1
|
Vignolini T, Capitanio M, Caldini C, Gardini L, Pavone FS. Highly inclined light sheet allows volumetric super-resolution imaging of efflux pumps distribution in bacterial biofilms. Sci Rep 2024; 14:12902. [PMID: 38839922 PMCID: PMC11153600 DOI: 10.1038/s41598-024-63729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024] Open
Abstract
Bacterial biofilms are highly complex communities in which isogenic bacteria display different gene expression patterns and organize in a three-dimensional mesh gaining enhanced resistance to biocides. The molecular mechanisms behind such increased resistance remain mostly unknown, also because of the technical difficulties in biofilm investigation at the sub-cellular and molecular level. In this work we focus on the AcrAB-TolC protein complex, a multidrug efflux pump found in Enterobacteriaceae, whose overexpression is associated with most multiple drug resistance (MDR) phenotypes occurring in Gram-negative bacteria. We propose an optical method to quantify the expression level of the AcrAB-TolC pump within the biofilm volume at the sub-cellular level, with single-molecule sensitivity. Through a combination of super-resolution PALM with single objective light sheet and precision genome editing, we can directly quantify the spatial distribution of endogenous AcrAB-TolC pumps expressed in both planktonic bacteria and, importantly, within the bacterial biofilm volume. We observe a gradient of pump density within the biofilm volume and over the course of biofilm maturation. Notably, we propose an optical method that could be broadly employed to achieve volumetric super-resolution imaging of thick samples.
Collapse
Affiliation(s)
- T Vignolini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy.
- Parasite RNA Biology Group, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| | - M Capitanio
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - C Caldini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| | - L Gardini
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
- National Institute of Optics, National Research Council, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy.
| | - F S Pavone
- European Laboratory for Non- Linear Spectroscopy, LENS, Via N. Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
2
|
Gardini L, Vignolini T, Curcio V, Pavone FS, Capitanio M. Optimization of highly inclined illumination for diffraction-limited and super-resolution microscopy. OPTICS EXPRESS 2023; 31:26208-26225. [PMID: 37710487 DOI: 10.1364/oe.492152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/12/2023] [Indexed: 09/16/2023]
Abstract
In HILO microscopy, a highly inclined and laminated light sheet is used to illuminate the sample, thus drastically reducing background fluorescence in wide-field microscopy, but maintaining the simplicity of the use of a single objective for both illumination and detection. Although the technique has become widely popular, particularly in single molecule and super-resolution microscopy, a limited understanding of how to finely shape the illumination beam and of how this impacts on the image quality complicates the setting of HILO to fit the experimental needs. In this work, we build up a simple and comprehensive guide to optimize the beam shape and alignment in HILO and to predict its performance in conventional fluorescence and super-resolution microscopy. We model the beam propagation through Gaussian optics and validate the model through far- and near-field experiments, thus characterizing the main geometrical features of the beam. Further, we fully quantify the effects of a progressive reduction of the inclined beam thickness on the image quality of both diffraction-limited and super-resolution images and we show that the most relevant impact is obtained by reducing the beam thickness to sub-cellular dimensions (< 3 µm). Based on this, we present a simple optical solution that exploits a rectangular slit to reduce the inclined beam thickness down to 2.6 µm while keeping a field-of-view dimension suited for cell imaging and allowing an increase in the number of localizations in super-resolution imaging of up to 2.6 folds.
Collapse
|
3
|
Kashchuk AV, Perederiy O, Caldini C, Gardini L, Pavone FS, Negriyko AM, Capitanio M. Particle Localization Using Local Gradients and Its Application to Nanometer Stabilization of a Microscope. ACS NANO 2022; 17:1344-1354. [PMID: 36383436 PMCID: PMC9878972 DOI: 10.1021/acsnano.2c09787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Particle localization plays a fundamental role in advanced biological techniques such as single-molecule tracking, superresolution microscopy, and manipulation by optical and magnetic tweezers. Such techniques require fast and accurate particle localization algorithms as well as nanometer-scale stability of the microscope. Here, we present a universal method for three-dimensional localization of single labeled and unlabeled particles based on local gradient calculation of particle images. The method outperforms state-of-the-art localization techniques in high-noise conditions, and it is capable of 3D nanometer accuracy localization of nano- and microparticles with sub-millisecond calculation time. By localizing a fixed particle as fiducial mark and running a feedback loop, we demonstrate its applicability for active drift correction in sensitive nanomechanical measurements such as optical trapping and superresolution imaging. A multiplatform open software package comprising a set of tools for local gradient calculation in brightfield, darkfield, and fluorescence microscopy is shared for ready use by the scientific community.
