory response, oxidative stress, and lung injury. Both the protein expression and the messenger RNA level of Nrf2 and HO-1 were detected. RESULTS The results showed that electroacupuncture treatment remarkably alleviated lung injury, decreased inflammatory cytokines secretion, attenuated lung oxidative stress, increased the amount of Nrf2 and HO-1, and increased the ratio of phospho-p38 MAPK to p38 MAPK after LIR. However, the protective effects exerted by electroacupuncture were reversed to some extent by the preconditioning with SB203580, a p38 MAPK-specific inhibitor. CONCLUSIONS These results suggested that electroacupuncture could attenuate lung injury in rabbits subjected to LIR by inhibition of proinflammatory cytokine response and oxidative stress through activating p38 MAPK-mediated Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Li-Rong Gong
- Department of Anesthesiology, Tianjin Medical University Nankai Hospital, Tianjin, China
| | - Yong-Xing Kan
- Department of Anesthesiology, Dagang Hospital of Tianjin Binhai New Area, Tianjin, China
| | - Yi Lian
- Department of Anesthesiology, Dagang Hospital of Tianjin Binhai New Area, Tianjin, China
| | - Shu-An Dong
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China
| | - Ding-Huan Zhao
- Department of Anesthesiology, Tianjin Medical University Nankai Hospital, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China
| | - Jian-Bo Yu
- Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, China.
| |
Collapse
|
20
|
Zhang J, Xia F, Zhao H, Peng K, Liu H, Meng X, Chen C, Ji F. Dexmedetomidine-induced cardioprotection is mediated by inhibition of high mobility group box-1 and the cholinergic anti-inflammatory pathway in myocardial ischemia-reperfusion injury. PLoS One 2019; 14:e0218726. [PMID: 31344138 PMCID: PMC6657822 DOI: 10.1371/journal.pone.0218726] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 06/09/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Dexmedetomidine (DEX) is a selective α2-adrenoceptor agonist that has anti-inflammatory and cardioprotective effects in myocardial ischemia/reperfusion (I/R) injury. The present study aimed to investigate the underlying mechanism by which DEX protects against myocardial I/R. METHODS Sprague Dawley rats were subjected to either sham operation or myocardial I/R, which was induced by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 120 min. Rats were treated with either DEX or saline prior to surgery. We measured heart infarct size, serum cardiac Troponin I (cTnI), cardiac High mobility group box-1 (HMGB1) expression, myocardial apoptosis and cytokine production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Besides, we evaluated the heart function at 4 weeks post-reperfusion by echocardiography. Unilateral vagotomy or inhibition of the α7 nicotinic acetylcholine receptor (α7nAChR) with methyllycaconitine (MLA) was applied to investigate whether DEX-induced cardioprotection is mediated via the cholinergic anti-inflammatory pathway. Cardiac-selective overexpression of HMGB1 was administered to further confirm if HMGB1 is a key anti-inflammatory target during DEX-induced cardioprotection. RESULTS DEX pretreatment significantly attenuated I/R-induced cardiac damage, as evidenced by decreases in short-term injury indicators including myocardial infarct size, cTnI release, myocardial apoptosis, cardiac HMGB1 expression, IL-6 and TNF-α production, as well as improvement on long-term cardiac function at 4 weeks post-reperfusion. These effects were partially reversed by either unilateral vagotomy or methyllycaconitine treatment. Besides, cardiac HMGB1-overexpression nearly abolished DEX-induced cardioprotection. CONCLUSIONS DEX pretreatment protects against myocardial I/R by inhibiting cardiac HMGB1 production and activating the cholinergic anti-inflammatory pathway.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Xia
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haifeng Zhao
- Department of Pathology, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Ke Peng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Huayue Liu
