1
|
Huerga-Fernández S, Detry N, Orman-Ligeza B, Bouché F, Hanikenne M, Périlleux C. JOINTLESS Maintains Inflorescence Meristem Identity in Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:1197-1211. [PMID: 38635460 PMCID: PMC11287206 DOI: 10.1093/pcp/pcae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/20/2024]
Abstract
JOINTLESS (J) was isolated in tomato (Solanum lycopersicum) from mutants lacking a flower pedicel abscission zone (AZ) and encodes a MADS-box protein of the SHORT VEGETATIVE PHASE/AGAMOUS-LIKE 24 subfamily. The loss of J function also causes the return to leaf initiation in the inflorescences, indicating a pivotal role in inflorescence meristem identity. Here, we compared jointless (j) mutants in different accessions that exhibit either an indeterminate shoot growth, producing regular sympodial segments, or a determinate shoot growth, due to the reduction of sympodial segments and causal mutation of the SELF-PRUNING (SP) gene. We observed that the inflorescence phenotype of j mutants is stronger in indeterminate (SP) accessions such as Ailsa Craig (AC), than in determinate (sp) ones, such as Heinz (Hz). Moreover, RNA-seq analysis revealed that the return to vegetative fate in j mutants is accompanied by expression of SP, which supports conversion of the inflorescence meristem to sympodial shoot meristem in j inflorescences. Other markers of vegetative meristems such as APETALA2c and branching genes such as BRANCHED 1 (BRC1a/b) were differentially expressed in the inflorescences of j(AC) mutant. We also found in the indeterminate AC accession that J represses homeotic genes of B- and C-classes and that its overexpression causes an oversized leafy calyx phenotype and has a dominant negative effect on AZ formation. A model is therefore proposed where J, by repressing shoot fate and influencing reproductive organ formation, acts as a key determinant of inflorescence meristems.
Collapse
Affiliation(s)
- Samuel Huerga-Fernández
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Nathalie Detry
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Beata Orman-Ligeza
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Frédéric Bouché
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Marc Hanikenne
- Laboratory of Plant Translational Biology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| | - Claire Périlleux
- Laboratory of Plant Physiology, InBioS—PhytoSYSTEMS, Department of Life Sciences, University of Liège, Chemin de la Vallée, 4, Liège B-4000, Belgium
| |
Collapse
|
2
|
Zhang J, Dong T, Hu Z, Li J, Zhu M, Chen G. A SEPALLATA MADS-Box Transcription Factor, SlMBP21, Functions as a Negative Regulator of Flower Number and Fruit Yields in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1421. [PMID: 38794491 PMCID: PMC11125064 DOI: 10.3390/plants13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| |
Collapse
|
3
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
4
|
Graci S, Barone A. Tomato plant response to heat stress: a focus on candidate genes for yield-related traits. FRONTIERS IN PLANT SCIENCE 2024; 14:1245661. [PMID: 38259925 PMCID: PMC10800405 DOI: 10.3389/fpls.2023.1245661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/15/2023] [Indexed: 01/24/2024]
Abstract
Climate change and global warming represent the main threats for many agricultural crops. Tomato is one of the most extensively grown and consumed horticultural products and can survive in a wide range of climatic conditions. However, high temperatures negatively affect both vegetative growth and reproductive processes, resulting in losses of yield and fruit quality traits. Researchers have employed different parameters to evaluate the heat stress tolerance, including evaluation of leaf- (stomatal conductance, net photosynthetic rate, Fv/Fm), flower- (inflorescence number, flower number, stigma exertion), pollen-related traits (pollen germination and viability, pollen tube growth) and fruit yield per plant. Moreover, several authors have gone even further, trying to understand the plants molecular response mechanisms to this stress. The present review focused on the tomato molecular response to heat stress during the reproductive stage, since the increase of temperatures above the optimum usually occurs late in the growing tomato season. Reproductive-related traits directly affects the final yield and are regulated by several genes such as transcriptional factors, heat shock proteins, genes related to flower, flowering, pollen and fruit set, and epigenetic mechanisms involving DNA methylation, histone modification, chromatin remodelling and non-coding RNAs. We provided a detailed list of these genes and their function under high temperature conditions in defining the final yield with the aim to summarize the recent findings and pose the attention on candidate genes that could prompt on the selection and constitution of new thermotolerant tomato plant genotypes able to face this abiotic challenge.
