1
|
Zhou Z, Zhu R, Song Y, Zhang W, Sun B, Zhang Z, Yao H. Penguin-Driven Dissemination and High Enrichment of Antibiotic Resistance Genes in Lake Sediments across Antarctica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39083437 DOI: 10.1021/acs.est.4c02732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Numerous penguins can propagate pathogens with antibiotic resistance genes (ARGs) into Antarctica. However, the effects of penguin dissemination on the lake ARGs still have received little attention via guano deposition. Here, we have profiled ARGs in ornithogenic sediments subject to penguin guano (OLS) and nonornithogenic sediments (NOLS) from 16 lakes across Antarctica. A total of 191 ARGs were detected in all sediment samples, with a much higher abundance and diversity in OLS than in NOLS. Surprisingly, highly diverse and abundant ARGs were found in the OLS with a detection frequency of >40% and an absolute abundance of (2.34 × 109)-(4.98 × 109) copies g-1, comparable to those in coastal estuarine sediments and pig farms. The strong correlations of identified resistance genes with penguin guano input amount, environmental factors, mobile genetic elements, and bacterial community, in conjunction with network and redundancy analyses, all indicated that penguins were responsible for the dissemination and high enrichment of ARGs in lake sediments via the guano deposition, which might greatly outweigh local human-activity effects. Our results revealed that ARGs could be carried into lakes across the Antarctica through penguin migration, food chains, and guano deposition, which were closely connected with the widespread pollution of ARGs at the global scale.
Collapse
Affiliation(s)
- Zeming Zhou
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Yixin Song
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Bowen Sun
- Institute of Polar Environment & Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zulin Zhang
- The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, U.K
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| |
Collapse
|
2
|
Sun B, Zhu R, Shi Y, Zhang W, Zhou Z, Ma D, Wang R, Dai H, Che C. Effects of coal-fired power plants on soil microbial diversity and community structures. J Environ Sci (China) 2024; 137:206-223. [PMID: 37980009 DOI: 10.1016/j.jes.2023.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 11/20/2023]
Abstract
Long-term deposition of atmospheric pollutants emitted from coal combustion and their effects on the eco-environment have been extensively studied around coal-fired power plants. However, the effects of coal-fired power plants on soil microbial communities have received little attention through atmospheric pollutant deposition and coal-stacking. Here, we collected the samples of power plant soils (PS), coal-stacking soils (CSS) and agricultural soils (AS) around three coal-fired power plants and background control soils (BG) in Huainan, a typical mineral resource-based city in East China, and investigated the microbial diversity and community structures through a high-throughput sequencing technique. Coal-stacking significantly increased (p < 0.05) the contents of total carbon, total nitrogen, total sulfur and Mo in the soils, whereas the deposition of atmospheric pollutants enhanced the levels of V, Cu, Zn and Pb. Proteobacteria, Actinobacteria, Thaumarchaeota, Thermoplasmata, Ascomycota and Basidiomycota were the dominant taxa in all soils. The bacterial community showed significant differences (p < 0.05) among PS, CSS, AS and BG, whereas archaeal and fungal communities showed significant differences (p < 0.01) according to soil samples around three coal-fired power plants. The predominant environmental variables affecting soil bacterial, archaeal and fungal communities were Mo-TN-TS, Cu-V-Mo, and organic matter (OM)-Mo, respectively. Certain soil microbial genera were closely related to multiple key factors associated with stacking coal and heavy metal deposition from power plants. This study provided useful insight into better understanding of the relationships between soil microbial communities and long-term disturbances from coal-fired power plants.
