1
|
McNaught-Flores DA, Kooistra AJ, Chen YC, Arias-Montano JA, Panula P, Leurs R. Pharmacological Characterization of the Zebrafish (Danio Rerio) Histamine H 1 Receptor Reveals the Involvement of the Second Extracellular Loop in the Binding of Histamine. Mol Pharmacol 2024; 105:84-96. [PMID: 37977823 DOI: 10.1124/molpharm.123.000741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The zebrafish (Danio rerio) histamine H1 receptor gene (zfH1R) was cloned in 2007 and reported to be involved in fish locomotion. Yet, no detailed characterization of its pharmacology and signaling properties have so far been reported. In this study, we pharmacologically characterized the zfH1R expressed in HEK-293T cells by means of [3H]-mepyramine binding and G protein-signaling assays. The zfH1R [dissociation constant (KD), 0.7 nM] displayed similar affinity for the antagonist [3H]-mepyramine as the human histamine H1 receptor (hH1R) (KD, 1.5 nM), whereas the affinity for histamine is 100-fold higher than for the human H1R. The zfH1R couples to Gαq/11 proteins and activates several reporter genes, i.e., NFAT, NFϰB, CRE, VEGF, COX-2, SRE, and AP-1, and zfH1R-mediated signaling is prevented by the Gαq/11 inhibitor YM-254890 and the antagonist mepyramine. Molecular modeling of the zfH1R and human H1R shows that the binding pockets are identical, implying that variations along the ligand binding pathway could underly the differences in histamine affinity instead. Targeting differentially charged residues in extracellular loop 2 (ECL2) using site-directed mutagenesis revealed that Arg21045x55 is most likely involved in the binding process of histamine in zfH1R. This study aids the understanding of the pharmacological differences between H1R orthologs and the role of ECL2 in histamine binding and provides fundamental information for the understanding of the histaminergic system in the zebrafish. SIGNIFICANCE STATEMENT: The use of the zebrafish as in vivo models in neuroscience is growing exponentially, which asks for detailed characterization of the aminergic neurotransmitter systems in this model. This study is the first to pharmacologically characterize the zebrafish histamine H1 receptor after expression in HEK-293T cells. The results show a high pharmacological and functional resemblance with the human ortholog but also reveal interesting structural differences and unveils an important role of the second extracellular loop in histamine binding.
Collapse
Affiliation(s)
- Daniel A McNaught-Flores
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Albert J Kooistra
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Yu-Chia Chen
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Jose-Antonio Arias-Montano
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Pertti Panula
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| | - Rob Leurs
- Amsterdam Institute for Molecules, Medicines, and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands (D.A.M.-F., A.J.K., R.L.); Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark (A.J.K.); Department of Anatomy, University of Helsinki, Helsinki, Finland (Y.-C.C., P.P.); and Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México (J.-A.A.-M.)
| |
Collapse
|
2
|
Sgambellone S, Febo M, Durante M, Marri S, Villano S, Bereshchenko O, Migliorati G, Masini E, Riccardi C, Bruscoli S, Lucarini L. Role of histamine H 4 receptor in the anti-inflammatory pathway of glucocorticoid-induced leucin zipper (GILZ) in a model of lung fibrosis. Inflamm Res 2023; 72:2037-2052. [PMID: 37815550 PMCID: PMC10611623 DOI: 10.1007/s00011-023-01802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION This study investigates the interactions between histaminergic system and glucocorticoid-induced leucin zipper (GILZ) in the inflammatory process and glucocorticoid modulation in lung fibrosis. METHODS Wild-type (WT) and GILZ Knock-Out (KO) mice were treated with bleomycin (0.05 IU) or saline, delivered by intra-tracheal injection. After surgery, mice received a continuous infusion of JNJ7777120 (JNJ, 2 mg/kg b.wt.) or vehicle for 21 days. Lung function was studied by measuring airway resistance to air insufflation through the analysis of pressure at airway opening (PAO). Lung samples were collected to evaluate the expression of histamine H4R, Anx-A1, and p65-NF-kB, the activity of myeloperoxidase (MPO), and the production of pro-inflammatory cytokines. RESULTS Airway fibrosis and remodeling were assessed by measuring TGF-β production and α-SMA deposition. JNJ reduces PAO in WT but not in GILZ KO mice (from 22 ± 1 mm to 15 ± 0.5 and from 24 ± 1.5 to 19 ± 0.5 respectively), MPO activity (from 204 ± 3.13 pmol/mg to 73.88 ± 2.63 in WT and from 221 ± 4.46 pmol/mg to 107 ± 5.54 in GILZ KO), the inflammatory response, TGF-β production, and α-SMA deposition in comparison to WT and GILZ KO vehicle groups. CONCLUSION In conclusion, the role of H4R and GILZ in relation to glucocorticoids could pave the way for innovative therapies to counteract pulmonary fibrosis.
