1
|
Hatala KG, Gatesy SM, Manafzadeh AR, Lusardi EM, Falkingham PL. Technical note: A volumetric method for measuring the longitudinal arch of human tracks and feet. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24897. [PMID: 38173148 DOI: 10.1002/ajpa.24897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Fossil footprints (i.e., tracks) were believed to document arch anatomical evolution, although our recent work has shown that track arches record foot kinematics instead. Analyses of track arches can thereby inform the evolution of human locomotion, although quantifying this 3-D aspect of track morphology is difficult. Here, we present a volumetric method for measuring the arches of 3-D models of human tracks and feet, using both Autodesk Maya and Blender software. The method involves generation of a 3-D object that represents the space beneath the longitudinal arch, and measurement of that arch object's geometry and spatial orientation. We provide relevant tools and guidance for users to apply this technique to their own data. We present three case studies to demonstrate potential applications. These include, (1) measuring the arches of static and dynamic human feet, (2) comparing the arches of human tracks with the arches of the feet that made them, and (3) direct comparisons of human track and foot arch morphology throughout simulated track formation. The volumetric measurement tool proved robust for measuring 3-D models of human tracks and feet, in static and dynamic contexts. This tool enables researchers to quantitatively compare arches of fossil hominin tracks, in order to derive biomechanical interpretations from them, and/or offers a different approach for quantifying foot morphology in living humans.
Collapse
Affiliation(s)
- Kevin G Hatala
- Department of Biology, Chatham University, Pittsburgh, Pennsylvania, USA
| | - Stephen M Gatesy
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
| | - Armita R Manafzadeh
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute for Biospheric Studies, Yale University, New Haven, Connecticut, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Peabody Museum of Natural History, Yale University, New Haven, Connecticut, USA
| | | | - Peter L Falkingham
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
2
|
Prang TC. The relative size of the calcaneal tuber reflects heel strike plantigrady in African apes and humans. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24865. [PMID: 38058279 DOI: 10.1002/ajpa.24865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/30/2023] [Accepted: 10/10/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES The positional repertoire of the human-chimpanzee last common ancestor is critical for reconstructing the evolution of bipedalism. African apes and humans share a heel strike plantigrade foot posture associated with terrestriality. Previous research has established that modern humans have a relatively large and intrinsically robust calcaneal tuber equipped to withstand heel strike forces associated with bipedal walking and running. However, it is unclear whether African apes have a relatively larger calcaneal tuber than non-heel-striking primates, and how this trait might have evolved among anthropoids. Here, I test the hypothesis that heel-striking primates have a relatively larger calcaneal tuber than non-heel-striking primates. METHODS The comparative sample includes 331 individuals and 53 taxa representing hominoids, cercopithecoids, and platyrrhines. Evolutionary modeling was used to test for the effect of foot posture on the relative size of the calcaneal tuber in a phylogenetic framework that accounts for adaptation and inertia. Bayesian evolutionary modeling was used to identify selective regime shifts in the relative size of the calcaneal tuber among anthropoids. RESULTS The best fitting evolutionary model was a Brownian motion model with regime-dependent trends characterized by relatively large calcaneal tubers among African apes and humans. Evolutionary modeling provided support for an evolutionary shift toward a larger calcaneal tuber at the base of the African ape and human clade. CONCLUSIONS The results of this study support the view that African apes and humans share derived traits related to heel strike plantigrady, which implies that humans evolved from a semi-terrestrial quadrupedal ancestor.
Collapse
Affiliation(s)
- Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Sakthivel S, Maria Francis Y, G SN, K V SD, Dhakshnamoorthy N. Anthropometric Analysis of Cuboid Bones in a South Indian Population. Cureus 2024; 16:e51622. [PMID: 38313952 PMCID: PMC10837486 DOI: 10.7759/cureus.51622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Purpose Cuboid bone and its fibromuscular supports maintain the lateral longitudinal arch in weight transmission during different gait cycle phases. Morphometry of the cuboid bone is essential for designing a cuboid prosthesis for foot reconstruction and establishing an individual's biological profile. The present study aims to assess the morphology and morphometry of the cuboid bone. Materials and methods The study used 103 cuboid bones (right 50, left 53) of unknown sex. Different shapes of cuboid articular facets were observed, and the morphometric parameters such as length, breadth, and height of cuboid, and the dimensions of articular facets in cuboid (calcaneal facet, fourth and fifth metatarsal facets, ecto-cuneiform facet, navicular facet, and facet for os peroneum) were analyzed. Results The mean length, breadth, and height of the cuboid bone were 33.69 ± 2.61 mm, 25.43 ± 2.87 mm, and 23.03 ± 2.43 mm, respectively. The mean transverse and vertical diameters were 23.22 ± 2.4 mm and 15.97 ± 1.85 mm, respectively. Facet for os peroneum was observed in 74.76% and for navicular bone in 26.2%. The mean transverse and vertical diameters were 7.16 ± 2.08 and 6.78 ± 1.78 mm, respectively. The depth of the peroneal groove was 4.30 ± 1.11 mm. Conclusion The morphometric data from the present study could assist in preoperative planning and designing of prostheses for foot reconstruction, and in establishing the biological profile of an individual, which can help the anthropologists in identifying the unknown remains.
