1
|
Mei X, Gao M, Huang T, Shen D, Xia D, Qiu Z, Zhao Q. Comparative analysis of testis transcriptome between a genetic male sterile line (GMS) and its wild-type 898WB in silkworm, Bombyx mori. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100961. [PMID: 35074722 DOI: 10.1016/j.cbd.2022.100961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
The silkworm, Bombyx mori, is an important model organism of lepidopteran insects, and its testis is a main male reproductive organ and spermatogenesis place. Studying the testis helps to understand the mechanisms of genetic sterility of lepidopteran insects and to achieve sterile insect technique (SIT) for pest control. Herein, we performed a comparative transcriptome analysis of testes between three biological replicates of the GMS mutant and wild strain 898WB, respectively. In total, 1872 up-regulated genes and 1823 down-regulated genes were identified in the testis of the GMS mutant. Several genes contribute significantly to spermatogenesis and testis development, such as "serine/threonine protein kinase", "organic cation transporter protein", "tyrosine protein kinase", "lncRNAs" and "immune-associated genes". The KEGG pathway analysis shows that the DEGs were annotated to 123 pathways, and 10 pathways were significantly enriched, such as "metabolic pathway", "biosynthesis of amino acids", and "phagosome-lysosome pathway", which are associated with testis development and spermatogenesis. The results of the qPCR expression were consistent with the RNA-seq data, which shows that the RNA-seq results were accurate. The DEGs of the testes between GMS mutant and 898WB were screened by RNA-Seq technology, which provides a reliable reference to understand the molecule mechanism of male sterility of the GMS mutant.
Collapse
Affiliation(s)
- Xinglin Mei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Mengjie Gao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Tianchen Huang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Dongxu Shen
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Dingguo Xia
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Zhiyong Qiu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Qiaoling Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China; The Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China.
| |
Collapse
|
2
|
Zhu M, Hu X, Liang Z, Jiang M, Xue R, Gong Y, Zhang X, Cao G, Gong C. Functional characterization of BmOVOs in silkworm, Bombyx mori. BMC Genomics 2019; 20:342. [PMID: 31060506 PMCID: PMC6503385 DOI: 10.1186/s12864-019-5697-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background In our previous study, we identified four isoforms of the Bmovo gene, Bmovo-1, Bmovo-2, Bmovo-3 and Bmovo-4 from the silkworm ovary and verified that ovarian development was regulated by the BmOVO proteins. Results: To understand the regulatory mechanisms of ovarian development, the regulation of four BmOVO isoforms on the B. mori ovarian tumor (Bmotu) promoter activity was investigated with luciferase reporter assays. The results showed the Bmotu promoter activity was positively regulated by BmOVO-1, BmOVO-2, BmOVO-3 and BmOVO-4 in a dose-dependent manner, of which BmOVO-2 had the highest transcriptional activation. However, the first (A1) and third acidic domains (A3) at the N-terminus of BmOVO-1 are transcriptional repression domains, while the fourth (A4) and fifth acidic domains (A5) are transcriptional activation domains. A recombinant BmOVO zinc-finger domain was found to bind to the GTACCGTTGTA sequence located at the Bmotu promoter. Furthermore, the Bmotu promoter activity was negatively regulated by ‘Tal-like’ peptide, which can trigger BmOVO-1 degradation at the N-terminus. Conclusions These results will help us to further understand the regulatory mechanisms of BmOVO isoforms on Bmotu promoter activity and ovarian development in the silkworm. Electronic supplementary material The online version of this article (10.1186/s12864-019-5697-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Zhu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xiaolong Hu
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zi Liang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Mengsheng Jiang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Renyu Xue
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China.,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China.,Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China
| | - Yongchang Gong
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Xing Zhang
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China
| | - Guangli Cao
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China. .,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China. .,Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| | - Chengliang Gong
- School of Biology and Basic Medical Sciences, Soochow University, No.199 Ren'ai Road, Dushu Lake Higher Education Town, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, People's Republic of China. .,National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, 215123, Jiangsu, China. .,Agricultural Biotechnology Research Institute, Agricultural biotechnology and Ecological Research Institute, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Tao Z, Song W, Zhu C, Xu W, Liu H, Zhang S, Huifang L. Comparative transcriptomic analysis of high and low egg-producing duck ovaries. Poult Sci 2018; 96:4378-4388. [PMID: 29053813 DOI: 10.3382/ps/pex229] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/14/2017] [Indexed: 01/03/2023] Open
Abstract
The egg-laying rate is an important indicator of egg production of laying ducks. Egg production directly impacts the economic benefits of the duck industry. In order to obtain better insight into the molecular mechanisms associated with the process of egg production, comparative transcriptomic analysis of the ovaries of Jinding ducks with high and low egg production was performed using the Illumina HiSeq 2500 system. A total of 843 differentially expressed genes (DEGs) was identified, 367 that were down-regulated and 476 that were up-regulated in high egg production (HEP) ovaries, as compared with low egg production (LEP) ovaries. Some genes, such as MC5R, APOD, ORAI1, and DYRK4, were more active in HEP ovaries, indicating that these genes may play important roles in regulation of egg production. Among these 843 DEGs, 685 were assigned to gene ontology (GO) categories. Of these, 25 genes were related to reproduction, and 30 were related to the reproductive process, including some associated with ovarian follicle development, circadian regulation of gene expression, circadian rhythm, and estrogen receptor binding. Furthermore, some important functional pathways were revealed, such as the steroid biosynthesis pathway, the endocrine and other factor-regulated calcium reabsorption pathways, circadian rhythm, the neuroactive ligand-receptor interaction pathway, fatty acid biosynthesis, and the calcium-signaling pathway, which appear to be much more active in the HEP group, as compared to those of the LEP group. The results of this study provide very useful information that may contribute to future functional studies of genes involved in bird reproduction.
Collapse
Affiliation(s)
- Z Tao
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - W Song
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - C Zhu
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - W Xu
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - H Liu
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - S Zhang
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| | - Li Huifang
- Department of waterfowl breeding and production, Jiangsu Institute of Poultry Sciences, Yangzhou, 225125, China
| |
Collapse
|
5
|
Effects of transient high temperature treatment on the intestinal flora of the silkworm Bombyx mori. Sci Rep 2017; 7:3349. [PMID: 28611386 PMCID: PMC5469737 DOI: 10.1038/s41598-017-03565-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 04/26/2017] [Indexed: 02/02/2023] Open
Abstract
The silkworm Bombyx mori is a poikilotherm and is therefore sensitive to various climatic conditions. The influence of temperature on the intestinal flora and the relationship between the intestinal flora and gene expression in the silkworm remain unknown. In the present study, changes of the intestinal flora at 48, 96 and 144 h following transient high temperature treatment (THTT) of 37 °C for 8 h were investigated. According to principal component analysis, the abundances of Enterococcus and Staphylococcus showed a negative correlation with other dominant genera. After THTT, the gene expression levels of spatzle-1 and dicer-2 were increased and decreased, respectively, which suggested that the Toll and RNAi pathways were activated and suppressed, respectively. The species-gene expression matrix confirmed that the spatzle-1 and dicer-2 gene expression levels were negatively and positively correlated, respectively, with the abundance of Enterococcus and Staphylococcus in the control. The abundance of Variovorax post-THTT was positively correlated with the spatzle-1 gene expression level, whereas the community richness of Enterococcus was negatively correlated with the spatzle-1 gene expression level and positively correlated with the dicer-2. The results of the present investigation provide new evidence for understanding the relationships among THTT, intestinal flora and host gene expression.
Collapse
|