Collapse
Affiliation(s)
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Naples, Italy
| |
Collapse
|
5
|
Zahn IE, Roelofsen C, Angenent GC, Bemer M. TM3 and STM3 Promote Flowering Together with FUL2 and MBP20, but Act Antagonistically in Inflorescence Branching in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2754. [PMID: 37570908 PMCID: PMC10420972 DOI: 10.3390/plants12152754] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The moment at which a plant transitions to reproductive development is paramount to its life cycle and is strictly controlled by many genes. The transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) plays a central role in this process in Arabidopsis. However, the role of SOC1 in tomato (Solanum lycopersicum) has been sparsely studied. Here, we investigated the function of four tomato SOC1 homologs in the floral transition and inflorescence development. We thoroughly characterized the SOC1-like clade throughout the Solanaceae and selected four tomato homologs that are dynamically expressed upon the floral transition. We show that of these homologs, TOMATO MADS 3 (TM3) and SISTER OF TM3 (STM3) promote the primary and sympodial transition to flowering, while MADS-BOX PROTEIN 23 (MBP23) and MBP18 hardly contribute to flowering initiation in the indeterminate cultivar Moneyberg. Protein-protein interaction assays and whole-transcriptome analysis during reproductive meristem development revealed that TM3 and STM3 interact and share many targets with FRUITFULL (FUL) homologs, including cytokinin regulators. Furthermore, we observed that mutating TM3/STM3 affects inflorescence development, but counteracts the inflorescence-branching phenotype of ful2 mbp20. Collectively, this indicates that TM3/STM3 promote the floral transition together with FUL2/MBP20, while these transcription factors have opposite functions in inflorescence development.
Collapse
Affiliation(s)
- Iris E. Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Chris Roelofsen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
6
|
Wang X, Liu Z, Bai J, Sun S, Song J, Li R, Cui X. Antagonistic regulation of target genes by the SISTER OF TM3-JOINTLESS2 complex in tomato inflorescence branching. THE PLANT CELL 2023; 35:2062-2078. [PMID: 36881857 PMCID: PMC10226558 DOI: 10.1093/plcell/koad065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 05/30/2023]
Abstract
Inflorescence branch number is a yield-related trait controlled by cell fate determination in meristems. Two MADS-box transcription factors (TFs)-SISTER OF TM3 (STM3) and JOINTLESS 2 (J2)-have opposing regulatory roles in inflorescence branching. However, the mechanisms underlying their regulatory functions in inflorescence determinacy remain unclear. Here, we characterized the functions of these TFs in tomato (Solanum lycopersicum) floral meristem and inflorescence meristem (IM) through chromatin immunoprecipitation and sequencing analysis of their genome-wide occupancy. STM3 and J2 activate or repress the transcription of a set of common putative target genes, respectively, through recognition and binding to CArG box motifs. FRUITFULL1 (FUL1) is a shared putative target of STM3 and J2 and these TFs antagonistically regulate FUL1 in inflorescence branching. Moreover, STM3 physically interacts with J2 to mediate its cytosolic redistribution and restricts J2 repressor activity by reducing its binding to target genes. Conversely, J2 limits STM3 regulation of target genes by transcriptional repression of the STM3 promoter and reducing STM3-binding activity. Our study thus reveals an antagonistic regulatory relationship in which STM3 and J2 control tomato IM determinacy and branch number.
Collapse
Affiliation(s)
- Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingwei Bai
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
McQuinn RP, Leroux J, Sierra J, Escobar-Tovar L, Frusciante S, Finnegan EJ, Diretto G, Giuliano G, Giovannoni JJ, León P, Pogson BJ. Deregulation of ζ-carotene desaturase in Arabidopsis and tomato exposes a unique carotenoid-derived redundant regulation of floral meristem identity and function. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:783-804. [PMID: 36861314 DOI: 10.1111/tpj.16168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/05/2023] [Accepted: 02/26/2023] [Indexed: 05/27/2023]
Abstract
A level of redundancy and interplay among the transcriptional regulators of floral development safeguards a plant's reproductive success and ensures crop production. In the present study, an additional layer of complexity in the regulation of floral meristem (FM) identity and flower development is elucidated linking carotenoid biosynthesis and metabolism to the regulation of determinate flowering. The accumulation and subsequent cleavage of a diverse array of ζ-carotenes in the chloroplast biogenesis 5 (clb5) mutant of Arabidopsis results in the reprogramming of meristematic gene regulatory networks establishing FM identity mirroring that of the FM identity master regulator, APETALA1 (AP1). The immediate transition to floral development in clb5 requires long photoperiods in a GIGANTEA-independent manner, whereas AP1 is essential for the floral organ development of clb5. The elucidation of this link between carotenoid metabolism and floral development translates to tomato exposing a regulation of FM identity redundant to and initiated by AP1 and proposed to be dependent on the E class floral initiation and organ identity regulator, SEPALLATA3 (SEP3).