Collapse
Affiliation(s)
- Sulochana Sakthivel
- Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| | | | - Sankara N G
- Anatomy, Saveetha Medical College and Hospital, Chennai, IND
| | - Sarala D K V
- Anatomy, Employees' State Insurance Company Medical College and Hospital, Chennai, IND
| | - Nithya Dhakshnamoorthy
- Anatomy, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, IND
| |
Collapse
|
4
|
Sorrentino R, Carlson KJ, Orr CM, Pietrobelli A, Figus C, Li S, Conconi M, Sancisi N, Belvedere C, Zhu M, Fiorenza L, Hublin JJ, Jashashvili T, Novak M, Patel BA, Prang TC, Williams SA, Saers JPP, Stock JT, Ryan T, Myerson M, Leardini A, DeSilva J, Marchi D, Belcastro MG, Benazzi S. Morphological and evolutionary insights into the keystone element of the human foot's medial longitudinal arch. Commun Biol 2023; 6:1061. [PMID: 37857853 PMCID: PMC10587292 DOI: 10.1038/s42003-023-05431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The evolution of the medial longitudinal arch (MLA) is one of the most impactful adaptations in the hominin foot that emerged with bipedalism. When and how it evolved in the human lineage is still unresolved. Complicating the issue, clinical definitions of flatfoot in living Homo sapiens have not reached a consensus. Here we digitally investigate the navicular morphology of H. sapiens (living, archaeological, and fossil), great apes, and fossil hominins and its correlation with the MLA. A distinctive navicular shape characterises living H. sapiens with adult acquired flexible flatfoot, while the congenital flexible flatfoot exhibits a 'normal' navicular shape. All H. sapiens groups differentiate from great apes independently from variations in the MLA, likely because of bipedalism. Most australopith, H. naledi, and H. floresiensis navicular shapes are closer to those of great apes, which is inconsistent with a human-like MLA and instead might suggest a certain degree of arboreality. Navicular shape of OH 8 and fossil H. sapiens falls within the normal living H. sapiens spectrum of variation of the MLA (including congenital flexible flatfoot and individuals with a well-developed MLA). At the same time, H. neanderthalensis seem to be characterised by a different expression of the MLA.
Collapse
Affiliation(s)
- Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy.
| | - Kristian J Carlson
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, 90033, USA
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
| | - Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Department of Anthropology, University of Colorado Denver, Denver, CO, 80217, USA
| | - Annalisa Pietrobelli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Carla Figus
- Department of Cultural Heritage, University of Bologna, Ravenna, 48121, Italy
| | - Shuyuan Li
- Department of Orthopaedic Surgery, University of Colorado, Denver, CO, USA
| | - Michele Conconi
- Department of Industrial Engineering, Health Sciences and Technologies, Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, Bologna, 40136, Italy
| | - Nicola Sancisi
- Department of Industrial Engineering, Health Sciences and Technologies, Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, Bologna, 40136, Italy
| | - Claudio Belvedere
- Laboratory of Movement Analysis and Functional Evaluation of Prostheses, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Mingjie Zhu
- Department of Orthopaedic Surgery, University of Colorado, Denver, CO, USA
| | - Luca Fiorenza
- Monash Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Jean-Jacques Hublin
- Chaire Internationale de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, 90033, USA
- Department of Geology and Paleontology, Georgian National Museum, Tbilisi, 0105, Georgia
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, 10000, Croatia
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, 90033, USA
- Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, 90089, USA
| | - Thomas C Prang
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Scott A Williams
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, 10003, USA
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, Wits, 2050, South Africa
| | - Jaap P P Saers
- Naturalis Biodiversity Center, 2333, CR, Leiden, the Netherlands
| | - Jay T Stock
- Department of Anthropology, Western University, London, Ontario, N6A 3K7, Canada
| | - Timothy Ryan
- Department of Anthropology, The Pennsylvania State University, State College, PA, 16802, USA
| | - Mark Myerson
- Department of Orthopaedic Surgery, University of Colorado, Denver, CO, USA
| | - Alberto Leardini
- Laboratory of Movement Analysis and Functional Evaluation of Prostheses, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Jeremy DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH, 03755, USA
| | - Damiano Marchi
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, Wits, 2050, South Africa
- Department of Biology, University of Pisa, Pisa, 56126, Italy
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, 40126, Italy
| | - Stefano Benazzi
- Department of Cultural Heritage, University of Bologna, Ravenna, 48121, Italy
| |
Collapse
|
5
|
Cazenave M, Kivell TL. Challenges and perspectives on functional interpretations of australopith postcrania and the reconstruction of hominin locomotion. J Hum Evol 2023; 175:103304. [PMID: 36563461 DOI: 10.1016/j.jhevol.2022.103304] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
In 1994, Hunt published the 'postural feeding hypothesis'-a seminal paper on the origins of hominin bipedalism-founded on the detailed study of chimpanzee positional behavior and the functional inferences derived from the upper and lower limb morphology of the Australopithecus afarensis A.L. 288-1 partial skeleton. Hunt proposed a model for understanding the potential selective pressures on hominins, made robust, testable predictions based on Au. afarensis functional morphology, and presented a hypothesis that aimed to explain the dual functional signals of the Au. afarensis and, more generally, early hominin postcranium. Here we synthesize what we have learned about Au. afarensis functional morphology and the dual functional signals of two new australopith discoveries with relatively complete skeletons (Australopithecus sediba and StW 573 'Australopithecus prometheus'). We follow this with a discussion of three research approaches that have been developed for the purpose of drawing behavioral inferences in early hominins: (1) developments in the study of extant apes as models for understanding hominin origins; (2) novel and continued developments to quantify bipedal gait and locomotor economy in extant primates to infer the locomotor costs from the anatomy of fossil taxa; and (3) novel developments in the study of internal bone structure to extract functional signals from fossil remains. In conclusion of this review, we discuss some of the inherent challenges of the approaches and methodologies adopted to reconstruct the locomotor modes and behavioral repertoires in extinct primate taxa, and notably the assessment of habitual terrestrial bipedalism in early hominins.