Collapse
Affiliation(s)
- Anatolii V. Kashchuk
- Department
of Physics and Astronomy, University of
Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | | | - Chiara Caldini
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| | - Lucia Gardini
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- National
Institute of Optics, National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | - Francesco Saverio Pavone
- Department
of Physics and Astronomy, University of
Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
- National
Institute of Optics, National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | | | - Marco Capitanio
- Department
of Physics and Astronomy, University of
Florence, Via Sansone 1, Sesto Fiorentino, 50019, Italy
- LENS, European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
4
|
Kazoe Y, Shibata K, Kitamori T. Super-Resolution Defocusing Nanoparticle Image Velocimetry Utilizing Spherical Aberration for Nanochannel Flows. Anal Chem 2021; 93:13260-13267. [PMID: 34559530 DOI: 10.1021/acs.analchem.1c02575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding fluid flows and mass transport in nanospaces is becoming important with recent advances in nanofluidic analytical devices utilizing nanopores and nanochannels. In the present study, we developed a super-resolution and fast particle tracking method utilizing defocusing images with spherical aberration and demonstrated the measurement of nanochannel flow. Since the spherical aberration generates the defocusing nanoparticle image with diffraction rings, the position of fluorescent nanoparticles was determined from the radius of the diffraction ring. Effects of components of an optical system on the diffraction ring of the defocusing image were investigated and optimized to achieve the spatial resolution exceeding the optical diffraction limit. We found that there is an optimal magnitude of spherical aberration to enhance the spatial resolution. Furthermore, we confirmed that nanoparticles with diameters in the order of 101 nm, which is much smaller than the light wavelength, do not affect the defocusing images and the spatial resolution because such nanoparticles can be regarded as point light sources. At optimized conditions, we achieved a spatial resolution of 19 nm and a temporal resolution of 160 μs, which are sufficient for the nanochannel flow measurements. We succeeded in the measurement of pressure-driven flow in a nanochannel with a depth of 370 nm using 67 nm fluorescent nanoparticles. The measured nanoparticle velocities exhibited a parabolic flow profile with a slip velocity even at the hydrophilic glass surface but with an average velocity similar to the Hagen-Poiseuille law. The method will accelerate researches in the nanofluidics and other related fields.
Collapse
Affiliation(s)
- Yutaka Kazoe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama 223-8522, Japan
| | - Kazuki Shibata
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Takehiko Kitamori
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Collaborative Research Organization for Micro and Nano Multifunctional Devices, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.,Institute of Nanoengineering and Microsystems, Department of Power Mechanical Engineering, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan, ROC
| |
Collapse
|
5
|
Application of Nanooptics in Photographic Imagery and Medical Imaging. J CHEM-NY 2021. [DOI: 10.1155/2021/2384322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background. At present, with the continuous development of nanotechnology, great changes have taken place in people’s lives in medical treatment, production, daily leisure, and so on. Nanooptical technology is entirely based on nanotechnology that laser and visible light are limited to submicron structures (nanopores, nanoslits, and nanoneedles). Due to the great development potential of nanooptical technology in nanoscale sensors, TOF camera applications, THz imaging technology, and other imaging equipment materials and applications, people have been interested in it, recently. Scope and Approach. In this review, the importance of good practices for nanooptical technology used in equipment as both nanometer scale sensors and optical auxiliary equipment is described. Based on recent reports, this work discussed the development of nanooptical technology in daily photography and medical imaging from both the positive and the negative sides and compared the engineering techniques. Key Findings and Conclusions. As a kind of new optical technology, nanooptical technology can produce the plasmonic effect under the intense collision of atoms and electrons in nanostructures. It has significant effects in superresolution nanolithography, high-density data storage, near-field optics, and other fields. Although the current nanooptic technology is not extremely mature, the results obtained from current works are pointing out that nanooptical technology is the future of daily imaging and medical imaging, and it also will play a positive role in the improvement of people’s health and ecological environment quality. As a trend, nanooptical technology is developing in the direction of energy-saving, portability, high efficiency, and low pollution, and in the upsurge of environmental protection in the world, nanooptical technology will surely achieve amazing development in the field of daily photography and medical imaging. Under the huge market demand and innovation power, nanophotonics technology will cover all emerging technologies that share the same research field with it and take advantage of each technology (terahertz, cell and molecular microscopy, and nanoscale probes) to develop an unprecedented new century in nanoscience. The future trends of research contain finding new imaging equipment with nanostructure, designing nanooptical products, and improving engineering techniques.