Collapse
Affiliation(s)
- Ryan P McQuinn
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Julie Leroux
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| | - Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Sarah Frusciante
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | | | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | - Giovanni Giuliano
- Italian National Agency for New Technologies, Energy, and Sustainable Development (ENEA), Casaccia Research Center, Rome, 00196, Italy
| | - James J Giovannoni
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Patricia León
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
8
|
Graci S, Ruggieri V, Francesca S, Rigano MM, Barone A. Genomic Insights into the Origin of a Thermotolerant Tomato Line and Identification of Candidate Genes for Heat Stress. Genes (Basel) 2023; 14:genes14030535. [PMID: 36980808 PMCID: PMC10048601 DOI: 10.3390/genes14030535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Climate change represents the main problem for agricultural crops, and the constitution of heat-tolerant genotypes is an important breeder’s strategy to reduce yield losses. The aim of the present study was to investigate the whole genome of a heat-tolerant tomato genotype (E42), in order to identify candidate genes involved in its response to high temperature. E42 presented a high variability for chromosomes 1, 4, 7 and 12, and phylogenetic analysis highlighted its relationship with the wild S. pimpinellifolium species. Variants with high (18) and moderate (139) impact on protein function were retrieved from two lists of genes related to heat tolerance and reproduction. This analysis permitted us to prioritize a subset of 35 candidate gene mapping in polymorphic regions, some colocalizing in QTLs controlling flowering in tomato. Among these genes, we identified 23 HSPs, one HSF, six involved in flowering and five in pollen activity. Interestingly, one gene coded for a flowering locus T1 and mapping on chromosome 11 resides in a QTL region controlling flowering and also showed 100% identity with an S. pimpinellifolium allele. This study provides useful information on both the E42 genetic background and heat stress response, and further studies will be conducted to validate these genes.
Collapse
Affiliation(s)
- Salvatore Graci
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | | | - Silvana Francesca
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Maria Manuela Rigano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
| | - Amalia Barone
- Department of Agricultural Sciences, University of Naples Federico II, Portici, 80055 Naples, Italy
- Correspondence: ; Tel.: +39-0812539491
| |
Collapse
|
9
|
He J, Alonge M, Ramakrishnan S, Benoit M, Soyk S, Reem NT, Hendelman A, Van Eck J, Schatz MC, Lippman ZB. Establishing Physalis as a Solanaceae model system enables genetic reevaluation of the inflated calyx syndrome. THE PLANT CELL 2023; 35:351-368. [PMID: 36268892 PMCID: PMC9806562 DOI: 10.1093/plcell/koac305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The highly diverse Solanaceae family contains several widely studied models and crop species. Fully exploring, appreciating, and exploiting this diversity requires additional model systems. Particularly promising are orphan fruit crops in the genus Physalis, which occupy a key evolutionary position in the Solanaceae and capture understudied variation in traits such as inflorescence complexity, fruit ripening and metabolites, disease and insect resistance, self-compatibility, and most notable, the striking inflated calyx syndrome (ICS), an evolutionary novelty found across angiosperms where sepals grow exceptionally large to encapsulate fruits in a protective husk. We recently developed transformation and genome editing in Physalis grisea (groundcherry). However, to systematically explore and unlock the potential of this and related Physalis as genetic systems, high-quality genome assemblies are needed. Here, we present chromosome-scale references for P. grisea and its close relative Physalis pruinosa and use these resources to study natural and engineered variations in floral traits. We first rapidly identified a natural structural variant in a bHLH gene that causes petal color variation. Further, and against expectations, we found that CRISPR-Cas9-targeted mutagenesis of 11 MADS-box genes, including purported essential regulators of ICS, had no effect on inflation. In a forward genetics screen, we identified huskless, which lacks ICS due to mutation of an AP2-like gene that causes sepals and petals to merge into a single whorl of mixed identity. These resources and findings elevate Physalis to a new Solanaceae model system and establish a paradigm in the search for factors driving ICS.