Collapse
Affiliation(s)
- Silvia Sgambellone
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Marta Febo
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Mariaconcetta Durante
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Silvia Marri
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Serafina Villano
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Oxana Bereshchenko
- Department of Philosophy, Social Sciences and Education, University of Perugia, 06100, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Emanuela Masini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine and Surgery, University of Perugia, Piazzale Severi, 1 06132 S. Andrea Delle Fratte, Perugia, Italy
| | - Laura Lucarini
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
3
|
Antihistamines Potentiate Dexamethasone Anti-Inflammatory Effects. Impact on Glucocorticoid Receptor-Mediated Expression of Inflammation-Related Genes. Cells 2021; 10:cells10113026. [PMID: 34831249 PMCID: PMC8617649 DOI: 10.3390/cells10113026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic to treat several inflammation-related situations. Although there is no rationale for this association, clinical practice has assumed that, due to their concomitant anti-inflammatory effects, there should be an intrinsic benefit to their co-administration. In this work, we evaluated the effects of the co-treatment of several antihistamines on dexamethasone-induced glucocorticoid receptor transcriptional activity on the expression of various inflammation-related genes in A549 and U937 cell lines. Our results show that all antihistamines potentiate GCs' anti-inflammatory effects, presenting ligand-, cell- and gene-dependent effects. Given that treatment with GCs has strong adverse effects, particularly on bone metabolism, we also examined the impact of antihistamine co-treatment on the expression of bone metabolism markers. Using MC3T3-E1 pre-osteoblastic cells, we observed that, though the antihistamine azelastine reduces the expression of dexamethasone-induced bone loss molecular markers, it potentiates osteoblast apoptosis. Our results suggest that the synergistic effect could contribute to reducing GC clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage, as the addition of an antihistamine may reinforce the wanted effects of GCs, while related adverse effects could be diminished or at least mitigated. By modulating the patterns of gene activation/repression mediated by GR, antihistamines could enhance only the desired effects of GCs, allowing their effective dose to be reduced. Further research is needed to correctly determine the clinical scope, benefits, and potential risks of this therapeutic strategy.
Collapse
|
4
|
Mizuguchi H, Kitamura Y, Takeda N, Fukui H. Molecular Signaling and Transcriptional Regulation of Histamine H 1 Receptor Gene. Curr Top Behav Neurosci 2021; 59:91-110. [PMID: 34595742 DOI: 10.1007/7854_2021_256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histamine-activated histamine H1 receptor (H1R) signaling regulates many gene expressions, mainly through the protein kinase C (PKC)/extracellular signal-regulated kinases (ERK) signaling. Involvement of other signaling, including NF-κB, Wnt, RUNX-2, and Rho A signaling was also demonstrated. In addition, cAMP production through the activation of H1R signaling was reported. H1R gene itself is also up-regulated by the activation of H1R signaling with histamine. Here, we review our recent findings in the molecular signaling and transcriptional regulation of the H1R gene. Stimulation with histamine up-regulates H1R gene expression through the activation of H1R in HeLa cells. The PKCδ/ERK/poly(ADP)ribosyl transferase-1 (PARP-1) signaling was involved in this up-regulation. Heat shock protein 90 also plays an important role in regulating PKCδ translocation. Promoter analyses revealed the existence of two promoters in the human H1R gene in HeLa cells. H1R-activated H1R gene up-regulation in response to histamine was also observed in U373 astroglioma cells. However, this up-regulation was mediated not through the PKCδ signaling but possibly through the PKCα signaling. In addition, the promoter region responsible for histamine-induced H1R gene transcription in U373 cells was different from that of HeLa cells. These findings suggest that the molecular signaling and transcriptional regulation of the H1R gene are different between neuronal cells and non-neuronal cells.