Collapse
|
6
|
Louis B, Camacho R, Bresolí-Obach R, Abakumov S, Vandaele J, Kudo T, Masuhara H, Scheblykin IG, Hofkens J, Rocha S. Fast-tracking of single emitters in large volumes with nanometer precision. OPTICS EXPRESS 2020; 28:28656-28671. [PMID: 32988132 DOI: 10.1364/oe.401557] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Multifocal plane microscopy allows for capturing images at different focal planes simultaneously. Using a proprietary prism which splits the emitted light into paths of different lengths, images at 8 different focal depths were obtained, covering a volume of 50x50x4 µm3. The position of single emitters was retrieved using a phasor-based approach across the different imaging planes, with better than 10 nm precision in the axial direction. We validated the accuracy of this approach by tracking fluorescent beads in 3D to calculate water viscosity. The fast acquisition rate (>100 fps) also enabled us to follow the capturing of 0.2 µm fluorescent beads into an optical trap.
Collapse
|
7
|
Casalone E, Vignolini T, Braconi L, Gardini L, Capitanio M, Pavone FS, Dei S, Teodori E. 1-benzyl-1,4-diazepane reduces the efflux of resistance-nodulation-cell division pumps in Escherichia coli. Future Microbiol 2020; 15:987-999. [PMID: 32840130 DOI: 10.2217/fmb-2019-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the action mechanism of 1-benzyl-1,4-diazepane (1-BD) as efflux pump inhibitor (EPI) in Escherichia coli mutants: ΔacrAB or overexpressing AcrAB and AcrEF efflux pumps. Materials & methods: Effect of 1-BD on: antibiotic potentiation, by microdilution method; membrane functionality, by fluorimetric assays; ethidium bromide accumulation, by fluorometric real-time efflux assay; AcrB expression, by quantitative photoactivated localization microscopy. Results: 1-BD decreases the minimal inhibitory concentration of levofloxacin and other antibiotics and increase ethidium bromide accumulation in E. coli overexpressing efflux pumps but not in the ΔacrAB strain. 1-BD increases membranes permeability, without sensibly affecting inner membrane polarity and decreases acrAB transcription. Conclusion: 1-BD acts as an EPI in E. coli with a mixed mechanism, different from that of major reference EPIs.
Collapse
Affiliation(s)
- Enrico Casalone
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tiziano Vignolini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics & Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics & Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Silvia Dei
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research & Child Health (NEUROFARBA), Via U. Schiff, 6 - 50019 Sesto Fiorentino, Italy
| |
Collapse
|
8
|
Abstract
Anti-Brownian electrokinetic trapping is a method for trapping single particles in liquid based on particle position measurements and the application of feedback voltages. To achieve trapping in the axial direction, information on the axial particle position is required. However, existing strategies for determining the axial position that are based on measuring the size of the first diffraction ring, theory fitting, advanced optical setups or pre-determined axial image stacks are impractical for anisotropic particles. In this work, axial electrokinetic trapping of anisotropic particles is realized in devices with planar, transparent electrodes. The trapping algorithm uses Fourier-Bessel decomposition of standard microscopy images and is learning from the correlation between applied voltages and changes in the particle appearance. No previous knowledge on the particle appearance, theory fitting or advanced optical setup is required. The particle motion in the trap and the influence of screening of the electric field on this motion are analyzed. The axial trapping method opens new possibilities for measuring properties of anisotropic or isotropic particles and forces acting on such particles.