Collapse
Affiliation(s)
- Jia He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Srividya Ramakrishnan
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Matthias Benoit
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Sebastian Soyk
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Nathan T Reem
- Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Anat Hendelman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Joyce Van Eck
- Boyce Thompson Institute, Ithaca, New York 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853, USA
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
10
|
Monniaux M, Vandenbussche M. Flower Development in the Solanaceae. Methods Mol Biol 2023; 2686:39-58. [PMID: 37540353 DOI: 10.1007/978-1-0716-3299-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Flower development is the process leading from a reproductive meristem to a mature flower with fully developed floral organs. This multi-step process is complex and involves thousands of genes in intertwined regulatory pathways; navigating through the FLOR-ID website will give an impression of this complexity and of the astonishing amount of work that has been carried on the topic (Bouché et al., Nucleic Acids Res 44:D1167-D1171, 2016). Our understanding of flower development mostly comes from the model species Arabidopsis thaliana, but numerous other studies outside of Brassicaceae have helped apprehend the conservation of these mechanisms in a large evolutionary context (Moyroud and Glover, Curr Biol 27:R941-R951, 2017; Smyth, New Phytol 220:70-86, 2018; Soltis et al., Ann Bot 100:155-163, 2007). Integrating additional species and families to the research on this topic can only advance our understanding of flower development and its evolution.In this chapter, we review the contribution that the Solanaceae family has made to the comprehension of flower development. While many of the general features of flower development (i.e., the key molecular players involved in flower meristem identity, inflorescence architecture or floral organ development) are similar to Arabidopsis, our main objective in this chapter is to highlight the points of divergence and emphasize specificities of the Solanaceae. We will not discuss the large topics of flowering time regulation, inflorescence architecture and fruit development, and we will restrict ourselves to the mechanisms included in a time window after the floral transition and before the fertilization. Moreover, this review will not be exhaustive of the large amount of work carried on the topic, and the choices that we made to describe in large details some stories from the literature are based on the soundness of the functional work performed, and surely as well on our own preferences and expertise.First, we will give a brief overview of the Solanaceae family and some of its specificities. Then, our focus will be on the molecular mechanisms controlling floral organ identity, for which extended functional work in petunia led to substantial revisions to the famous ABC model. Finally, after reviewing some studies on floral organ initiation and growth, we will discuss floral organ maturation, using the examples of the inflated calyx of the Chinese lantern Physalis and petunia petal pigmentation.
Collapse
Affiliation(s)
- Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, Lyon, France.
| |
Collapse
|
11
|
Transcriptome Analysis and Screening of Genes Associated with Flower Size in Tomato ( Solanum lycopersicum). Int J Mol Sci 2022; 23:ijms232415624. [PMID: 36555271 PMCID: PMC9778759 DOI: 10.3390/ijms232415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Flower development is not only an important way for tomato reproduction but also an important guarantee for tomato fruit production. Although more and more attention has been paid to the study of flower development, there are few studies on the molecular mechanism and gene expression level of tomato flower development. In this study, RNA-seq analysis was performed on two stages of tomato flower development using the Illumina sequencing platform. A total of 8536 DEGs were obtained by sequencing, including 3873 upregulated DEGs and 4663 down-regulated DEGs. These differentially expressed genes are related to plant hormone signaling, starch and sucrose metabolism. The pathways such as pentose, glucuronate interconversion, and Phenylpropanoid biosynthesis are closely related and mainly involved in plant cellular and metabolic processes. According to the enrichment analysis results of DEGs, active energy metabolism can be inferred during flower development, indicating that flower development requires a large amount of energy and material supply. In addition, some plant hormones, such as GA, may also have effects on flower development. Combined with previous studies, the expression levels of Solyc02g087860 and three of bZIPs were significantly increased in the full flowering stage compared with the flower bud stage, indicating that these genes may be closely related to flower development. These genes were previously reported in Arabidopsis but not in tomatoes. Our next work will conduct a detailed functional analysis of the identified bZIP family genes to characterize their association with tomato flower size. This study will provide new genetic resources for flower formation and provide a basis for tomato yield breeding.
Collapse
|
12
|
Dey SS, Sharma PK, Munshi AD, Jaiswal S, Behera TK, Kumari K, G. B, Iquebal MA, Bhattacharya RC, Rai A, Kumar D. Genome wide identification of lncRNAs and circRNAs having regulatory role in fruit shelf life in health crop cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:884476. [PMID: 35991462 PMCID: PMC9383263 DOI: 10.3389/fpls.2022.884476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Cucumber is an extremely perishable vegetable; however, under room conditions, the fruits become unfit for consumption 2-3 days after harvesting. One natural variant, DC-48 with an extended shelf-life was identified, fruits of which can be stored up to 10-15 days under room temperature. The genes involved in this economically important trait are regulated by non-coding RNAs. The study aims to identify the long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) by taking two contrasting genotypes, DC-48 and DC-83, at two different fruit developmental stages. The upper epidermis of the fruits was collected at 5 days and 10 days after pollination (DAP) for high throughput RNA sequencing. The differential expression analysis was performed to identify differentially expressed (DE) lncRNAs and circRNAs along with the network analysis of lncRNA, miRNA, circRNA, and mRNA interactions. A total of 97 DElncRNAs were identified where 18 were common under both the developmental stages (8 down regulated and 10 upregulated). Based on the back-spliced reads, 238 circRNAs were found to be distributed uniformly throughout the cucumber genomes with the highest numbers (71) in chromosome 4. The majority of the circRNAs (49%) were exonic in origin followed by inter-genic (47%) and intronic (4%) origin. The genes related to fruit firmness, namely, polygalacturonase, expansin, pectate lyase, and xyloglucan glycosyltransferase were present in the target sites and co-localized networks indicating the role of the lncRNA and circRNAs in their regulation. Genes related to fruit ripening, namely, trehalose-6-phosphate synthase, squamosa promoter binding protein, WRKY domain transcription factors, MADS box proteins, abscisic stress ripening inhibitors, and different classes of heat shock proteins (HSPs) were also found to be regulated by the identified lncRNA and circRNAs. Besides, ethylene biosynthesis and chlorophyll metabolisms were also found to be regulated by DElncRNAs and circRNAs. A total of 17 transcripts were also successfully validated through RT PCR data. These results would help the breeders to identify the complex molecular network and regulatory role of the lncRNAs and circRNAs in determining the shelf-life of cucumbers.