Collapse
Affiliation(s)
- Bowen Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Renbin Zhu
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 450046, China
| | - Wanying Zhang
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zeming Zhou
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dawei Ma
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Runfang Wang
- State Grid Anhui Electric Power Research Institute, Hefei 230601, China
| | - Haitao Dai
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Chenshuai Che
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Zhang Y, Zhang B, Ahmed I, Zhang H, He Y. Profiles and natural drivers of antibiotic resistome in multiple environmental media in penguin-colonized area in Antarctica. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
4
|
Doytchinov VV, Dimov SG. Microbial Community Composition of the Antarctic Ecosystems: Review of the Bacteria, Fungi, and Archaea Identified through an NGS-Based Metagenomics Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12060916. [PMID: 35743947 PMCID: PMC9228076 DOI: 10.3390/life12060916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Antarctica represents a unique environment, both due to the extreme meteorological and geological conditions that govern it and the relative isolation from human influences that have kept its environment largely undisturbed. However, recent trends in climate change dictate an unavoidable change in the global biodiversity as a whole, and pristine environments, such as Antarctica, allow us to study and monitor more closely the effects of the human impact. Additionally, due to its inaccessibility, Antarctica contains a plethora of yet uncultured and unidentified microorganisms with great potential for useful biological activities and production of metabolites, such as novel antibiotics, proteins, pigments, etc. In recent years, amplicon-based next-generation sequencing (NGS) has allowed for a fast and thorough examination of microbial communities to accelerate the efforts of unknown species identification. For these reasons, in this review, we present an overview of the archaea, bacteria, and fungi present on the Antarctic continent and the surrounding area (maritime Antarctica, sub-Antarctica, Southern Sea, etc.) that have recently been identified using amplicon-based NGS methods.
Collapse
|
5
|
Pearman JK, Biessy L, Howarth JD, Vandergoes MJ, Rees A, Wood SA. Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Mol Ecol Resour 2021; 22:877-890. [PMID: 34562066 DOI: 10.1111/1755-0998.13515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
Lake sediments accumulate information on biological communities thus acting as natural archives. Traditionally paleolimnology has focussed on fossilized remains of organisms, however, many organisms do not leave fossil evidence, meaning major ecosystem components are missing from environmental reconstructions. Many paleolimnology studies now incorporate molecular methods, including investigating microbial communities using environmental DNA (eDNA), but there is uncertainty about the contribution of living organisms to molecular inventories. In the present study, we obtained DNA and RNA inventories from sediment spanning 700 years to investigate the contribution of past and active communities to the molecular signal from sedimentary archives. Additionally, a droplet digital PCR (ddPCR) targeting the 16S ribosomal RNA (16S rRNA) gene of the photosynthetic cyanobacterial genera Microcystis was used to explore if RNA signals were from legacy RNA. We posit that the RNA signal is a mixture of legacy RNA, dormant cells, living bacteria and modern-day trace level contaminants that were introduced during sampling and preferentially amplified. The presence of legacy RNA was confirmed by the detection of Microcystis in sediments aged to ~200 years ago. Recent comparisons between 16S rRNA gene metabarcoding and traditional paleo proxies showed that past changes in bacterial communities can be reconstructed from sedimentary archives. The recovery of RNA in the present study has provided new insights into the origin of these signals. However, caution is required during analysis and interpretation of 16S rRNA gene metabarcoding data especially in recent sediments were there are potentially active bacteria.
Collapse
Affiliation(s)
- John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Laura Biessy
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Andrew Rees
- University of Victoria, Wellington, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
6
|
Ye W, Yuan L, Zhu R, Yin X, Bañuelos G. Selenium volatilization from tundra soils in maritime Antarctica. ENVIRONMENT INTERNATIONAL 2021; 146:106189. [PMID: 33130370 DOI: 10.1016/j.envint.2020.106189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/26/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Maritime Antarctica harbors a large number of penguins and seals that provide considerable input of selenium (Se) originating as guano into terrestrial ecosystems. Subsequent Se emissions via biomethylation and volatilization from these sources of Se have not been studied. Here, penguin colony soils (PCS) and adjacent tundra marsh soils (TMS), seal colony soils (SCS) and adjacent tundra soils (STS), and normal upland tundra soils (NTS) were collected in maritime Antarctica. For the first time, Se volatilization and speciation were investigated in these soils through incubation experiments using chemo-trapping method. The Se contents in PCS, SCS, STS and TMS were highly enriched compared with NTS, with organic matter-bound Se accounting for 70%-80%. Laboratory incubations yielded the greatest Se volatilization rates (VRSe) in PCS (0.20 ± 0.01 μg kg-1 d-1), followed by SCS (0.14 ± 0.01 μg kg-1 d-1) at low temperature (4 °C). Soil frozen-thawing induced 1-4 fold increase in VRSe, and the VRSe continuously increased until the soils fully thawed. The VRSe showed a significant positive correlation (R2 = 0.96, p < 0.01) with soil temperature. Methylated Se species were dominated by dimethylselenide (DMSe) in PCS and dimethyldiselenide (DMDSe) in SCS. Our results imply that the combination of climate warming, frozen-thawing processes, and high-Se inputs from sea animals will significantly increase tundra soil Se volatilization in maritime Antarctica. High VRSe from penguin colony soils, and significantly elevated Se levels in the mosses close to penguin colony, suggest that volatilization of Se from penguin colony soils play an important role in the mobilization and regional biogeochemical cycling of Se in maritime Antarctica.