Collapse
Affiliation(s)
- Marine Cazenave
- Division of Anthropology, American Museum of Natural History, New York, USA; Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Department of Anatomy, Faculty of Health Sciences, University of Pretoria, South Africa.
| | - Tracy L Kivell
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK; Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
6
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Higgins OA, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Festa A, Hajdu T, Mateovics‐László O, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Morphologies in-between: The impact of the first steps on the human talus. Anat Rec (Hoboken) 2023; 306:124-142. [PMID: 35656925 PMCID: PMC10083965 DOI: 10.1002/ar.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The development of bipedalism is a very complex activity that contributes to shaping the anatomy of the foot. The talus, which starts ossifying in utero, may account for the developing stages from the late gestational phase onwards. Here, we explore the early development of the talus in both its internal and external morphology to broaden the knowledge of the anatomical changes that occur during early development. MATERIALS AND METHODS The sample consists of high-resolution microCT scans of 28 modern juvenile tali (from 36 prenatal weeks to 2 years), from a broad chronological range from the Late Roman period to the 20th century. We applied geometric morphometric and whole-bone trabecular analysis to investigate the early talar morphological changes. RESULTS In the youngest group (<6 postnatal months), the immature external shell is accompanied by an isotropic internal structure, with thin and densely packed trabeculae. After the initial attempts of locomotion, bone volume fraction decreases, while anisotropy and trabecular thickness increase. These internal changes correspond to the maturation of the external shell, which is now more defined and shows the development of the articular surfaces. DISCUSSION The internal and external morphology of the human talus reflects the diverse load on the foot during the initial phases of the bipedal locomotion, with the youngest group potentially reflecting the lack of readiness of the human talus to bear forces and perform bipedal walking. These results highlight the link between mechanical loading and bone development in the human talus during the acquisition of bipedalism, providing new insight into the early phases of talar development.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)IMF, CSI0CBarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Owen A. Higgins
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Research Unit Prehistory and Anthropology, Department of Physical Sciences, Earth and EnvironmentUniversity of SienaSienaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Ildiko Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongNew South WalesAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityState CollegePennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
7
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Erjavec I, Festa A, Hajdu T, Mateovics‐László O, Novak M, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Human talar ontogeny: Insights from morphological and trabecular changes during postnatal growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:211-228. [PMCID: PMC9804293 DOI: 10.1002/ajpa.24596] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 08/11/2023]
Abstract
Objectives The study of the development of human bipedalism can provide a unique perspective on the evolution of morphology and behavior across species. To generate new knowledge of these mechanisms, we analyze changes in both internal and external morphology of the growing human talus in a sample of modern human juveniles using an innovative approach. Materials and Methods The sample consists of high‐resolution microCT scans of 70 modern juvenile tali, aged between 8 postnatal weeks and 10 years old, from a broad chronological range from Middle/Late Neolithic, that is, between 4800 and 4500 BCE, to the 20th century. We applied geometric morphometric and whole‐bone trabecular analysis (bone volume fraction, degree of anisotropy, trabecular number, thickness, and spacing) to all specimens to identify changes in the external and internal morphology during growth. Morphometric maps were also generated. Results During the first year of life, the talus has an immature and globular shape, with a dense, compact, and rather isotropic trabecular architecture, with numerous trabeculae packed closely together. This pattern changes while children acquire a more mature gait, and the talus tends to have a lower bone volume fraction, a higher anisotropy, and a more mature shape. Discussion The changes in talar internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from an “unspecialized” morphology to a more complex one, following the development of bipedal gait. Our research shows that talar plasticity, even though genetically driven, may show mechanical influences and contribute to tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)BarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
8
|
Williams SA, Prang TC, Meyer MR, Nalley TK, Van Der Merwe R, Yelverton C, García-Martínez D, Russo GA, Ostrofsky KR, Spear J, Eyre J, Grabowski M, Nalla S, Bastir M, Schmid P, Churchill SE, Berger LR. New fossils of Australopithecus sediba reveal a nearly complete lower back. eLife 2021; 10:70447. [PMID: 34812141 PMCID: PMC8610421 DOI: 10.7554/elife.70447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/19/2021] [Indexed: 01/16/2023] Open
Abstract
Adaptations of the lower back to bipedalism are frequently discussed but infrequently demonstrated in early fossil hominins. Newly discovered lumbar vertebrae contribute to a near-complete lower back of Malapa Hominin 2 (MH2), offering additional insights into posture and locomotion in Australopithecus sediba. We show that MH2 possessed a lower back consistent with lumbar lordosis and other adaptations to bipedalism, including an increase in the width of intervertebral articular facets from the upper to lower lumbar column (‘pyramidal configuration’). These results contrast with some recent work on lordosis in fossil hominins, where MH2 was argued to demonstrate no appreciable lordosis (‘hypolordosis’) similar to Neandertals. Our three-dimensional geometric morphometric (3D GM) analyses show that MH2’s nearly complete middle lumbar vertebra is human-like in overall shape but its vertebral body is somewhat intermediate in shape between modern humans and great apes. Additionally, it bears long, cranially and ventrally oriented costal (transverse) processes, implying powerful trunk musculature. We interpret this combination of features to indicate that A. sediba used its lower back in both bipedal and arboreal positional behaviors, as previously suggested based on multiple lines of evidence from other parts of the skeleton and reconstructed paleobiology of A. sediba. One of the defining features of humans is our ability to walk comfortably on two legs. To achieve this, our skeletons have evolved certain physical characteristics. For example, the lower part of the human spine has a forward curve that supports an upright posture; whereas the lower backs of chimpanzees and other apes – which walk around on four limbs and spend much of their time in trees – lack this curvature. Studying the fossilized back bones of ancient human remains can help us to understand how we evolved these features, and whether our ancestors moved in a similar way. Australopithecus sediba was a close-relative of modern humans that lived about two million years ago. In 2008, fossils from an adult female were discovered at a cave site in South Africa called Malapa. However, the fossils of the lower back region were incomplete, so it was unclear whether the female – referred to as Malapa Hominin 2 (MH2) – had a forward-curving spine and other adaptations needed to walk on two legs. Here, Williams et al. report the discovery of new A. sediba fossils from Malapa. The new fossils are mainly bones from the lower back, and they fit together with the previously discovered MH2 fossils, providing a nearly complete lower spine. Analysis of the fossils suggested that MH2 would have had an upright posture and comfortably walked on two legs, and the curvature of their lower back was similar to modern females. However, other aspects of the bones’ shape suggest that as well as walking, A. sediba probably spent a significant amount of time climbing in trees. The findings of Williams et al. provide new insights in to our evolutionary history, and ultimately, our place in the natural world around us. Our lower back is prone to injury and pain associated with posture, pregnancy and exercise (or lack thereof). Therefore, understanding how the lower back evolved may help us to learn how to prevent injuries and maintain a healthy back.
Collapse
Affiliation(s)
- Scott A Williams
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States.,Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Thomas Cody Prang
- Department of Anthropology, Texas A&M University, College Station, United States
| | - Marc R Meyer
- Department of Anthropology, Chaffey College, Rancho Cucamonga, United States
| | - Thierra K Nalley
- Western University of Health Sciences, College of Osteopathic Medicine of the Pacific, Department of Medical Anatomical Sciences, Pomona, United States
| | - Renier Van Der Merwe
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| | - Christopher Yelverton
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa.,Department of Chiropractic, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Daniel García-Martínez
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos, Spain.,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Gabrielle A Russo
- Department of Anthropology, Stony Brook University, Stony Brook, United States
| | - Kelly R Ostrofsky
- Department of Anatomy, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, United States
| | - Jeffrey Spear
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,New York Consortium in Evolutionary Primatology, New York, United States
| | - Jennifer Eyre
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, United States.,Department of Anthropology, Bryn Mawr College, Bryn Mawr, United States
| | - Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, Liverpool, United Kingdom
| | - Shahed Nalla
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Markus Bastir
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Departamento de Paleobiología, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - Peter Schmid
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Anthropological Institute and Museum, University of Zurich, Zurich, Switzerland
| | - Steven E Churchill
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa.,Department of Evolutionary Anthropology, Duke University, Durham, United States
| | - Lee R Berger
- Centre for the Exploration of the Deep Human Journey, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
9
|
Anaya A, Patel BA, Orr CM, Ward CV, Almécija S. Evolutionary trends of the lateral foot in catarrhine primates: Contextualizing the fourth metatarsal of Australopithecus afarensis. J Hum Evol 2021; 161:103078. [PMID: 34749002 DOI: 10.1016/j.jhevol.2021.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
In 2000, a complete fourth metatarsal (Mt4) of the ∼3- to 4-Million-year-old hominin Australopithecus afarensis was recovered in Hadar, Ethiopia. This metatarsal presented a mostly human-like morphology, suggesting that a rigid lateral foot may have evolved as early as ∼3.2 Ma. The lateral foot is integral in providing stability during the push off phase of gait and is key in understanding the transition to upright, striding bipedalism. Previous comparisons of this fossil were limited to Pan troglodytes, Gorilla gorilla, and modern humans. This study builds on previous studies by contextualizing the Mt4 morphology of A. afarensis (A.L. 333-160) within a diverse comparative sample of nonhuman hominoids (n = 144) and cercopithecids (n = 138) and incorporates other early hominins (n = 3) and fossil hominoids that precede the Pan-Homo split (n = 4) to better assess the polarity of changes in lateral foot morphology surrounding this divergence. We investigate seven morphological features argued to be functionally linked to human-like bipedalism. Our results show that some human-like characters used to assess midfoot and lateral foot stiffness in the hominin fossil record are present in our Miocene ape sample as well as in living cercopithecids. Furthermore, modern nonhuman hominoids can be generally distinguished from other species in most metrics. These results suggest that the possession of a rigid foot in hominins could represent a conserved trait, whereas the specialized pedal grasping mechanics of extant apes may be more derived, in which case some traits often used to infer bipedal locomotion in early hominins may, instead, reflect a lower reliance on pedal grasping. Another possibility is that early hominins reverted from modern ape Mt4 morphology into a more plesiomorphic condition when terrestrial bipedality became a dominant behavior. More fossils dating around the Pan-Homo divergence time are necessary to test these competing hypotheses.