Collapse
|
9
|
Gardini L, Arbore C, Capitanio M, Pavone FS. A protocol for single molecule imaging and tracking of processive myosin motors. MethodsX 2019; 6:1854-1862. [PMID: 31508322 PMCID: PMC6726715 DOI: 10.1016/j.mex.2019.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 08/13/2019] [Indexed: 10/31/2022] Open
Abstract
Myosin is a large family of actin-based molecular motors, which includes efficient intracellular transporters that move cargoes and material essential for cell's life. Here, we describe protocols for labelling single myosin motors with quantum dots, tracking them in an in vitro reconstituted single-molecule motility assay, acquiring image stacks and analyzing them. We describe the required steps to obtain trajectories of single myosin motors from which fundamental biophysical parameters such as the motor velocity, run length and step size can be derived. We also describe protocols for an ensemble actin gliding assay, which is valuable to test the motor viability and its ensemble properties. The protocols allow probing the effect of changes in nucleotides, ions, and buffer composition on the motor properties and are easily generalizable to track the movements of different motor proteins.
Collapse
Affiliation(s)
- Lucia Gardini
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | - Claudia Arbore
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- LENS - European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Gardini L, Arbore C, Pavone FS, Capitanio M. Myosin V fluorescence imaging dataset for single-molecule localization and tracking. Data Brief 2019; 25:103973. [PMID: 31194150 PMCID: PMC6552026 DOI: 10.1016/j.dib.2019.103973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/11/2022] Open
Abstract
Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors fundamental in recycling endosome trafficking and collective actin network dynamics. Through single-molecule motility assays, we recently demonstrated that myosin-5B can proceed in 36-nm steps along actin filaments as single motor. By analyzing trajectories of single myosin-5B along actin filaments we showed that its velocity is dependent on ATP concentration, while its run length is independent on ATP concentration, as a landmark of processivity. Here, we share image stacks acquired under total internal reflection fluorescence (TIRF) microscopy and representative trajectories of single myosin-5B molecules labelled with Quantum Dots (QD-myo-5B) moving along actin filaments at different ATP concentrations (0.3–1000 μM). Localization of QD-myo-5B was performed with the PROOF software, which is freely available [1]. The data can be valuable for researchers interested in molecular motors motility, both from an experimental and modeling point of view, as well as to researchers developing single particle tracking algorithms. The data is related to the research article “Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level” Gardini et al., 2015.
Collapse
Affiliation(s)
- Lucia Gardini
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Claudia Arbore
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,National Institute of Optics-National Research Council, Largo Fermi 6, 50125 Florence, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS - European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy.,Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Miscuglio M, Borys NJ, Spirito D, Martín-García B, Zaccaria RP, Weber-Bargioni A, Schuck PJ, Krahne R. Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning. ACS NANO 2019; 13:5646-5654. [PMID: 31021592 DOI: 10.1021/acsnano.9b00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plasmonic metasurfaces have spawned the field of flat optics using nanostructured planar metallic or dielectric surfaces that can replace bulky optical elements and enhance the capabilities of traditional far-field optics. Furthermore, the potential of flat optics can go far beyond far-field modulation and can be exploited for functionality in the near-field itself. Here, we design metasurfaces based on aperiodic arrays of plasmonic Au nanostructures for tailoring the optical near-field in the visible and near-infrared spectral range. The basic element of the arrays is a rhomboid that is modulated in size, orientation, and position to achieve the desired functionality of the micron-size metasurface structure. Using two-photon-photoluminescence as a tool to probe the near-field profiles in the plane of the metasurfaces, we demonstrate the molding of light into different near-field intensity patterns and active pattern control via the far-field illumination. Finite element method simulations reveal that the near-field modulation occurs via a combination of the plasmonic resonances of the rhomboids and field enhancement in the nanoscale gaps in between the elements. This approach enables optical elements that can switch the near-field distribution across the metasurface via wavelength and polarization of the incident far-field light and provides pathways for light matter interaction in integrated devices.
Collapse
Affiliation(s)
- Mario Miscuglio
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
- Dipartimento di Chimica e Chimica Industriale , Università degli Studi di Genova , Via Dodecaneso, 31 , 16146 Genova , Italy
| | - Nicholas J Borys
- Molecular Foundry , Lawrence Berkeley National Lab , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Davide Spirito
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| | | | | | - Alexander Weber-Bargioni
- Molecular Foundry , Lawrence Berkeley National Lab , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - P James Schuck
- Molecular Foundry , Lawrence Berkeley National Lab , 1 Cyclotron Road , Berkeley , California 94720 , United States
| | - Roman Krahne
- Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genova , Italy
| |
Collapse
|
12
|
Abstract
Mechanical transitions in molecular motors often occur on a submillisecond time scale and rapidly follow binding of the motor with its cytoskeletal filament. Interactions of nonprocessive molecular motors with their filament can be brief and last for few milliseconds or fraction of milliseconds. The investigation of such rapid events and their load dependence requires specialized single-molecule tools. Ultrafast force-clamp spectroscopy is a constant-force optical tweezers technique that allows probing such rapid mechanical transitions and submillisecond kinetics of biomolecular interactions, which can be particularly valuable for the study of nonprocessive motors, single heads of processive motors, or stepping dynamics of processive motors. Here we describe a step-by-step protocol for the application of ultrafast force-clamp spectroscopy to myosin motors. We give indications on optimizing the optical tweezers setup, biological constructs, and data analysis to reach a temporal resolution of few tens of microseconds combined with subnanometer spatial resolution. The protocol can be easily generalized to other families of motor proteins.