Collapse
Affiliation(s)
- Wenjuan Ye
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Linxi Yuan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Renbin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Xuebin Yin
- Key Laboratory of Functional Agriculture, Suzhou Research Institute, University of Science and Technology of China, Suzhou 215123, Jiangsu, China
| | - Gary Bañuelos
- United States Department of Agriculture-Agricultural Research Service, Parlier, CA, USA
| |
Collapse
|
7
|
Dai HT, Zhu RB, Sun BW, Che CS, Hou LJ. Effects of Sea Animal Activities on Tundra Soil Denitrification and nirS- and nirK-Encoding Denitrifier Community in Maritime Antarctica. Front Microbiol 2020; 11:573302. [PMID: 33162954 PMCID: PMC7581892 DOI: 10.3389/fmicb.2020.573302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 01/04/2023] Open
Abstract
In maritime Antarctica, sea animals, such as penguins or seals, provide a large amount of external nitrogen input into tundra soils, which greatly impact nitrogen cycle in tundra ecosystems. Denitrification, which is closely related with the denitrifiers, is a key step in nitrogen cycle. However, effects of sea animal activities on tundra soil denitrification and denitrifier community structures still have received little attention. Here, the abundance, activity, and diversity of nirS- and nirK-encoding denitrifiers were investigated in penguin and seal colonies, and animal-lacking tundra in maritime Antarctica. Sea animal activities increased the abundances of nirS and nirK genes, and the abundances of nirS genes were significantly higher than those of nirK genes (p < 0.05) in all tundra soils. Soil denitrification rates were significantly higher (p < 0.05) in animal colonies than in animal-lacking tundra, and they were significantly positively correlated (p < 0.05) with nirS gene abundances instead of nirK gene abundances, indicating that nirS-encoding denitrifiers dominated the denitrification in tundra soils. The diversity of nirS-encoding denitrifiers was higher in animal colonies than in animal-lacking tundra, but the diversity of nirK-encoding denitrifiers was lower. Both the compositions of nirS- and nirK-encoding denitrifiers were similar in penguin or seal colony soils. Canonical correspondence analysis indicated that the community structures of nirS- and nirK-encoding denitrifiers were closely related to tundra soil biogeochemical processes associated with penguin or seal activities: the supply of nitrate and ammonium from penguin guano or seal excreta, and low C:N ratios. In addition, the animal activity-induced vegetation presence or absence had an important effect on tundra soil denitrifier activities and nirK-encoding denitrifier diversities. This study significantly enhanced our understanding of the compositions and dynamics of denitrifier community in tundra ecosystems of maritime Antarctica.