Collapse
Affiliation(s)
- Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A. D. Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - T. K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Boopalakrishnan G.
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
13
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
14
|
Zhan J. Beyond fruitful: Roles of tomato FRUITFULL-like genes in controlling inflorescence architecture and flowering. THE PLANT CELL 2022; 34:949-950. [PMID: 35243507 PMCID: PMC8894924 DOI: 10.1093/plcell/koab299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Junpeng Zhan
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Donald Danforth Plant Science Center, St. Louis, MO, USA
- Department of Biology and Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Périlleux C, Huerga-Fernández S. Reflections on the Triptych of Meristems That Build Flowering Branches in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:798502. [PMID: 35211138 PMCID: PMC8861353 DOI: 10.3389/fpls.2022.798502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Branching is an important component determining crop yield. In tomato, the sympodial pattern of shoot and inflorescence branching is initiated at floral transition and involves the precise regulation of three very close meristems: (i) the shoot apical meristem (SAM) that undergoes the first transition to flower meristem (FM) fate, (ii) the inflorescence sympodial meristem (SIM) that emerges on its flank and remains transiently indeterminate to continue flower initiation, and (iii) the shoot sympodial meristem (SYM), which is initiated at the axil of the youngest leaf primordium and takes over shoot growth before forming itself the next inflorescence. The proper fate of each type of meristems involves the spatiotemporal regulation of FM genes, since they all eventually terminate in a flower, but also the transient repression of other fates since conversions are observed in different mutants. In this paper, we summarize the current knowledge about the genetic determinants of meristem fate in tomato and share the reflections that led us to identify sepal and flower abscission zone initiation as a critical stage of FM development that affects the branching of the inflorescence.
Collapse
Affiliation(s)
- Claire Périlleux
- Laboratory of Plant Physiology, Research Unit InBioS—PhytoSYSTEMS, Institute of Botany B22 Sart Tilman, University of Liège, Liège, Belgium
| | | |
Collapse
|
16
|
Yang Y, Yang H, Tan Y, Zhao T, Xu X, Li J, Jiang J. Comparative Genome Analysis of Genes Regulating Compound Inflorescences in Tomato. Int J Mol Sci 2021; 22:ijms222212548. [PMID: 34830429 PMCID: PMC8623504 DOI: 10.3390/ijms222212548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Inflorescences are the main factor affecting fruit yield. The quantity and quality of inflorescences are closely related to fruit quality and yield. The presence of compound inflorescences in cherry tomatoes is well established, and it has been discovered by chance that compound racemes also exist in tomatoes. To explore the formation of compound inflorescences in tomato, transcriptome sequencing was performed on Moneymaker (MM) and Compound Inflorescence (CI) plants. In-florescences were collected in three periods (early, middle and late) in three replicates, for a total of 18 samples. Data analysis showed that the DEGs were most enriched in metabolic pathways and plant hormone signal transduction pathways. The DEGs were also enriched in the cell cycle pathway, photosynthesis pathway, carbon metabolism pathway and circadian rhythm pathway. We found that the FALSIFLORA (FA), COMPOUND INFLORESCENCE (S) and ANANTHA (AN) genes were involved in compound inflorescence development, not only revealing novel genes but also providing a rich theoretical basis for compound inflorescence development.