Collapse
Affiliation(s)
- Hiroyuki Mizuguchi
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan.
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | | |
Collapse
|
5
|
Burghi V, Echeverría EB, Zappia CD, Díaz Nebreda A, Ripoll S, Gómez N, Shayo C, Davio CA, Monczor F, Fernández NC. Biased agonism at histamine H 1 receptor: Desensitization, internalization and MAPK activation triggered by antihistamines. Eur J Pharmacol 2021; 896:173913. [PMID: 33508282 DOI: 10.1016/j.ejphar.2021.173913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
Histamine H1 receptor ligands used clinically as antiallergics rank among the most widely prescribed and over-the-counter drugs in the world. They exert the therapeutic actions by blocking the effects of histamine, due to null or negative efficacy towards Gαq-phospholipase C (PLC)-inositol triphosphates (IP3)-Ca2+ and nuclear factor-kappa B cascades. However, there is no information regarding their ability to modulate other receptor responses. The aim of the present study was to investigate whether histamine H1 receptor ligands could display positive efficacy concerning receptor desensitization, internalization, signaling through Gαq independent pathways or even transcriptional regulation of proinflammatory genes. While diphenhydramine, triprolidine and chlorpheniramine activate ERK1/2 (extracellular signal-regulated kinase 1/2) pathway in A549 cells, pre-treatment with chlorpheniramine or triprolidine completely desensitize histamine H1 receptor mediated Ca2+ response, and both diphenhydramine and triprolidine lead to receptor internalization. Unlike histamine, histamine H1 receptor desensitization and internalization induced by antihistamines prove to be independent of G protein-coupled receptor kinase 2 (GRK2) phosphorylation. Also, unlike the reference agonist, the recovery of the number of cell-surface histamine H1 receptors is a consequence of de novo synthesis. On the other hand, all of the ligands lack efficacy regarding cyclooxygenase-2 (COX-2) and interleukin-8 (IL-8) mRNA regulation. However, a prolonged exposure with each of the antihistamines impaires the increase in COX-2 and IL-8 mRNA levels induced by histamine, even after ligand removal. Altogether, these findings demonstrate the biased nature of histamine H1 receptor ligands contributing to a more accurate classification, and providing evidence for a more rational and safe use of them.
Collapse
Affiliation(s)
- Valeria Burghi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emiliana B Echeverría
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos D Zappia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Díaz Nebreda
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Sonia Ripoll
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IByME-CONICET), Buenos Aires, Argentina
| | - Carlos A Davio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia C Fernández
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones Farmacológicas (ININFA, UBA, CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Tiwari D, Gupta P. Nuclear Receptors in Asthma: Empowering Classical Molecules Against a Contemporary Ailment. Front Immunol 2021; 11:594433. [PMID: 33574813 PMCID: PMC7870687 DOI: 10.3389/fimmu.2020.594433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023] Open
Abstract
The escalation in living standards and adoption of 'Western lifestyle' has an allied effect on the increased allergy and asthma burden in both developed and developing countries. Current scientific reports bespeak an association between allergic diseases and metabolic dysfunction; hinting toward the critical requirement of organized lifestyle and dietary habits. The ubiquitous nuclear receptors (NRs) translate metabolic stimuli into gene regulatory signals, integrating diet inflences to overall developmental and physiological processes. As a consequence of such promising attributes, nuclear receptors have historically been at the cutting edge of pharmacy world. This review discusses the recent findings that feature the cardinal importance of nuclear receptors and how they can be instrumental in modulating current asthma pharmacology. Further, it highlights a possible future employment of therapy involving dietary supplements and synthetic ligands that would engage NRs and aid in eliminating both asthma and linked comorbidities. Therefore, uncovering new and evolving roles through analysis of genomic changes would represent a feasible approach in both prevention and alleviation of asthma.