Collapse
Affiliation(s)
- Hai-Tao Dai
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Ren-Bin Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Bo-Wen Sun
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Chen-Shuai Che
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
8
|
Wang P, D'Imperio L, Biersma EM, Ranniku R, Xu W, Tian Q, Ambus P, Elberling B. Combined effects of glacial retreat and penguin activity on soil greenhouse gas fluxes on South Georgia, sub-Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135255. [PMID: 31859058 DOI: 10.1016/j.scitotenv.2019.135255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/12/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The effects of soil succession after glacial retreat and fertilisation by marine animals are known to have major impacts on soil greenhouse gas (GHG) fluxes in polar terrestrial ecosystems. While in many polar coastal areas retreating glaciers open up new ground for marine animals to colonise, little is known about the combination of both factors on the local GHG budget. We studied the magnitude of GHG fluxes (CO2, CH4 and N2O) on the combined effect of glacial retreat and penguin-induced fertilisation along a transect protruding into the world's largest King Penguin (Aptenodytes patagonicus) colony at Saint Andrews Bay on sub-Antarctic South Georgia. GHG production and consumption rates were assessed based on laboratory incubations of intact soil cores and nutrients and water additional experimental incubations. The oldest soils along the transect show significant higher contents of soil carbon, nutrients and moisture and were strongly influenced by penguin activity. We found a net CH4 consumption along the entire transect with a marked decrease within the penguin colony. CO2 production strongly increased along the transect, while N2O production rates were low near the glacier front and increased markedly within the penguin colony. Controlled applications of guano resulted in a significant increase in CO2 and N2O production, and decrease in CH4 consumption, except for sites already strongly influenced by penguin activity. The results show that soil microbial activity promptly catalyses a turnover of soil C and atmospheric methane oxidation in de-glaciated forelands. The methane oxidizers, however, may increase relatively slowly in their capacity to oxidise atmospheric CH4. Results show also that the increase of nutrients by penguins reduces CH4 oxidation whereas N2O production is greatly increased. A future expansion of penguins into newly available ice-free polar coastal areas may therefore markedly increase the local GHG budget.
Collapse
Affiliation(s)
- Peiyan Wang
- International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, 210023 Nanjing, China; Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Ludovica D'Imperio
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Elisabeth M Biersma
- British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom; Natural History Museum of Denmark, University of Copenhagen, Øster Farimagsgade 5, DK-1353 Copenhagen, Denmark
| | - Reti Ranniku
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Wenyi Xu
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Qingjiu Tian
- International Institute for Earth System Sciences, Nanjing University, 210023 Nanjing, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, Nanjing University, 210023 Nanjing, China
| | - Per Ambus
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark.
| |
Collapse
|
9
|
Lu XM, Peng X, Qin S, Xue F, Wu JN. Microbial community successional patterns in offshore sediments impacted by chemical pollution from Taizhou and Xiamen Cities in China. MARINE POLLUTION BULLETIN 2020; 150:110600. [PMID: 31669980 DOI: 10.1016/j.marpolbul.2019.110600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
An Illumina-based next-generation sequencing was employed to characterise the sediment microbiome adjacent to coastal industrial and tourist cities, Taizhou and Xiamen, in China, and their associations with chemical pollution were explored. The results indicated that chemical pollution of sediments from Taizhou was higher than that from Xiamen. The number of sediment bacterial genera was negatively (Taizhou) or positively (Xiamen) correlated with offshore distance, owing to shifts in the primary and secondary status of organic matter and chemical pollutants for the promotion or inhibition of the sediment microbiome. The total number of the operational taxonomic units (OTUs) in sediments from Taizhou was larger than from Xiamen, while the number of core OTUs was smaller indicating that Taizhou had more impact on core microbes in sediments than Xiamen. This study suggests that chemical pollutants and organic matter result in different co-regulation of the off-shore sediment microbiome of coastal industrial and tourist cities.
Collapse
Affiliation(s)
- Xiao-Ming Lu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| | - Xin Peng
- Marine Resources and Environment Research Center, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China.