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Chen
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, China
- * E-mail:
| |
Collapse
|
21
|
Current Tracking on Effectiveness and Mechanisms of Acupuncture Therapy: A Literature Review of High-Quality Studies. Chin J Integr Med 2019; 26:310-320. [DOI: 10.1007/s11655-019-3150-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Indexed: 02/07/2023]
|
22
|
Understanding the Multitarget Pharmacological Mechanism of the Traditional Mongolian Common Herb Pair GuangZao-RouDouKou Acting on Coronary Heart Disease Based on a Bioinformatics Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:7956503. [PMID: 30534179 PMCID: PMC6252196 DOI: 10.1155/2018/7956503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022]
Abstract
GuangZao and RouDouKou (Fructus Choerospondiatis and Nutmeg, FCN) are one of the most common herb pairs in traditional Mongolian medicine for the treatment of coronary heart disease (CHD). However, evidence for the protective effect of FCN is limited, and its underlying mechanism of action remains unclear. The present study employed a network pharmacology approach to identify the potentially active ingredients and synergistic effects of the herb pair FCN as traditional Mongolian medicine. We predicted the targets of all available FCN ingredients with PharmMapper, SWISS, and SuperPred Server and clustered CHD-related targets from the DrugBank and the OMIM database. We also evaluated the links between herbal ingredients and pharmacological actions to explore the potential mechanism of action of FCN. We found that FCN targets a network of CHD-related key processes, including stress responses, cell adhesion and connections, angiogenesis, cell apoptosis and necrosis, the endocrine system, inflammatory and immune responses, and other biological processes. To confirm the predicted results, we investigated the protective effect of FCN on isoproterenol- (ISO-) induced myocardial ischemia in rats. Pathological assessment indicated that FCN inhibits apoptosis and inflammatory responses involving the myocardium. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting analyses demonstrated the therapeutic effects of FCN on ISO-induced myocardial ischemia rats, possibly via regulating stress and inflammatory responses and inhibiting cardiomyocyte apoptosis. The findings of the present study indicate that bioinformatics combined with experimental verification provide a credible and objective method to elucidate the complex multitarget mechanism of action of FCN.
Collapse
|
23
|
Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep 2018; 8:17491. [PMID: 30504832 PMCID: PMC6269513 DOI: 10.1038/s41598-018-35726-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated the cardio-protection mediated by the total flavonoid extracted from Dracocephalum moldavica L. (TFDM) following myocardial ischemia reperfusion injury (MIRI). The present study assessed the presence and mechanism of TFDM-related cardio-protection on MIRI-induced apoptosis in vivo. Male Sprague-Dawley rats experienced 45-min ischemia with 12 h of reperfusion. Rats pretreated with TFDM (3, 10 or 30 mg/kg/day) were compared with Sham (no MIRI and no TFDM), MIRI (no TFDM), and Positive (trapidil tablets, 13.5 mg/kg/day) groups. In MIRI-treated rats, high dose-TFDM (H-TFDM) pre-treatment with apparently reduced release of LDH, CK-MB and MDA, enhanced the concentration of SOD in plasma, and greatly reduced the infarct size, apoptotic index and mitochondrial injury. H-TFDM pretreatment markedly promoted the phosphorylation of PI3K, Akt, GSK-3β and ERK1/2 in comparison with the MIRI model group. Western blot analysis after reperfusion also showed that H-TFDM decreased release of Bax, cleaved caspase-3, caspase-7 and caspase-9, and increased expression of Bcl-2 as evident by the higher Bcl-2/Bax ratio. TFDM cardio-protection was influenced by LY294002 (PI3K inhibitor) and PD98059 (ERK1/2 inhibitor). Taken together, these results provide convincing evidence of the benefit of TFDM pretreatment due to inhibited myocardial apoptosis as mediated by the PI3K/Akt/GSK-3β and ERK1/2 signaling pathways.