Collapse
|
13
|
Gardini L, Heissler SM, Arbore C, Yang Y, Sellers JR, Pavone FS, Capitanio M. Dissecting myosin-5B mechanosensitivity and calcium regulation at the single molecule level. Nat Commun 2018; 9:2844. [PMID: 30030431 PMCID: PMC6054644 DOI: 10.1038/s41467-018-05251-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/22/2018] [Indexed: 11/08/2022] Open
Abstract
Myosin-5B is one of three members of the myosin-5 family of actin-based molecular motors. Despite its fundamental role in recycling endosome trafficking and in collective actin network dynamics, the molecular mechanisms underlying its motility are inherently unknown. Here we combine single-molecule imaging and high-speed laser tweezers to dissect the mechanoenzymatic properties of myosin-5B. We show that a single myosin-5B moves processively in 36-nm steps, stalls at ~2 pN resistive forces, and reverses its directionality at forces >2 pN. Interestingly, myosin-5B mechanosensitivity differs from that of myosin-5A, while it is strikingly similar to kinesin-1. In particular, myosin-5B run length is markedly and asymmetrically sensitive to force, a property that might be central to motor ensemble coordination. Furthermore, we show that Ca2+ does not affect the enzymatic activity of the motor unit, but abolishes myosin-5B processivity through calmodulin dissociation, providing important insights into the regulation of postsynaptic cargoes trafficking in neuronal cells.
Collapse
Affiliation(s)
- Lucia Gardini
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy
| | - Sarah M Heissler
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8015, USA
| | - Claudia Arbore
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Yi Yang
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8015, USA
- Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-8015, USA
| | - Francesco S Pavone
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Largo Fermi 6, 50125, Florence, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy
| | - Marco Capitanio
- LENS-European Laboratory for Non-linear Spectroscopy, University of Florence, Via Nello Carrara 1, 50019, Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
14
|
Tempestini A, Monico C, Gardini L, Vanzi F, Pavone FS, Capitanio M. Sliding of a single lac repressor protein along DNA is tuned by DNA sequence and molecular switching. Nucleic Acids Res 2018; 46:5001-5011. [PMID: 29584872 PMCID: PMC6007606 DOI: 10.1093/nar/gky208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 01/12/2023] Open
Abstract
In any living cell, genome maintenance is carried out by DNA-binding proteins that recognize specific sequences among a vast amount of DNA. This includes fundamental processes such as DNA replication, DNA repair, and gene expression and regulation. Here, we study the mechanism of DNA target search by a single lac repressor protein (LacI) with ultrafast force-clamp spectroscopy, a sub-millisecond and few base-pair resolution technique based on laser tweezers. We measure 1D-diffusion of proteins on DNA at physiological salt concentrations with 20 bp resolution and find that sliding of LacI along DNA is sequence dependent. We show that only allosterically activated LacI slides along non-specific DNA sequences during target search, whereas the inhibited conformation does not support sliding and weakly interacts with DNA. Moreover, we find that LacI undergoes a load-dependent conformational change when it switches between sliding and strong binding to the target sequence. Our data reveal how DNA sequence and molecular switching regulate LacI target search process and provide a comprehensive model of facilitated diffusion for LacI.