| | - Song Qin
- Marine Resources and Environment Research Center, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Feng Xue
- Marine Resources and Environment Research Center, Zhejiang Mariculture Research Institute, Wenzhou, 325005, China
| | - Jiang-Nan Wu
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, China
| |
Collapse
|
10
|
Picazo A, Rochera C, Villaescusa JA, Miralles-Lorenzo J, Velázquez D, Quesada A, Camacho A. Bacterioplankton Community Composition Along Environmental Gradients in Lakes From Byers Peninsula (Maritime Antarctica) as Determined by Next-Generation Sequencing. Front Microbiol 2019; 10:908. [PMID: 31114558 PMCID: PMC6503055 DOI: 10.3389/fmicb.2019.00908] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/10/2019] [Indexed: 11/13/2022] Open
Abstract
This study comprises the first attempt to describe the planktonic bacterial communities of lakes from Byers Peninsula, one of the most significant limnological districts in the Maritime Antarctica, leveraging next-generation sequencing (NGS) technologies. For the survey, we selected 7 lakes covering the environmental gradient from inland to coastal lakes, some of them sampled both in surface and deep waters. Analysis provided just over 85,000 high quality sequences that were clustered into 864 unique Zero-radius Operational Taxonomic Units (ZOTUs) (i.e., 100% sequence similarity). Yet, several taxonomic uncertainties remained in the analysis likely suggesting the occurrence of local bacterial adaptations. The survey showed the dominance of the phyla Proteobacteria and Bacteroidetes. Among the former, the Gammaproteobacteria class, more specifically the order Betaproteobacteriales, was the dominant group, which seems to be a common trend in nutrient-limited Antarctic lakes. Most of the families and genera ubiquitously detected belonging to this class are indeed typical from ultra-oligotrophic environments, and commonly described as diazotrophs. On the other hand, among the members of the phylum Bacteroidetes, genera such as Flavobacterium were abundant in some of the shallowest lakes, thus demonstrating that also benthic and sediment-associated bacteria contributed to water bacterial assemblages. Ordination analyses sorted bacterial assemblages mainly based on the environmental gradients of nutrient availability and conductivity i.e., salinity. However, transient bacterial associations, that included the groups Clostridiaceae and Chloroflexi, also occurred as being forced by other drivers such as the influence of the nearby fauna and by the airborne microorganisms. As we intended, our NGS-based approach has provided a much greater resolution compared to the previous studies conducted in the area and confirmed to a large extent the previously obtained patterns, thus reinforcing the view of Byers as a hotspot of microbial biodiversity within Antarctica. This high microbial diversity allows the use of these aquatic ecosystems and their bacterial assemblages as sentinels for the monitoring of adaptive responses to climate change in this rapidly warming area.
Collapse
Affiliation(s)
- Antonio Picazo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Carlos Rochera
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Juan Antonio Villaescusa
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Javier Miralles-Lorenzo
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - David Velázquez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Antonio Camacho
- Cavanilles Institute for Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
11
|
Ramírez-Fernández L, Trefault N, Carú M, Orlando J. Seabird and pinniped shape soil bacterial communities of their settlements in Cape Shirreff, Antarctica. PLoS One 2019; 14:e0209887. [PMID: 30625192 PMCID: PMC6326729 DOI: 10.1371/journal.pone.0209887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 12/13/2018] [Indexed: 01/24/2023] Open
Abstract
Seabirds and pinnipeds play an important role in biogeochemical cycling by transferring nutrients from aquatic to terrestrial environments. Indeed, soils rich in animal depositions have generally high organic carbon, nitrogen and phosphorus contents. Several studies have assessed bacterial diversity in Antarctic soils influenced by marine animals; however most have been conducted in areas with significant human impact. Thus, we chose Cape Shirreff, Livingston Island, an Antarctic Specially Protected Area designated mainly to protect the diversity of marine vertebrate fauna, and selected sampling sites with different types of animals coexisting in a relatively small space, and where human presence and impact are negligible. Using 16S rRNA gene analyses through massive sequencing, we assessed the influence of animal concentrations, via their modification of edaphic characteristics, on soil bacterial diversity and composition. The nutrient composition of soils impacted by Antarctic fur seals and kelp gulls was more similar to that of control soils (i.e. soils without visible presence of plants or animals), which may be due to the more active behaviour of these marine animals compared to other species. Conversely, the soils from concentrations of southern elephant seals and penguins showed greater differences in soil nutrients compared to the control. In agreement with this, the bacterial communities of the soils associated with these animals were most different from those of the control soils, with the soils of penguin colonies also possessing the lowest bacterial diversity. However, all the soils influenced by the presence of marine animals were dominated by bacteria belonging to Gammaproteobacteria, particularly those of the genus Rhodanobacter. Therefore, we conclude that the modification of soil nutrient composition by marine vertebrates promotes specific groups of bacteria, which could play an important role in the recycling of nutrients in terrestrial Antarctic ecosystems.