Collapse
|
24
|
Intachai K, C Chattipakorn S, Chattipakorn N, Shinlapawittayatorn K. Revisiting the Cardioprotective Effects of Acetylcholine Receptor Activation against Myocardial Ischemia/Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19092466. [PMID: 30134547 PMCID: PMC6164157 DOI: 10.3390/ijms19092466] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/15/2018] [Accepted: 08/18/2018] [Indexed: 12/19/2022] Open
Abstract
Acute myocardial infarction (AMI) is the most common cause of acute myocardial injury and its most clinically significant form. The most effective treatment for AMI is to restore an adequate coronary blood flow to the ischemic myocardium as quickly as possible. However, reperfusion of an ischemic region can induce cardiomyocyte death, a phenomenon termed “myocardial ischemia/reperfusion (I/R) injury”. Disruption of cardiac parasympathetic (vagal) activity is a common hallmark of a variety of cardiovascular diseases including AMI. Experimental studies have shown that increased vagal activity exerts cardioprotective effects against myocardial I/R injury. In addition, acetylcholine (ACh), the principle cardiac vagal neurotransmitter, has been shown to replicate the cardioprotective effects of cardiac ischemic conditioning. Moreover, studies have shown that cardiomyocytes can synthesize and secrete ACh, which gives further evidence concerning the importance of the non-neuronal cholinergic signaling cascades. This suggests that the activation of ACh receptors is involved in cardioprotection against myocardial I/R injury. There are two types of ACh receptors (AChRs), namely muscarinic and nicotinic receptors (mAChRs and nAChRs, respectively). However, the effects of AChRs activation in cardioprotection during myocardial I/R are still not fully understood. In this review, we summarize the evidence suggesting the association between AChRs activation with both electrical and pharmacological interventions and the cardioprotection during myocardial I/R, as well as outline potential mechanisms underlying these cardioprotective effects.
Collapse
Affiliation(s)
- Kannaporn Intachai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Krekwit Shinlapawittayatorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
25
|
Park JY, Namgung U. Electroacupuncture therapy in inflammation regulation: current perspectives. J Inflamm Res 2018; 11:227-237. [PMID: 29844696 PMCID: PMC5963483 DOI: 10.2147/jir.s141198] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Although acupuncture therapy is increasingly used to treat diverse symptoms and disorders in humans, its underlying mechanism is not known well. Only recently have experimental studies begun to provide insights into how acupuncture stimulation generates and relates to pathophysiological responsiveness. Acupuncture intervention is frequently used to control pathologic symptoms in several visceral organs, and a growing number of studies using experimental animal models suggest that acupuncture stimulation may be involved in inducing anti-inflammatory responses. The vagus nerve, a principal parasympathetic nerve connecting neurons in the central nervous system to cardiovascular systems and a majority of visceral organs, is known to modulate neuroimmune communication and anti-inflammatory responses in target organs. Here, we review a broad range of experimental studies demonstrating anti-inflammatory effects of electroacupuncture in pathologic animal models of cardiovascular and visceral organs and also ischemic brains. Then, we provide recent progress on the role of autonomic nerve activity in anti-inflammation mediated by electroacupuncture. We also discuss a perspective on the role of sensory signals generated by acupuncture stimulation, which may induce a neural code unique to acupuncture in the central nervous system.
Collapse
Affiliation(s)
- Ji-Yeun Park
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| | - Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, South Korea
| |
Collapse
|
26
|
Tanaka LY, Laurindo FRM. The Eye of the Needle: Redox Mechanisms of Acupuncture Effects in Hypertension. Hypertension 2017; 71:224-226. [PMID: 29229747 DOI: 10.1161/hypertensionaha.117.09821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Leonardo Y Tanaka
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Brazil
| | - Francisco R M Laurindo
- From the Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Brazil.