Collapse
Affiliation(s)
- Alessia Tempestini
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Carina Monico
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lucia Gardini
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics—National Research Council, Largo Fermi 6, 50125 Florence, Italy
| | - Francesco Vanzi
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesco S Pavone
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics—National Research Council, Largo Fermi 6, 50125 Florence, Italy
- International Center of Computational Neurophotonics, Via Nello Carrara 1, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Capitanio
- LENS—European Laboratory for Non-linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
15
|
Agocs E, Attota RK. Enhancing optical microscopy illumination to enable quantitative imaging. Sci Rep 2018; 8:4782. [PMID: 29556073 PMCID: PMC5859171 DOI: 10.1038/s41598-018-22561-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 02/26/2018] [Indexed: 01/26/2023] Open
Abstract
There has been an increasing push to derive quantitative measurements using optical microscopes. While several aspects of microscopy have been identified to enhance quantitative imaging, non-uniform angular illumination asymmetry (ANILAS) across the field-of-view is an important factor that has been largely overlooked. Non-uniform ANILAS results in loss of imaging precision and can lead to, for example, less reliability in medical diagnoses. We use ANILAS maps to demonstrate that objective lens design, illumination wavelength and location of the aperture diaphragm are significant factors that contribute to illumination aberrations. To extract the best performance from an optical microscope, the combination of all these factors must be optimized for each objective lens. This requires the capability to optimally align the aperture diaphragm in the axial direction. Such optimization enhances the quantitative imaging accuracy of optical microscopes and can benefit applications in important areas such as biotechnology, optical metrology, and nanotechnology.
Collapse
Affiliation(s)
- Emil Agocs
- Engineering Physics Divison, PML, NIST, Gaithersburg, MD, 20899, USA
| | - Ravi Kiran Attota
- Engineering Physics Divison, PML, NIST, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
16
|
Hattab G, Wiesmann V, Becker A, Munzner T, Nattkemper TW. A Novel Methodology for Characterizing Cell Subpopulations in Automated Time-lapse Microscopy. Front Bioeng Biotechnol 2018; 6:17. [PMID: 29541635 PMCID: PMC5835524 DOI: 10.3389/fbioe.2018.00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Time-lapse imaging of cell colonies in microfluidic chambers provides time series of bioimages, i.e., biomovies. They show the behavior of cells over time under controlled conditions. One of the main remaining bottlenecks in this area of research is the analysis of experimental data and the extraction of cell growth characteristics, such as lineage information. The extraction of the cell line by human observers is time-consuming and error-prone. Previously proposed methods often fail because of their reliance on the accurate detection of a single cell, which is not possible for high density, high diversity of cell shapes and numbers, and high-resolution images with high noise. Our task is to characterize subpopulations in biomovies. In order to shift the analysis of the data from individual cell level to cellular groups with similar fluorescence or even subpopulations, we propose to represent the cells by two new abstractions: the particle and the patch. We use a three-step framework: preprocessing, particle tracking, and construction of the patch lineage. First, preprocessing improves the signal-to-noise ratio and spatially aligns the biomovie frames. Second, cell sampling is performed by assuming particles, which represent a part of a cell, cell or group of contiguous cells in space. Particle analysis includes the following: particle tracking, trajectory linking, filtering, and color information, respectively. Particle tracking consists of following the spatiotemporal position of a particle and gives rise to coherent particle trajectories over time. Typical tracking problems may occur (e.g., appearance or disappearance of cells, spurious artifacts). They are effectively processed using trajectory linking and filtering. Third, the construction of the patch lineage consists in joining particle trajectories that share common attributes (i.e., proximity and fluorescence intensity) and feature common ancestry. This step is based on patch finding, patching trajectory propagation, patch splitting, and patch merging. The main idea is to group together the trajectories of particles in order to gain spatial coherence. The final result of CYCASP is the complete graph of the patch lineage. Finally, the graph encodes the temporal and spatial coherence of the development of cellular colonies. We present results showing a computation time of less than 5 min for biomovies and simulated films. The method, presented here, allowed for the separation of colonies into subpopulations and allowed us to interpret the growth of colonies in a timely manner.