Collapse
Affiliation(s)
- Alisha Anaya
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27705, USA; Division of Anthropology, American Museum of Natural History, New York, NY, 10024, USA.
| | - Biren A Patel
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA; Human and Evolutionary Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Caley M Orr
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Department of Anthropology, University of Colorado Denver, Denver, CO, 80045, USA
| | - Carol V Ward
- Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO, 65212, USA
| | - Sergio Almécija
- Division of Anthropology, American Museum of Natural History, New York, NY, 10024, USA; New York Consortium of Evolutionary Primatology, New York, NY, 10024, USA; Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Spain
| |
Collapse
|
10
|
Unique foot posture in Neanderthals reflects their body mass and high mechanical stress. J Hum Evol 2021; 161:103093. [PMID: 34749003 DOI: 10.1016/j.jhevol.2021.103093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 11/20/2022]
Abstract
Neanderthal foot bone proportions and morphology are mostly indistinguishable from those of Homo sapiens, with the exception of several distinct Neanderthal features in the talus. The biomechanical implications of these distinct talar features remain contentious, fueling debate around the adaptive meaning of this distinctiveness. With the aim of clarifying this controversy, we test phylogenetic and behavioral factors as possible contributors, comparing tali of 10 Neanderthals and 81 H. sapiens (Upper Paleolithic and Holocene hunter-gatherers, agriculturalists, and postindustrial group) along with the Clark Howell talus (Omo, Ethiopia). Variation in external talar structures was assessed through geometric morphometric methods, while bone volume fraction and degree of anisotropy were quantified in a subsample (n = 45). Finally, covariation between point clouds of site-specific trabecular variables and surface landmark coordinates was assessed. Our results show that although Neanderthal talar external and internal morphologies were distinct from those of H. sapiens groups, shape did not significantly covary with either bone volume fraction or degree of anisotropy, suggesting limited covariation between external and internal talar structures. Neanderthal external talar morphology reflects ancestral retentions, along with various adaptations to high levels of mobility correlated to their presumably unshod hunter-gatherer lifestyle. This pairs with their high site-specific trabecular bone volume fraction and anisotropy, suggesting intense and consistently oriented locomotor loading, respectively. Relative to H.sapiens, Neanderthals exhibit differences in the talocrural joint that are potentially attributable to cultural and locomotor behavior dissimilarity, a talonavicular joint that mixes ancestral and functional traits, and a derived subtalar joint that suggests a predisposition for a pronated foot during stance phase. Overall, Neanderthal talar variation is attributable to mobility strategy and phylogenesis, while H. sapiens talar variation results from the same factors plus footwear. Our results suggest that greater Neanderthal body mass and/or higher mechanical stress uniquely led to their habitually pronated foot posture.
Collapse
|
11
|
DeSilva JM, McNutt E, Zipfel B, Ward CV, Kimbel WH. Associated Australopithecusafarensis second and third metatarsals (A.L. 333-133) from Hadar, Ethiopia. J Hum Evol 2020; 146:102848. [PMID: 32717476 DOI: 10.1016/j.jhevol.2020.102848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH, 03755, USA.
| | - Ellison McNutt
- Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| | - Carol V Ward
- Integrative Anatomy Program, Department of Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, 65212, USA
| | - William H Kimbel
- Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
12
|
Morphometric analysis of the hominin talus: Evolutionary and functional implications. J Hum Evol 2020; 142:102747. [PMID: 32240884 DOI: 10.1016/j.jhevol.2020.102747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 01/07/2020] [Accepted: 01/21/2020] [Indexed: 11/21/2022]
Abstract
The adoption of bipedalism is a key benchmark in human evolution that has impacted talar morphology. Here, we investigate talar morphological variability in extinct and extant hominins using a 3D geometric morphometric approach. The evolutionary timing and appearance of modern human-like features and their contributions to bipedal locomotion were evaluated on the talus as a whole, each articular facet separately, and multiple combinations of facets. Distinctive suites of features are consistently present in all fossil hominins, despite the presence of substantial interspecific variation, suggesting a potential connection of these suites to bipedal gait. A modern human-like condition evolved in navicular and lateral malleolar facets early in the hominin lineage compared with other facets, which demonstrate more complex morphological variation within Homininae. Interestingly, navicular facet morphology of Australopithecus afarensis is derived in the direction of Homo, whereas more recent hominin species such as Australopithecus africanus and Australopithecus sediba retain more primitive states in this facet. Combining the navicular facet with the trochlea and the posterior calcaneal facet as a functional suite, however, distinguishes Australopithecus from Homo in that the medial longitudinal arch had not fully developed in the former. Our results suggest that a more everted foot and stiffer medial midtarsal region are adaptations that coincide with the emergence of bipedalism, whereas a high medial longitudinal arch emerges later in time, within Homo. This study provides novel insights into the emergence of talar morphological traits linked to bipedalism and its transition from a facultative to an obligate condition.