Collapse
Affiliation(s)
- Lía Ramírez-Fernández
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Trefault
- Centre for Genomics, Ecology and Environment (GEMA), Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Margarita Carú
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Julieta Orlando
- Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
12
|
Otero XL, De La Peña-Lastra S, Pérez-Alberti A, Ferreira TO, Huerta-Diaz MA. Seabird colonies as important global drivers in the nitrogen and phosphorus cycles. Nat Commun 2018; 9:246. [PMID: 29362437 PMCID: PMC5780392 DOI: 10.1038/s41467-017-02446-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 12/01/2017] [Indexed: 11/09/2022] Open
Abstract
Seabirds drastically transform the environmental conditions of the sites where they establish their breeding colonies via soil, sediment, and water eutrophication (hereafter termed ornitheutrophication). Here, we report worldwide amounts of total nitrogen (N) and total phosphorus (P) excreted by seabirds using an inventory of global seabird populations applied to a bioenergetics model. We estimate these fluxes to be 591 Gg N y-1 and 99 Gg P y-1, respectively, with the Antarctic and Southern coasts receiving the highest N and P inputs. We show that these inputs are of similar magnitude to others considered in global N and P cycles, with concentrations per unit of surface area in seabird colonies among the highest measured on the Earth's surface. Finally, an important fraction of the total excreted N (72.5 Gg y-1) and P (21.8 Gg y-1) can be readily solubilized, increasing their short-term bioavailability in continental and coastal waters located near the seabird colonies.
Collapse
Affiliation(s)
- Xosé Luis Otero
- Departamento de Edafoloxía e Química Agrícola, Campus Vida, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Saul De La Peña-Lastra
- Departamento de Edafoloxía e Química Agrícola, Campus Vida, Facultade de Bioloxía, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Augusto Pérez-Alberti
- Departamento de Xeografía Física, Facultade de Xeografía e Historia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Tiago Osorio Ferreira
- Luiz de Queiroz College of Agriculture, University of Sao Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Sao Paulo, Brazil
| | - Miguel Angel Huerta-Diaz
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana No. 3917, Fraccionamiento Playitas, CP 22860, Ensenada, Baja California, Mexico.
| |
Collapse
|
13
|
Yew WC, Pearce DA, Dunn MJ, Samah AA, Convey P. Bacterial community composition in Adélie (Pygoscelis adeliae) and Chinstrap (Pygoscelis antarctica) Penguin stomach contents from Signy Island, South Orkney Islands. Polar Biol 2017. [DOI: 10.1007/s00300-017-2162-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Microbial communities of aquatic environments on Heard Island characterized by pyrotag sequencing and environmental data. Sci Rep 2017; 7:44480. [PMID: 28290555 PMCID: PMC5349573 DOI: 10.1038/srep44480] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 02/09/2017] [Indexed: 12/23/2022] Open
Abstract
Heard Island in the Southern Ocean is a biological hotspot that is suffering the effects of climate change. Significant glacier retreat has generated proglacial lagoons, some of which are open to the ocean. We used pyrotag sequencing of SSU rRNA genes and environmental data to characterize microorganisms from two pools adjacent to animal breeding areas, two glacial lagoons and Atlas Cove (marine site). The more abundant taxa included Actinobacteria, Bacteroidetes and Proteobacteria, ciliates and picoflagellates (e.g. Micromonas), and relatively few Archaea. Seal Pool, which is rich in organic matter, was characterized by a heterotrophic degradative community, while the less eutrophic Atlas Pool had more eucaryotic primary producers. Brown Lagoon, with the lowest nutrient levels, had Eucarya and Bacteria predicted to be oligotrophs, possess small cell sizes, and have the ability to metabolize organic matter. The marine influence on Winston Lagoon was evident by its salinity and the abundance of marine-like Gammaproteobacteria, while also lacking typical marine eucaryotes indicating the system was still functioning as a distinct niche. This is the first microbiology study of Heard Island and revealed that communities are distinct at each location and heavily influenced by local environmental factors.
Collapse
|