Collapse
Affiliation(s)
- Georges Hattab
- Faculty of Technology, Int. Research Training Group 1906, Computational Methods for the Analysis of the Diversity and Dynamics of Genomes (DiDy), Bielefeld University, Bielefeld, Germany
- Faculty of Technology, Biodata Mining Group, Bielefeld University, Bielefeld, Germany
| | - Veit Wiesmann
- Department of Image Processing and Medical Engineering, Fraunhofer-Institut für Integrierte Schaltungen (IIS), Erlangen, Germany
| | - Anke Becker
- SYNMIKRO, Phillips-Universität Marburg, LOEWE-Centre for Synthetic Microbiology, Marburg, Germany
| | - Tamara Munzner
- Department of Computer Science, University of British Columbia, Vancouver, BC, Canada
| | - Tim W. Nattkemper
- Faculty of Technology, Biodata Mining Group, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
17
|
Makarchuk S, Beyer N, Gaiddon C, Grange W, Hébraud P. Holographic Traction Force Microscopy. Sci Rep 2018; 8:3038. [PMID: 29445207 PMCID: PMC5813032 DOI: 10.1038/s41598-018-21206-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Traction Force Microscopy (TFM) computes the forces exerted at the surface of an elastic material by measuring induced deformations in volume. It is used to determine the pattern of the adhesion forces exerted by cells or by cellular assemblies grown onto a soft deformable substrate. Typically, colloidal particles are dispersed in the substrate and their displacement is monitored by fluorescent microscopy. As with any other fluorescent techniques, the accuracy in measuring a particule's position is ultimately limited by the number of evaluated fluorescent photons. Here, we present a TFM technique based on the detection of probe particle displacements by holographic tracking microscopy. We show that nanometer scale resolutions of the particle displacements can be obtained and determine the maximum volume fraction of markers in the substrate. We demonstrate the feasibility of the technique experimentally and measure the three-dimensional force fields exerted by colorectal cancer cells cultivated onto a polyacrylamide gel substrate.
Collapse
Affiliation(s)
- Stanislaw Makarchuk
- Université de Strasbourg, IPCMS/CNRS, UMR 7504, 23 rue du Loess, Strasbourg, 67034, France
| | - Nicolas Beyer
- Université de Strasbourg, IPCMS/CNRS, UMR 7504, 23 rue du Loess, Strasbourg, 67034, France
| | - Christian Gaiddon
- Université de Strasbourg, Inserm U1113, 3 avenue Molière, Strasbourg, 67200, France
| | - Wilfried Grange
- Université de Strasbourg, IPCMS/CNRS, UMR 7504, 23 rue du Loess, Strasbourg, 67034, France.
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| | - Pascal Hébraud
- Université de Strasbourg, IPCMS/CNRS, UMR 7504, 23 rue du Loess, Strasbourg, 67034, France.
| |
Collapse
|
18
|
Bugiel M, Mitra A, Girardo S, Diez S, Schäffer E. Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors. NANO LETTERS 2018; 18:1290-1295. [PMID: 29380607 DOI: 10.1021/acs.nanolett.7b04971] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.
Collapse
Affiliation(s)
- Michael Bugiel
- Eberhard Karls Universität Tübingen, ZMBP , Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Aniruddha Mitra
- Technische Universität Dresden, B CUBE - Center for Molecular Bioengineering and Center for Advancing Electronics Dresden , Arnoldstrasse 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Salvatore Girardo
- Technische Universität Dresden, BIOTEC - Center for Molecular and Cellular Bioengineering , Tatzberg 47/49, 01307 Dresden, Germany
| | - Stefan Diez
- Technische Universität Dresden, B CUBE - Center for Molecular Bioengineering and Center for Advancing Electronics Dresden , Arnoldstrasse 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Erik Schäffer
- Eberhard Karls Universität Tübingen, ZMBP , Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Abstract
Here, we describe protocols for three-dimensional tracking of single quantum dot-conjugated molecules with nanometer accuracy in living cells using conventional fluorescence microscopy. The technique exploits out-of-focus images of single emitters combined with an automated pattern-recognition open-source software that fits the images with proper model functions to extract the emitter coordinates. We describe protocols for targeting quantum dots to both membrane components and cytosolic proteins.