Collapse
Affiliation(s)
| | - Pawan Gupta
- Department of Molecular Biology, Council of Scientific and Industrial Research, Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
7
|
Zappia CD, Monczor F. Therapeutic utility of glucocorticoids and antihistamines cotreatment. Rationale and perspectives. Pharmacol Res Perspect 2019; 7:e00530. [PMID: 31859461 PMCID: PMC6923805 DOI: 10.1002/prp2.530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
Antihistamines and glucocorticoids (GCs) are often used together in the clinic, in several inflammatory-related situations. Even though there is no clear rationale for this drug association, the clinical practice is based on the assumption that due to their concomitant antiinflammatory effects, there should be an intrinsic benefit in their coadministration. Our group has studied the molecular interaction between the histamine H1 receptor and the glucocorticoid receptor (GR) signaling pathways, showing an enhancing effect on GC-induced GR transcriptional activity induced by antihistamines. We hypothesize that the existence of this synergistic effect could contribute in reducing the GCs clinical doses, ineffective by itself but effective in combination with an antihistamine. This could result in a therapeutic advantage as the GC-desired effects may be reinforced by the addition of an antihistamine and, as a consequence of the dose reduction, GC-related adverse effects could be reduced or at least mitigated. Here we discuss the potential therapeutic applications of this cotreatment seeking to evaluate its usefulness, especially in inflammatory-related conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET ‐ Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
8
|
Zappia CD, Soto A, Granja‐Galeano G, Fenoy I, Fernandez N, Davio CA, Shayo C, Fitzsimons CP, Goldman A, Monczor F. Azelastine potentiates antiasthmatic dexamethasone effect on a murine asthma model. Pharmacol Res Perspect 2019; 7:e00531. [PMID: 31687162 PMCID: PMC6818730 DOI: 10.1002/prp2.531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/03/2022] Open
Abstract
Glucocorticoids are among the most effective drugs to treat asthma. However, the severe adverse effects associated generate the need for its therapeutic optimization. Conversely, though histamine is undoubtedly related to asthma development, there is a lack of efficacy of antihistamines in controlling its symptoms, which prevents their clinical application. We have reported that antihistamines potentiate glucocorticoids' responses in vitro and recent observations have indicated that the coadministration of an antihistamine and a synthetic glucocorticoid has synergistic effects on a murine model of allergic rhinitis. Here, the aim of this work is to establish if this therapeutic combination could be beneficial in a murine model of asthma. We used an allergen-induced model of asthma (employing ovalbumin) to evaluate the effects of the synthetic glucocorticoid dexamethasone combined with the antihistamine azelastine. Our results indicate that the cotreatment with azelastine and a suboptimal dose of dexamethasone can improve allergic lung inflammation as shown by a decrease in eosinophils in bronchoalveolar lavage, fewer peribronchial and perivascular infiltrates, and mucin-producing cells. In addition, serum levels of allergen-specific IgE and IgG1 were also reduced, as well as the expression of lung inflammatory-related genes IL-4, IL-5, Muc5AC, and Arginase I. The potentiation of dexamethasone effects by azelastine could allow to reduce the effective glucocorticoid dose needed to achieve a therapeutic effect. These findings provide first new insights into the potential benefits of glucocorticoids and antihistamines combination for the treatment of asthma and grants further research to evaluate this approach in other related inflammatory conditions.