Collapse
|
17
|
Sánchez-López J, Atarés A, Jáquez-Gutiérrez M, Ortiz-Atienza A, Capel C, Pineda B, García-Sogo B, Yuste-Lisbona FJ, Lozano R, Moreno V. Approaching the genetic dissection of indirect adventitious organogenesis process in tomato explants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110721. [PMID: 33288027 DOI: 10.1016/j.plantsci.2020.110721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/11/2020] [Accepted: 10/12/2020] [Indexed: 06/12/2023]
Abstract
The screening of 862 T-DNA lines was carried out to approach the genetic dissection of indirect adventitious organogenesis in tomato. Several mutants defective in different phases of adventitious organogenesis, namely callus growth (tdc-1), bud differentiation (tdb-1, -2, -3) and shoot-bud development (tds-1) were identified and characterized. The alteration of the TDC-1 gene blocked callus proliferation depending on the composition of growth regulators in the culture medium. Calli from tds-1 explants differentiated buds but did not develop normal shoots. Histological analysis showed that their abnormal development is due to failure in the organization of normal adventitious shoot meristems. Interestingly, tdc-1 and tds-1 mutant plants were indistinguishable from WT ones, indicating that the respective altered genes play specific roles in cell proliferation from explant cut zones (TDC-1 gene) or in the organization of adventitious shoot meristems (TDS-1 gene). Unlike the previous, plants of the three mutants defective in the differentiation of adventitious shoot-buds (tdb-1, -2, -3) showed multiple changes in vegetative and reproductive traits. Cosegregation analyses revealed the existence of an association between the phenotype of the tdb-3 mutant and a T-DNA insert, which led to the discovery that the SlMAPKKK17 gene is involved in the shoot-bud differentiation process.
Collapse
Affiliation(s)
- Jorge Sánchez-López
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Ana Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120-Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain.
| |
Collapse
|
18
|
Pu ZQ, Ma YY, Lu MX, Ma YQ, Xu ZQ. Cloning of a SEPALLATA4-like gene (IiSEP4) in Isatis indigotica Fortune and characterization of its function in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:229-237. [PMID: 32563851 DOI: 10.1016/j.plaphy.2020.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
E-class MADS-box genes, SEPALLATA (SEP), participate in various aspects of plant development together with B-, C- and D-class MADS-box genes. IiSEP4, a homologous gene of SEP4, was cloned from Isatis indigotica. IiSEP4 was highly expressed in sepals, and its mRNA was mildly detected in leaves, inflorescences, flowers, stamens and young silicles. Constitutive expression of IiSEP4 in Arabidopsis thaliana caused early flowering, accompanied by the reduction of flowers and floral organs. Moreover, the sepals in some flowers were transformed into carpelloid structures with stigmatic papillae, and obviously accompanied by ovule formation. Yeast two-hybrid assays demonstrated that IiSEP4 interacts with other woad MADS proteins to determine the identity of floral organs. These findings reveal the important roles of IiSEP4 in floral development of I. indigotica. The results of this study can lay a foundation for further study on biological functions of MADS transcriptional factors in I. indigotica.
Collapse
Affiliation(s)
- Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng-Xin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
19
|
Meco V, Egea I, Ortíz-Atienza A, Drevensek S, Esch E, Yuste-Lisbona FJ, Barneche F, Vriezen W, Bolarin MC, Lozano R, Flores FB. The Salt Sensitivity Induced by Disruption of Cell Wall-Associated Kinase 1 ( SlWAK1) Tomato Gene Is Linked to Altered Osmotic and Metabolic Homeostasis. Int J Mol Sci 2020; 21:E6308. [PMID: 32878190 PMCID: PMC7503591 DOI: 10.3390/ijms21176308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Tomato cell wall-associated kinase 1 (SlWAK1) has only been studied in biotic stress response and hence its function in abiotic stress remains unknown. In a screening under salinity of an insertional mutant collection of tomato (Solanum lycopersicum L.), a mutant exhibiting lower degree of leaf chlorosis than wild type (WT) together with reduced leaf Na+ accumulation was selected. Genetic analysis of the mutation revealed that a single T-DNA insertion in the SlWAK1 gene was responsible of the mutant phenotype. Slwak1 null mutant reduced its shoot growth compared with WT, despite its improved Na+ homeostasis. SlWAK1 disruption affected osmotic homeostasis, as leaf water content was lower in mutant than in WT under salt stress. In addition, Slwak1 altered the source-sink balance under salinity, by increasing sucrose content in roots. Finally, a significant fruit yield reduction was found in Slwak1 vs. WT under long-term salt stress, mainly due to lower fruit weight. Our results show that disruption of SlWAK1 induces a higher sucrose transport from source leaf to sink root, negatively affecting fruit, the main sink at adult stage.
Collapse
Affiliation(s)
- Victoriano Meco
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Isabel Egea
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Stéphanie Drevensek
- Institut de Biologie de l’École Normale Supérieure (IBENS), Paris Sciences et Lettres Research University, F-75005 Paris, France; (S.D.); (F.B.)
| | - Elisabeth Esch
- BASF Vegetable Seeds, Napoleonsweg 152, 6083AB Nunhem, The Netherlands; (E.E.); (W.V.)