Collapse
|
13
|
Agoada D, Kramer PA. Radiographic measurements of the talus and calcaneus in the adult pes planus foot type. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 171:613-627. [PMID: 31930491 DOI: 10.1002/ajpa.23994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/02/2019] [Accepted: 12/13/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVE A distinctive feature of the modern human foot is the presence of a medial longitudinal arch when weight-bearing. Although the talus and calcaneus play a major role in the structure and function of the human foot, the association between the morphology of these bones and longitudinal arch height has not been fully investigated. A better understanding of this relationship may assist in the interpretation of pedal remains of fossil hominins, where features of the foot and ankle morphology have been described as providing evidence for the presence of a longitudinal arch. METHODS For this study, weight-bearing radiographs of 103 patients from an urban US Level 1 trauma center, taken as part of a clinical examination for medical evaluation, were selected. These radiographs were classified as to foot type by arch height as defined using the calcaneal inclination angle. From this group, 68 radiographs were suitable for linear and angular measurements of the talus and 74 of the calcaneus. The relationships between these measurements and arch height were explored using least squared linear regression analysis. RESULTS The results demonstrate that angular measurements of the calcaneus (particularly those that reflect the relationship of the talar articular facets to each other and the tilt of the calcaneocuboid joint to the longitudinal axis of the calcaneus) are predictive of arch height (r2 = .29-.44 p ≤ .001). All angular measurements of the talus and all examined linear measurements of both the talus and calcaneus were not predictive of arch height. DISCUSSION These results suggest that certain angular measurements of the calcaneus are associated with arch height in the modern human foot. While this information is useful in the interpretation of hominin pedal remains, the relationship of the morphology of these bones, as well as other bones of the foot, to arch height is complex, requiring further investigation.
Collapse
Affiliation(s)
- David Agoada
- Department of Anthropology, University of Washington, Seattle, Washington
| | | |
Collapse
|
14
|
Prang TC. The African ape-like foot of Ardipithecus ramidus and its implications for the origin of bipedalism. eLife 2019; 8:44433. [PMID: 31038121 PMCID: PMC6491036 DOI: 10.7554/elife.44433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/25/2019] [Indexed: 11/27/2022] Open
Abstract
The ancestral condition from which humans evolved is critical for understanding the adaptive origin of bipedal locomotion. The 4.4 million-year-old hominin partial skeleton attributed to Ardipithecus ramidus preserves a foot that purportedly shares morphometric affinities with monkeys, but this interpretation remains controversial. Here I show that the foot of Ar. ramidus is most similar to living chimpanzee and gorilla species among a large sample of anthropoid primates. The foot morphology of Ar. ramidus suggests that the evolutionary precursor of hominin bipedalism was African ape-like terrestrial quadrupedalism and climbing. The elongation of the midfoot and phalangeal reduction in Ar. ramidus relative to the African apes is consistent with hypotheses of increased propulsive capabilities associated with an early form of bipedalism. This study provides evidence that the modern human foot was derived from an ancestral form adapted to terrestrial plantigrade quadrupedalism. Walking on two legs is considered to be one of the first steps towards becoming human. While some animals are also able to walk on two legs, such as kangaroos, birds, and some rodents, the way they move is nevertheless quite distinct to the way humans walk. How animals evolve traits is influenced by the characteristics of their ancestors. But what exactly was the common ancestor of humans and chimpanzees like? Most primates are suited for a life in the trees. But some also have skeletal characteristics associated with living on the ground. For example, the feet of chimpanzees and gorillas show adaptations that suit life on the ground, such as walking on the sole of the foot with a heel first foot posture. So far, it was unclear whether the ancestor of humans and chimpanzees was primarily adapted to living on the ground or in the trees. To investigate this further, Prang studied the oldest-known fossil foot (4.4 million years) attributed to the hominin Ardipithecus ramidus. This involved using evolutionary models to evaluate the relationship between foot bone proportions and the locomotory behaviour of monkeys and apes. The results revealed that humans evolved from an ancestor that had a foot similar to living chimpanzees and gorillas. The African ape foot is uniquely suited to life on the ground, including shorter toe bones, but also shows some adaptations to life in the trees, such as an elongated, grasping big toe. Therefore, the locomotion of our common ancestor probably bore a strong resemblance to these two ape species. Moreover, if the last common ancestor already had ground-living characteristics, the first step of the evolution of human bipedalism did not involve descending from the trees to the ground, as our ancestors had already achieved this milestone in some form and frequency. This is an important discovery. If this ancestor already had adaptations for life on the ground, why did only humans evolve to walk upright despite the retention of climbing capabilities in the earliest human relatives? A next step could be to investigate what selective pressures favored upright walking in a partly ground-living African ape. This may provide us with more insight into our own evolutionary story as well as the ways in which living primates evolve adaptations in an ecological context.