Collapse
Affiliation(s)
- Carlos D. Zappia
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ariadna Soto
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Gina Granja‐Galeano
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Ignacio Fenoy
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Natalia Fernandez
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carlos A. Davio
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología MolecularInstituto de Biología y Medicina Experimental CONICETBuenos AiresArgentina
| | - Carlos P. Fitzsimons
- Center for NeuroscienceSwammerdam Institute for Life SciencesFaculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Alejandra Goldman
- Centro de Estudios en Salud y Medio Ambiente (CESyMA)Escuela de Ciencia y TecnologíaUniversidad Nacional de San Martín – CONICETBuenos AiresArgentina
| | - Federico Monczor
- Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresBuenos AiresArgentina
- Instituto de Investigaciones Farmacológicas (ININFA)CONICET – Universidad de Buenos AiresBuenos AiresArgentina
| |
Collapse
|
9
|
Burghi V, Echeverría EB, Sosa MH, Quiroga DT, Muñoz MC, Davio C, Monczor F, Fernández NC, Dominici FP. Participation of Gα i-Adenylate Cyclase and ERK1/2 in Mas Receptor Signaling Pathways. Front Pharmacol 2019; 10:146. [PMID: 30853914 PMCID: PMC6395383 DOI: 10.3389/fphar.2019.00146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
The MasR receptor (MasR) is an orphan G protein-coupled receptor proposed as a candidate for mediating the angiotensin (Ang)-converting enzyme 2-Ang-(1–7) protective axis of renin-angiotensin system. This receptor has been suggested to participate in several physiological processes including cardio- and reno-protection and regulation of the central nervous system function. Although the knowledge of the signaling mechanisms associated with MasR is essential for therapeutic purposes, these are still poorly understood. Accordingly, in the current study we aimed to characterize the signaling pathways triggered by the MasR. To do that, we measured cAMP and Ca2+ levels in both naïve and MasR transfected cells in basal conditions and upon incubation with putative MasR ligands. Besides, we evaluated activation of ERK1/2 by Ang-(1–7) in MasR transfected cells. Results indicated the existence of a high degree of MasR constitutive activity toward cAMP modulation. This effect was not mediated by the PDZ-binding motif of the MasR but by receptor coupling to Gαi-adenylyl cyclase signaling pathway. Incubation of MasR transfected cells with Ang-(1–7) or the synthetic ligand AVE 0991 amplified MasR negative modulation of cAMP levels. On the other hand, we provided evidence for lack of MasR-associated modulation of Ca2+ levels by Ang-(1–7). Finally, it was determined that the MasR attenuated Ang-(1–7)-induced ERK1/2 phosphorylation mediated by AT1R. We provided further characterization of MasR signaling mechanisms regarding its constitutive activity and response to putative ligands. This information could prove useful to better describe MasR physiological role and development of therapeutic agents that could modulate its action.