| |
Collapse
|
27
|
Dexmedetomidine preconditioning may attenuate myocardial ischemia/reperfusion injury by down-regulating the HMGB1-TLR4-MyD88-NF-кB signaling pathway. PLoS One 2017; 12:e0172006. [PMID: 28222157 PMCID: PMC5319750 DOI: 10.1371/journal.pone.0172006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/30/2017] [Indexed: 12/21/2022] Open
Abstract
Aims To investigate whether dexmedetomidine (DEX) preconditioning could alleviate the inflammation caused by myocardial ischemia/reperfusion (I/R) injury by reducing HMGB1-TLR4-MyD88-NF-кB signaling. Methods Seventy rats were randomly assigned into five groups: sham group, myocardial I/R group (I/R), DEX+I/R group (DEX), DEX+yohimbine+I/R group (DEX/YOH), and yohimbine+I/R group (YOH). Animals were subjected to 30 min of ischemia induced by occluding the left anterior descending artery followed by 120 min of reperfusion. Myocardial infarct size and histological scores were evaluated. The levels of IL-6 and TNF-α in serum and myocardium were quantified by enzyme-linked immunosorbent assay, and expression of HMGB1, TLR4, MyD88, IκB and NF-κB in the myocardial I/R area were determined with Western blot and immunocytochemistry. Results Myocardial infarct sizes, histological scores, levels of circulating and myocardial IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly increased in the I/R group compared with the sham group (P<0.01). DEX preconditioning significantly reduced the myocardial infarct size and histological scores (P<0.01 vs. I/R group). Similarly, the serum and myocardial levels of IL-6 and TNF-α, the expression of HMGB1, TLR4, MyD88 and NF-κB, and the degradation of IκB were significantly reduced in the DEX group (P<0.01 vs. I/R group). These effects were partly reversed by yohimbine, a selective α2-adrenergic receptor antagonist, while yohimbine alone had no significant effect on any of the above indicators. Conclusion DEX preconditioning reduces myocardial I/R injury in part by attenuating inflammation, which may be attributed to the downregulation of the HMGB1-TLR4-MyD88-NF-кB signaling pathway mediated by the α2-adrenergic receptor activation.
Collapse
|
28
|
Chen Y, Lei Y, Mo LQ, Li J, Wang MH, Wei JC, Zhou J. Electroacupuncture pretreatment with different waveforms prevents brain injury in rats subjected to cecal ligation and puncture via inhibiting microglial activation, and attenuating inflammation, oxidative stress and apoptosis. Brain Res Bull 2016; 127:248-259. [PMID: 27771396 DOI: 10.1016/j.brainresbull.2016.10.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/17/2016] [Accepted: 10/17/2016] [Indexed: 12/21/2022]
Abstract
Sepsis is associated with high morbidity and mortality. This study was to investigate the protective effects of electroacupuncture (EA) pretreatment with different waveforms on septic brain injury in rats and its mechanism. Male Sprague-Dawley rats were pretreated by EA with different waveforms (continuous wave, dilatational wave, or intermittent wave) at Baihui (GV20) and Tsusanli (ST36) acupoints for 30min, and underwent cecal ligation and puncture (CLP) or sham operation. The results showed that EA pretreatment with different waveforms improved survival rate, attenuated encephaledema, brain injury, neuronal apoptosis and cognitive dysfunction, and preserved blood-brain barrier (BBB). EA pretreatment decreased the production of tumor necrosis factor(TNF)-α, interleukin(IL)-6, malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and catalase (CAT) in serum and hippocampus at 48h after sham or CLP operation. Additionally, EA pretreatment downregulated the expressions of toll-like receptor-4 (TLR-4), nuclear factor-kappa B (NF-κB) and ionized calcium binding adaptor molecule 1(Iba 1). The effect of dilatational wave was the most significant, followed by intermittent wave, and continuous wave was relatively poor. In conclusion, our results demonstrate that EA pretreatment with three waveforms alleviates sepsis-induced brain injury by inhibition of microglial activation and attenuation of inflammation, oxidative stress and apoptosis. These findings suggest that EA pretreatment with dilatational wave at Baihui and Tsusanli acupoints might be a promising therapeutic strategy for relieving septic brain injury.