Collapse
Affiliation(s)
- Thomas Cody Prang
- Department of Anthropology, Center for the Study of Human Origins (CSHO), New York University, New York, United states.,New York Consortium in Evolutionary Primatology (NYCEP), New York, United States
| |
Collapse
|
15
|
Simpson SW, Levin NE, Quade J, Rogers MJ, Semaw S. Ardipithecus ramidus postcrania from the Gona Project area, Afar Regional State, Ethiopia. J Hum Evol 2019; 129:1-45. [DOI: 10.1016/j.jhevol.2018.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 11/30/2022]
|
16
|
DeSilva J, McNutt E, Benoit J, Zipfel B. One small step: A review of Plio‐Pleistocene hominin foot evolution. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2018; 168 Suppl 67:63-140. [DOI: 10.1002/ajpa.23750] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Jeremy DeSilva
- Department of AnthropologyDartmouth College Hanover New Hampshire
- Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Ellison McNutt
- Department of AnthropologyDartmouth College Hanover New Hampshire
| | - Julien Benoit
- Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand Johannesburg South Africa
| | - Bernhard Zipfel
- Evolutionary Studies Institute and School of GeosciencesUniversity of the Witwatersrand Johannesburg South Africa
| |
Collapse
|
17
|
McNutt EJ, Zipfel B, DeSilva JM. The evolution of the human foot. Evol Anthropol 2018; 27:197-217. [DOI: 10.1002/evan.21713] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/20/2018] [Accepted: 05/30/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ellison J. McNutt
- Department of Anthropology; Dartmouth College; Hanover New Hampshire
- Ecology, Evolution, Ecosystems, and Society; Dartmouth College; Hanover New Hampshire
| | - Bernhard Zipfel
- Evolutionary Studies Institute and School of Geosciences; University of the Witwatersrand; Johannesburg South Africa
| | - Jeremy M. DeSilva
- Department of Anthropology; Dartmouth College; Hanover New Hampshire
- Evolutionary Studies Institute and School of Geosciences; University of the Witwatersrand; Johannesburg South Africa
| |
Collapse
|
18
|
Holowka NB, Lieberman DE. Rethinking the evolution of the human foot: insights from experimental research. J Exp Biol 2018; 221:221/17/jeb174425. [DOI: 10.1242/jeb.174425] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT
Adaptive explanations for modern human foot anatomy have long fascinated evolutionary biologists because of the dramatic differences between our feet and those of our closest living relatives, the great apes. Morphological features, including hallucal opposability, toe length and the longitudinal arch, have traditionally been used to dichotomize human and great ape feet as being adapted for bipedal walking and arboreal locomotion, respectively. However, recent biomechanical models of human foot function and experimental investigations of great ape locomotion have undermined this simple dichotomy. Here, we review this research, focusing on the biomechanics of foot strike, push-off and elastic energy storage in the foot, and show that humans and great apes share some underappreciated, surprising similarities in foot function, such as use of plantigrady and ability to stiffen the midfoot. We also show that several unique features of the human foot, including a spring-like longitudinal arch and short toes, are likely adaptations to long distance running. We use this framework to interpret the fossil record and argue that the human foot passed through three evolutionary stages: first, a great ape-like foot adapted for arboreal locomotion but with some adaptations for bipedal walking; second, a foot adapted for effective bipedal walking but retaining some arboreal grasping adaptations; and third, a human-like foot adapted for enhanced economy during long-distance walking and running that had lost its prehensility. Based on this scenario, we suggest that selection for bipedal running played a major role in the loss of arboreal adaptations.
Collapse
Affiliation(s)
- Nicholas B. Holowka
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA 02138, USA
| | - Daniel E. Lieberman
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Ave, Cambridge, MA 02138, USA
| |
Collapse
|
19
|
Boyle EK, McNutt EJ, Sasaki T, Suwa G, Zipfel B, DeSilva JM. A quantification of calcaneal lateral plantar process position with implications for bipedal locomotion in Australopithecus. J Hum Evol 2018; 123:24-34. [PMID: 30075872 DOI: 10.1016/j.jhevol.2018.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 11/25/2022]
Abstract
The evolution of bipedalism in the hominin lineage has shaped the posterior human calcaneus into a large, robust structure considered to be adaptive for dissipating peak compressive forces and energy during heel-strike. A unique anatomy thought to contribute to the human calcaneus and its function is the lateral plantar process (LPP). While it has long been known that humans possess a plantarly positioned LPP and apes possess a more dorsally positioned homologous structure, the relative position of the LPP and intraspecific variation of this structure have never been quantified. Here, we present a method for quantifying relative LPP position and find that, while variable, humans have a significantly more plantar position of the LPP than that found in the apes. Among extinct hominins, while the position of the LPP in Australopithecus afarensis falls within the human distribution, the LPP is more dorsally positioned in Australopithecus sediba and barely within the modern human range of variation. Results from a resampling procedure suggest that these differences can reflect either individual variation of a foot structure/function largely shared among Australopithecus species, or functionally distinct morphologies that reflect locomotor diversity in Plio-Pleistocene hominins. An implication of the latter possibility is that calcaneal changes adaptive for heel-striking bipedalism may have evolved independently in two different hominin lineages.
Collapse
Affiliation(s)
- Eve K Boyle
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC 20052, USA.
| | - Ellison J McNutt
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA; Ecology, Evolution, Ecosystems, and Society, Dartmouth College, Hanover, NH 03755, USA
| | - Tomohiko Sasaki
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Gen Suwa
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Bernhard Zipfel
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa; School of Geosciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jeremy M DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA; Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
20
|
DeSilva JM, Gill CM, Prang TC, Bredella MA, Alemseged Z. A nearly complete foot from Dikika, Ethiopia and its implications for the ontogeny and function of Australopithecus afarensis. SCIENCE ADVANCES 2018; 4:eaar7723. [PMID: 29978043 PMCID: PMC6031372 DOI: 10.1126/sciadv.aar7723] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/22/2018] [Indexed: 05/21/2023]
Abstract
The functional and evolutionary implications of primitive retentions in early hominin feet have been under debate since the discovery of Australopithecus afarensis. Ontogeny can provide insight into adult phenotypes, but juvenile early hominin foot fossils are exceptionally rare. We analyze a nearly complete, 3.32-million-year-old juvenile foot of A. afarensis (DIK-1-1f). We show that juvenile A. afarensis individuals already had many of the bipedal features found in adult specimens. However, they also had medial cuneiform traits associated with increased hallucal mobility and a more gracile calcaneal tuber, which is unexpected on the basis of known adult morphologies. Selection for traits functionally associated with juvenile pedal grasping may provide a new perspective on their retention in the more terrestrial adult A. afarensis.