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Fredy Barneche
- Institut de Biologie de l’École Normale Supérieure (IBENS), Paris Sciences et Lettres Research University, F-75005 Paris, France; (S.D.); (F.B.)
| | - Wim Vriezen
- BASF Vegetable Seeds, Napoleonsweg 152, 6083AB Nunhem, The Netherlands; (E.E.); (W.V.)
| | - María C. Bolarin
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL). Universidad de Almería, 04120 Almería, Spain; (A.O.-A.); (F.J.Y.-L.); (R.L.)
| | - Francisco B. Flores
- Department of Stress Biology and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura, CSIC, Campus Universitario de Espinardo, 30100 Murcia, Spain; (I.E.); (M.C.B.); (F.B.F.)
| |
Collapse
|
20
|
Seibert T, Abel C, Wahl V. Flowering time and the identification of floral marker genes in Solanum tuberosum ssp. andigena. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:986-996. [PMID: 31665396 PMCID: PMC6977542 DOI: 10.1093/jxb/erz484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/21/2019] [Indexed: 05/19/2023]
Abstract
Solanaceae is a family of flowering plants that includes agricultural species such as tomato (Solanum lycopersicum), eggplant (S. melongena), pepper (Capsicum annuum), and potato (S. tuberosum). The transition from the vegetative to reproductive stage has been extensively investigated in tomato as it affects fruit yield. While potato has mainly been studied with regards to the formation of storage organs, control of flowering time is a subject of increasing interest as development of true seeds is becoming more important for future breeding strategies. Here, we describe a robust growth regime for synchronized development of S. tuberosum ssp. andigena. Using SEM to analyse the developmental stages of the shoot apical meristem (SAM) throughout the floral transition, we show that andigena is a facultative long-day plant with respect to flowering. In addition, we identify the flower meristem identity gene MACROCALYX (StMC) as a marker to distinguish between the vegetative and reproductive stages. We show that the expression of WUSCHEL HOMEOBOX 9 (StWOX9) and ANANTHA (StAN) are specific to the inflorescence meristem and flower meristems in the cyme, respectively. The expression patterns of homologs of Arabidopsis flowering-time regulators were studied, and indicated that SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (StSOC1) and StFD might regulate flowering similar to other plant species.
Collapse
Affiliation(s)
- Tanja Seibert
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| | - Christin Abel
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Department of Metabolic Networks, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
21
|
Zhu Y, Wagner D. Plant Inflorescence Architecture: The Formation, Activity, and Fate of Axillary Meristems. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a034652. [PMID: 31308142 DOI: 10.1101/cshperspect.a034652] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The above-ground plant body in different plant species can have very distinct forms or architectures that arise by recurrent redeployment of a finite set of building blocks-leaves with axillary meristems, stems or branches, and flowers. The unique architectures of plant inflorescences in different plant families and species, on which this review focuses, determine the reproductive success and yield of wild and cultivated plants. Major contributors to the inflorescence architecture are the activity and developmental trajectories adopted by axillary meristems, which determine the degree of branching and the number of flowers formed. Recent advances in genetic and molecular analyses in diverse flowering plants have uncovered both common regulatory principles and unique players and/or regulatory interactions that underlie inflorescence architecture. Modulating activity of these regulators has already led to yield increases in the field. Additional insight into the underlying regulatory interactions and principles will not only uncover how their rewiring resulted in altered plant form, but will also enhance efforts at optimizing plant architecture in desirable ways in crop species.
Collapse
Affiliation(s)
- Yang Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
22
|
Morel P, Chambrier P, Boltz V, Chamot S, Rozier F, Rodrigues Bento S, Trehin C, Monniaux M, Zethof J, Vandenbussche M. Divergent Functional Diversification Patterns in the SEP/AGL6/AP1 MADS-Box Transcription Factor Superclade. THE PLANT CELL 2019; 31:3033-3056. [PMID: 31591161 PMCID: PMC6925017 DOI: 10.1105/tpc.19.00162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 05/20/2023]
Abstract
Members of SEPALLATA (SEP) and APETALA1 (AP1)/SQUAMOSA (SQUA) MADS-box transcription factor subfamilies play key roles in floral organ identity determination and floral meristem determinacy in the rosid species Arabidopsis (Arabidopsis thaliana). Here, we present a functional characterization of the seven SEP/AGL6 and four AP1/SQUA genes in the distant asterid species petunia (Petunia × hybrida). Based on the analysis of single and higher order mutants, we report that the petunia SEP1/SEP2/SEP3 orthologs together with AGL6 encode classical SEP floral organ identity and floral termination functions, with a master role for the petunia SEP3 ortholog FLORAL BINDING PROTEIN2 (FBP2). By contrast, the FBP9 subclade members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis, play a major role in determining floral meristem identity together with FBP4, while contributing only moderately to floral organ identity. In turn, the four members of the petunia AP1/SQUA subfamily redundantly are required for inflorescence meristem identity and act as B-function repressors in the first floral whorl, together with BEN/ROB genes. Overall, these data together with studies in other species suggest major differences in the functional diversification of the SEP/AGL6 and AP1/SQUA MADS-box subfamilies during angiosperm evolution.plantcell;31/12/3033/FX1F1fx1.