Collapse
Affiliation(s)
- Ye Chen
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Yu Lei
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Li-Qun Mo
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Jun Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Mao-Hua Wang
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Ji-Cheng Wei
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China
| | - Jun Zhou
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, PR China.
| |
Collapse
|
29
|
Wang Y, Ouyang M, Wang Q, Jian Z. MicroRNA-142-3p inhibits hypoxia/reoxygenation‑induced apoptosis and fibrosis of cardiomyocytes by targeting high mobility group box 1. Int J Mol Med 2016; 38:1377-1386. [PMID: 28025989 PMCID: PMC5065300 DOI: 10.3892/ijmm.2016.2756] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/17/2016] [Indexed: 12/20/2022] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury may cause the apoptosis of cardiomyocytes as well as cardiac fibrosis, which is characterized as the transdifferentiation of fibroblasts to myofibroblasts and collagen deposition. MicroRNAs (miRNAs or miRs) have been demonstrated to be involved in myocardial I/R injury. However, the underlying molecular mechanism remains largely unclear. In the present study, mouse cardiomyocyte M6200 cells were treated with hypoxia/reoxygenation (H/R). Our data indicated that H/R treatment led to cell apoptosis, the increased expression of fibrosis-related proteins, namely collagen I, II, III, and fibronectin, as well as the downregulation of miR-142-3p in M6200 cells. Overexpression of miR-142-3p suppressed the H/R-induced apoptosis and fibrosis of M6200 cells. Bioinformatics analysis and a Dual-Luciferase reporter assay further identified high mobility group box 1 (HMGB1) as a direct target gene of miR-142-3p, and miR-142-3p negatively regulated the protein level of HMGB1 in M6200 cells. Furthermore, knockdown of HMGB1 enhanced cell proliferation whereas it inhibited the apoptosis and fibrosis of M6200 cells. In addition, TGF-β1/Smad3 signaling was suggested to be involved in the miR-142-3p/HMGB1-mediated apoptosis and fibrosis of M6200 cells treated with H/R. Taken together, the findings of the present study demonstrate that miR-142-3p inhibits H/R-induced apoptosis and fibrosis of cardiomyocytes, partly at least, by the direct inhibition of HMGB1 expression. Therefore, these findings have increased our understanding of the pathogenesis of H/R-induced myocardial injury.
Collapse
Affiliation(s)
- Yi Wang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Ouyang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Wang
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zaijin Jian
- Geriatric Department, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
30
|
He B, Zhao Y, Xu L, Gao L, Su Y, Lin N, Pu J. The nuclear melatonin receptor RORα is a novel endogenous defender against myocardial ischemia/reperfusion injury. J Pineal Res 2016; 60:313-26. [PMID: 26797926 DOI: 10.1111/jpi.12312] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022]
Abstract
Circadian rhythm disruption or decrease in levels of circadian hormones such as melatonin increases ischemic heart disease risk. The nuclear melatonin receptors RORs are pivotally involved in circadian rhythm regulation and melatonin effects mediation. However, the functional roles of RORs in the heart have never been investigated and were therefore the subject of this study on myocardial ischemia/reperfusion (MI/R) injury pathogenesis. RORα and RORγ subtypes were detected in the adult mouse heart, and RORα but not RORγ was downregulated after MI/R. To determine the pathological consequence of MI/R-induced reduction of RORα, we subjected RORα-deficient staggerer mice and wild-type (WT) littermates to MI/R injury, resulting in significantly increased myocardial infarct size, myocardial apoptosis and exacerbated contractile dysfunction in the former. Mechanistically, RORα deficiency promoted MI/R-induced endoplasmic reticulum stress, mitochondrial impairments, and autophagy dysfunction. Moreover, RORα deficiency augmented MI/R-induced oxidative/nitrative stress. Given the emerging evidence of RORα as an essential melatonin effects mediator, we further investigated the RORα roles in melatonin-exerted cardioprotection, in particular against MI/R injury, which was significantly attenuated in RORα-deficient mice, but negligibly affected by cardiac-specific silencing of RORγ. Finally, to determine cell type-specific effects of RORα, we generated mice with cardiomyocyte-specific RORα overexpression and they were less vulnerable to MI/R injury. In summary, our study provides the first direct evidence that the nuclear melatonin receptor RORα is a novel endogenous protective receptor against MI/R injury and an important mediator of melatonin-exerted cardioprotection; melatonin-RORα axis signaling thus appears important in protection against ischemic heart injury.
Collapse
Affiliation(s)
- Ben He
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Longwei Xu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lingchen Gao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Su
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|