Collapse
Affiliation(s)
- Jeremy M. DeSilva
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
- Corresponding author. (J.M.D.); (Z.A.)
| | - Corey M. Gill
- Department of Anthropology, Boston University, Boston, MA 02215, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Thomas C. Prang
- Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY 10003, USA
- New York Consortium in Evolutionary Anthropology, New York, NY, USA
| | - Miriam A. Bredella
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zeresenay Alemseged
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA
- Corresponding author. (J.M.D.); (Z.A.)
| |
Collapse
|
21
|
Ito K, Hosoda K, Shimizu M, Ikemoto S, Nagura T, Seki H, Kitashiro M, Imanishi N, Aiso S, Jinzaki M, Ogihara N. Three-dimensional innate mobility of the human foot bones under axial loading using biplane X-ray fluoroscopy. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171086. [PMID: 29134100 PMCID: PMC5666283 DOI: 10.1098/rsos.171086] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/18/2017] [Indexed: 05/13/2023]
Abstract
The anatomical design of the human foot is considered to facilitate generation of bipedal walking. However, how the morphology and structure of the human foot actually contribute to generation of bipedal walking remains unclear. In the present study, we investigated the three-dimensional kinematics of the foot bones under a weight-bearing condition using cadaver specimens, to characterize the innate mobility of the human foot inherently prescribed in its morphology and structure. Five cadaver feet were axially loaded up to 588 N (60 kgf), and radiographic images were captured using a biplane X-ray fluoroscopy system. The present study demonstrated that the talus is medioinferiorly translated and internally rotated as the calcaneus is everted owing to axial loading, causing internal rotation of the tibia and flattening of the medial longitudinal arch in the foot. Furthermore, as the talus is internally rotated, the talar head moves medially with respect to the navicular, inducing external rotation of the navicular and metatarsals. Under axial loading, the cuboid is everted simultaneously with the calcaneus owing to the osseous locking mechanism in the calcaneocuboid joint. Such detailed descriptions about the innate mobility of the human foot will contribute to clarifying functional adaptation and pathogenic mechanisms of the human foot.
Collapse
Affiliation(s)
- Kohta Ito
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Authors for correspondence: Kohta Ito e-mail:
| | - Koh Hosoda
- Department of System Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Masahiro Shimizu
- Department of System Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Shuhei Ikemoto
- Department of System Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Japan
| | - Takeo Nagura
- School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | - Naomichi Ogihara
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Authors for correspondence: Naomichi Ogihara e-mail:
| |
Collapse
|
22
|
|
23
|
Tsegai ZJ, Skinner MM, Gee AH, Pahr DH, Treece GM, Hublin JJ, Kivell TL. Trabecular and cortical bone structure of the talus and distal tibia in Pan and Homo. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 163:784-805. [PMID: 28542704 DOI: 10.1002/ajpa.23249] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/20/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023]
Abstract
OBJECTIVES Internal bone structure, both cortical and trabecular bone, remodels in response to loading and may provide important information regarding behavior. The foot is well suited to analysis of internal bone structure because it experiences the initial substrate reaction forces, due to its proximity to the substrate. Moreover, as humans and apes differ in loading of the foot, this region is relevant to questions concerning arboreal locomotion and bipedality in the hominoid fossil record. MATERIALS AND METHODS We apply a whole-bone/epiphysis approach to analyze trabecular and cortical bone in the distal tibia and talus of Pan troglodytes and Homo sapiens. We quantify bone volume fraction (BV/TV), degree of anisotropy (DA), trabecular thickness (Tb.Th), bone surface to volume ratio (BS/BV), and cortical thickness and investigate the distribution of BV/TV and cortical thickness throughout the bone/epiphysis. RESULTS We find that Pan has a greater BV/TV, a lower BS/BV and thicker cortices than Homo in both the talus and distal tibia. The trabecular structure of the talus is more divergent than the tibia, having thicker, less uniformly aligned trabeculae in Pan compared to Homo. Differences in dorsiflexion at the talocrural joint and in degree of mobility at the talonavicular joint are reflected in the distribution of cortical and trabecular bone. DISCUSSION Overall, quantified trabecular parameters represent overall differences in bone strength between the two species, however, DA may be directly related to joint loading. Cortical and trabecular bone distributions correlate with habitual joint positions adopted by each species, and thus have potential for interpreting joint position in fossil hominoids.
Collapse
Affiliation(s)
- Zewdi J Tsegai
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew M Skinner
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
| | - Andrew H Gee
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Dieter H Pahr
- Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Wien, Austria
| | - Graham M Treece
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tracy L Kivell
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
24
|
Holowka NB, O'Neill MC, Thompson NE, Demes B. Chimpanzee and human midfoot motion during bipedal walking and the evolution of the longitudinal arch of the foot. J Hum Evol 2017; 104:23-31. [DOI: 10.1016/j.jhevol.2016.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 10/20/2022]
|
25
|
Prang TC. Reevaluating the functional implications of Australopithecus afarensis navicular morphology. J Hum Evol 2016; 97:73-85. [DOI: 10.1016/j.jhevol.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/18/2016] [Accepted: 05/19/2016] [Indexed: 11/27/2022]
|
26
|
Prang TC. Conarticular congruence of the hominoid subtalar joint complex with implications for joint function in Plio-Pleistocene hominins. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2016; 160:446-57. [DOI: 10.1002/ajpa.22982] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Affiliation(s)
- Thomas C. Prang
- Center for the Study of Human Origins, Department of Anthropology; New York University; New York, NY 10003
- New York Consortium in Evolutionary Primatology (NYCEP)
| |
Collapse
|