Collapse
Affiliation(s)
- Valeria Burghi
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Emiliana B Echeverría
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Máximo H Sosa
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Diego T Quiroga
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Marina C Muñoz
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| | - Carlos Davio
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Federico Monczor
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Natalia C Fernández
- Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Fernando P Dominici
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Buenos Aires, Argentina
| |
Collapse
|
10
|
Díaz Nebreda A, Zappia CD, Rodríguez González A, Sahores A, Sosa M, Burghi V, Monczor F, Davio C, Fernández N, Shayo C. Involvement of histamine H 1 and H 2 receptor inverse agonists in receptor's crossregulation. Eur J Pharmacol 2019; 847:42-52. [PMID: 30685431 DOI: 10.1016/j.ejphar.2019.01.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/11/2019] [Accepted: 01/23/2019] [Indexed: 12/31/2022]
Abstract
Histamine [2-(4-Imidazolyl)-ethylamine] modulates different biological processes, through histamine H1 and H2 receptors, and their respective blockers are widely used in treating allergic and gastric acid-related disorders. Histamine H1 and H2 receptor crossdesensitization and cointernalization induced by its agonists have been previously described. In this study, we show how this crosstalk determines the response to histamine H1 and H2 receptor inverse agonists and how histamine H1 and H2 receptor inverse agonists interfere with the other receptor's response to agonists. By desensitization assays we demonstrate that histamine H1 and H2 receptor inverse agonists induce a crossregulation between both receptors. In this sense, the histamine H1 receptor inverse agonists desensitize the cAMP response to amthamine, a histamine H2 receptor agonist. In turn, histamine H2 receptor inverse agonists interfere with histamine H1 receptor signaling. We also determine that the crossdesensitization induced by histamine H1 or H2 receptor agonists alters the histamine inverse agonists receptor response: activation of histamine H1 receptor affects cAMP response induced by histamine H2 receptor inverse agonists, whereas histamine H2 receptor agonist induces a negative regulation on the anti-inflammatory response of histamine H1 receptor inverse agonists. Binding studies revealed that histamine H1 and H2 receptors cointernalize after stimulus with histamine receptor inverse agonists. In addition, the inhibition of the internalization process prevents receptor crossregulation. Our study provides new insights in the mechanisms of action of histamine H1 and H2 receptors that explain the effect of histamine H1 and H2 receptor inverse agonists and opens up new venues for novel therapeutic applications.
Collapse
Affiliation(s)
- Antonela Díaz Nebreda
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME, CONICET), Buenos Aires, Argentina
| | - Carlos Daniel Zappia
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Angela Rodríguez González
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME, CONICET), Buenos Aires, Argentina
| | - Ana Sahores
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Máximo Sosa
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Valeria Burghi
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Federico Monczor
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Carlos Davio
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Natalia Fernández
- Universidad de Buenos Aires, CONICET, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA), Buenos Aires, Argentina
| | - Carina Shayo
- Laboratorio de Patología y Farmacología Molecular, Instituto de Biología y Medicina Experimental (IBYME, CONICET), Buenos Aires, Argentina.
| |
Collapse
|
11
|
Razali NA, Nazarudin NA, Lai KS, Abas F, Ahmad S. Curcumin derivative, 2,6-bis(2-fluorobenzylidene)cyclohexanone (MS65) inhibits interleukin-6 production through suppression of NF-κB and MAPK pathways in histamine-induced human keratinocytes cell (HaCaT). BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:217. [PMID: 30012134 PMCID: PMC6048808 DOI: 10.1186/s12906-018-2223-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
Background Histamine is a well-known mediator involved in skin allergic responses through up-regulation of pro-inflammatory cytokines. Antihistamines remain the mainstay of allergy treatment, but they were found limited in efficacy and associated with several common side effects. Therefore, alternative therapeutic preferences are derived from natural products in an effort to provide safe yet reliable anti-inflammatory agents. Curcumin and their derivatives are among compounds of interest in natural product research due to numerous pharmacological benefits including anti-inflammatory activities. Here, we investigate the effects of chemically synthesized curcumin derivative, 2,6-bis(2-fluorobenzylidene)cyclohexanone (MS65), in reducing cytokine production in histamine-induced HaCaT cells. Methods Interleukin (IL)-6 cytokine production in histamine-induced HaCaT cells were measured using enzyme-linked immunosorbent assay (ELISA) and cytotoxicity effects were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-qPCR) was carried out to determine the inhibitory effects of MS65 on nuclear factor-kappa B (NF-κB) and mitogen activated protein kinase (MAPK) pathways. Results Histamine enhanced IL-6 production in HaCaT cells, with the highest production of IL-6 at 97.41 ± 2.33 pg/mL after 24 h of exposure. MS65 demonstrated a promising anti-inflammatory activity by inhibiting IL-6 production with half maximal inhibitory concentration (IC50) value of 4.91 ± 2.50 μM and median lethal concentration (LC50) value of 28.82 ± 7.56 μM. In gene expression level, we found that MS65 inhibits NF-κB and MAPK pathways through suppression of IKK/IκB/NFκB and c-Raf/MEK/ERK inflammatory cascades. Conclusion Taken together, our results suggest that MS65 could be used as a lead compound on developing new medicinal agent for the treatment of allergic skin diseases.