Collapse
|
20
|
Hatakeyama H, Kanzaki M. Heterotypic endosomal fusion as an initial trigger for insulin-induced glucose transporter 4 (GLUT4) translocation in skeletal muscle. J Physiol 2017; 595:5603-5621. [PMID: 28556933 DOI: 10.1113/jp273985] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 05/26/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Comprehensive imaging analyses of glucose transporter 4 (GLUT4) behaviour in mouse skeletal muscle was conducted. Quantum dot-based single molecule nanometry revealed that GLUT4 molecules in skeletal myofibres are governed by regulatory systems involving 'static retention' and 'stimulus-dependent liberation'. Vital imaging analyses and super-resolution microscopy-based morphometry demonstrated that insulin liberates the GLUT4 molecule from its static state by triggering acute heterotypic endomembrane fusion arising from the very small GLUT4-containing vesicles in skeletal myofibres. Prior exposure to exercise-mimetic stimuli potentiated this insulin-responsive endomembrane fusion event involving GLUT4-containing vesicles, suggesting that this endomembranous regulation process is a potential site related to the effects of exercise. ABSTRACT Skeletal muscle is the major systemic glucose disposal site. Both insulin and exercise facilitate translocation of the glucose transporter glucose transporter 4 (GLUT4) via distinct signalling pathways and exercise also enhances insulin sensitivity. However, the trafficking mechanisms controlling GLUT4 mobilization in skeletal muscle remain poorly understood as a resuly of technical limitations. In the present study, which employs various imaging techniques on isolated skeletal myofibres, we show that one of the initial triggers of insulin-induced GLUT4 translocation is heterotypic endomembrane fusion arising from very small static GLUT4-containing vesicles with a subset of transferrin receptor-containing endosomes. Importantly, pretreatment with exercise-mimetic stimuli potentiated the susceptibility to insulin responsiveness, as indicated by these acute endomembranous activities. We also found that AS160 exhibited stripe-like localization close to sarcomeric α-actinin and that insulin induced a reduction of the stripe-like localization accompanying changes in its detergent solubility. The results of the present study thus provide a conceptual framework indicating that GLUT4 protein trafficking via heterotypic fusion is a critical feature of GLUT4 translocation in skeletal muscles and also suggest that the efficacy of the endomembranous fusion process in response to insulin is involved in the benefits of exercise.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Attota RK, Park H. Optical microscope illumination analysis using through-focus scanning optical microscopy. OPTICS LETTERS 2017; 42:2306-2309. [PMID: 28614338 PMCID: PMC5572797 DOI: 10.1364/ol.42.002306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/19/2017] [Indexed: 05/20/2023]
Abstract
Misalignment of the aperture diaphragm present in optical microscopes results in angular illumination asymmetry (ANILAS) at the sample plane. Here we show that through-focus propagation of ANILAS results in a lateral image shift with a focus position. This could lead to substantial errors in quantitative results for optical methods that use through-focus images such as three-dimensional nanoparticle tracking, confocal microscopy, and through-focus scanning optical microscopy (TSOM). A correlation exists between ANILAS and the slant in TSOM images. Hence, the slant in the TSOM image can be used to detect, analyze, and rectify the presence of ANILAS.
Collapse
|
22
|
Hatakeyama H, Nakahata Y, Yarimizu H, Kanzaki M. Live-cell single-molecule labeling and analysis of myosin motors with quantum dots. Mol Biol Cell 2016; 28:173-181. [PMID: 28035048 PMCID: PMC5221621 DOI: 10.1091/mbc.e16-06-0413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 10/28/2016] [Accepted: 11/01/2016] [Indexed: 01/07/2023] Open
Abstract
Quantum dots (QDs) are a powerful tool for quantitative biology, but two challenges are associated with using them to track intracellular molecules in live cells. A simple and convenient method is presented for labeling intracellular molecules by using HaloTag technology and electroporation and is used to successfully track myosins within live cells. Quantum dots (QDs) are a powerful tool for quantitatively analyzing dynamic cellular processes by single-particle tracking. However, tracking of intracellular molecules with QDs is limited by their inability to penetrate the plasma membrane and bind to specific molecules of interest. Although several techniques for overcoming these problems have been proposed, they are either complicated or inconvenient. To address this issue, in this study, we developed a simple, convenient, and nontoxic method for labeling intracellular molecules in cells using HaloTag technology and electroporation. We labeled intracellular myosin motors with this approach and tracked their movement within cells. By simultaneously imaging myosin movement and F-actin architecture, we observed that F-actin serves not only as a rail but also as a barrier for myosin movement. We analyzed the effect of insulin on the movement of several myosin motors, which have been suggested to regulate intracellular trafficking of the insulin-responsive glucose transporter GLUT4, but found no significant enhancement in myosin motor motility as a result of insulin treatment. Our approach expands the repertoire of proteins for which intracellular dynamics can be analyzed at the single-molecule level.
Collapse
Affiliation(s)
- Hiroyasu Hatakeyama
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8579, Japan .,Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Yoshihito Nakahata
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Hirokazu Yarimizu
- Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8579, Japan.,Department of Information and Intelligent Systems, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|