Collapse
|
12
|
Lai W, Cai Y, Zhou J, Chen S, Qin C, Yang C, Liu J, Xie X, Du C. Deficiency of the G protein Gαq ameliorates experimental autoimmune encephalomyelitis with impaired DC-derived IL-6 production and Th17 differentiation. Cell Mol Immunol 2017; 14:557-567. [PMID: 28216651 DOI: 10.1038/cmi.2016.65] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 12/26/2022] Open
Abstract
Many G protein-coupled receptors (GPCRs) are reported to be involved in the pathogenesis of multiple sclerosis (MS), and ~40% of all identified GPCRs rely on the Gαq/11 G protein family to stimulate inositol lipid signaling. However, the function of Gα subunits in MS pathogenesis is still unknown. In this study, we attempted to determine the role of Gαq in the pathogenesis of experimental autoimmune encephalomyelitis (EAE), a well-known mouse model of MS. We discovered that compared with wild-type mice, Gαq-knockout mice exhibited less severe EAE symptoms, with lower clinical scores, reduced leukocyte infiltration and less extensive demyelination. Moreover, a significantly lower percentage of Th17 cells, one of the key players in MS pathogenesis, was observed in Gαq-knockout EAE mice. Studies in vitro demonstrated that deficiency of Gαq in CD4+ T cells directly impaired Th17 differentiation. In addition, deficiency of Gαq significantly impaired DC-derived IL-6 production, thus inhibiting Th17 differentiation and the Gαq-PLCβ-PKC and Gαq-MAPKs signaling pathways involved in the reduced IL-6 production by DCs. In summary, our data highlighted the critical role of Gαq in regulating Th17 differentiation and MS pathogenesis.
Collapse
Affiliation(s)
- Weiming Lai
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yingying Cai
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinfeng Zhou
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shuai Chen
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chaoyan Qin
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Cuixia Yang
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin Xie
- National Center for Drug Screening, CAS Key Laboratory of Receptor Research, Chinese Academy of Sciences, Shanghai Institute of Materia Medica, Shanghai 201203, China
| | - Changsheng Du
- Department of Central Laboratory, Shanghai Tenth People's Hospital of Tongji University, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.,Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
13
|
Monczor F, Fernandez N. Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands. Mol Pharmacol 2016; 90:640-648. [PMID: 27625037 DOI: 10.1124/mol.116.105981] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/12/2016] [Indexed: 12/14/2022] Open
Abstract
H1 and H2 histamine receptor antagonists, although developed many decades ago, are still effective for the treatment of allergic and gastric acid-related conditions. This article focuses on novel aspects of the pharmacology and molecular mechanisms of histamine receptors that should be contemplated for optimizing current therapies, repositioning histaminergic ligands for new therapeutic uses, or even including agonists of the histaminergic system in the treatment of different pathologies such as leukemia or neurodegenerative disorders. In recent years, new signaling phenomena related to H1 and H2 receptors have been described that make them suitable for novel therapeutic approaches. Crosstalk between histamine receptors and other membrane or nuclear receptors can be envisaged as a way to modulate other signaling pathways and to potentiate the efficacy of drugs acting on different receptors. Likewise, biased signaling at histamine receptors seems to be a pharmacological feature that can be exploited to investigate nontraditional therapeutic uses for H1 and H2 biased agonists in malignancies such as acute myeloid leukemia and to avoid undesired side effects when used in standard treatments. It is hoped that the molecular mechanisms discussed in this review contribute to a better understanding of the different aspects involved in histamine receptor pharmacology, which in turn will contribute to increased drug efficacy, avoidance of adverse effects, or repositioning of histaminergic ligands.
Collapse
Affiliation(s)
- Federico Monczor
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Fernandez
- Instituto de Investigaciones Farmacológicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|