Collapse
Affiliation(s)
- Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Véronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Suzanne Rodrigues Bento
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Christophe Trehin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Jan Zethof
- Plant Genetics, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
23
|
Silva GFF, Silva EM, Correa JPO, Vicente MH, Jiang N, Notini MM, Junior AC, De Jesus FA, Castilho P, Carrera E, López-Díaz I, Grotewold E, Peres LEP, Nogueira FTS. Tomato floral induction and flower development are orchestrated by the interplay between gibberellin and two unrelated microRNA-controlled modules. THE NEW PHYTOLOGIST 2019; 221:1328-1344. [PMID: 30238569 DOI: 10.1111/nph.15492] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/07/2018] [Indexed: 05/18/2023]
Abstract
Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Box gene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.
Collapse
Affiliation(s)
- Geraldo F F Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Eder M Silva
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Joao P O Correa
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Mateus H Vicente
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Nan Jiang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcela M Notini
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Airton C Junior
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Frederico A De Jesus
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Pollyanna Castilho
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Esther Carrera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Isabel López-Díaz
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ingeniero Fausto Elío s/n, 46022, Valencia, Spain
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Lazaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo (USP), 13418-900, Piracicaba, Sao Paulo, Brazil
| | - Fabio T S Nogueira
- Laboratory of Molecular Genetics of Plant Development, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of Sao Paulo, 13418-900, Piracicaba, Sao Paulo, Brazil
| |
Collapse
|
24
|
Chaban I, Khaliluev M, Baranova E, Kononenko N, Dolgov S, Smirnova E. Abnormal development of floral meristem triggers defective morphogenesis of generative system in transgenic tomatoes. PROTOPLASMA 2018; 255:1597-1611. [PMID: 29680904 DOI: 10.1007/s00709-018-1252-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.
Collapse
Affiliation(s)
- Inna Chaban
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, Russian Federation, 127550
| | - Marat Khaliluev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, Russian Federation, 127550
- Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, Timiryazevskaya 49, Moscow, Russian Federation, 127550
| | - Ekaterina Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, Russian Federation, 127550
| | - Neonila Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, Russian Federation, 127550
| | - Sergey Dolgov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, Russian Federation, 127550
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow Oblast, Russian Federation, 142290
| | - Elena Smirnova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, Moscow, Russian Federation, 127550.
- Lomonosov Moscow State University, Biology Faculty, Leninskie Gory 1/12, Moscow, Russian Federation, 119234.
| |
Collapse
|
25
|
Pérez-Martín F, Yuste-Lisbona FJ, Pineda B, García-Sogo B, Olmo ID, de Dios Alché J, Egea I, Flores FB, Piñeiro M, Jarillo JA, Angosto T, Capel J, Moreno V, Lozano R. Developmental role of the tomato Mediator complex subunit MED18 in pollen ontogeny. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:300-315. [PMID: 30003619 DOI: 10.1111/tpj.14031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/17/2018] [Accepted: 06/26/2018] [Indexed: 05/06/2023]
Abstract
Pollen development is a crucial step in higher plants, which not only makes possible plant fertilization and seed formation, but also determines fruit quality and yield in crop species. Here, we reported a tomato T-DNA mutant, pollen deficient1 (pod1), characterized by an abnormal anther development and the lack of viable pollen formation, which led to the production of parthenocarpic fruits. Genomic analyses and the characterization of silencing lines proved that pod1 mutant phenotype relies on the tomato SlMED18 gene encoding the subunit 18 of Mediator multi-protein complex involved in RNA polymerase II transcription machinery. The loss of SlMED18 function delayed tapetum degeneration, which resulted in deficient microspore development and scarce production of viable pollen. A detailed histological characterization of anther development proved that changes during microgametogenesis and a significant delay in tapetum degeneration are associated with a high proportion of degenerated cells and, hence, should be responsible for the low production of functional pollen grains. Expression of pollen marker genes indicated that SlMED18 is essential for the proper transcription of a subset of genes specifically required to pollen formation and fruit development, revealing a key role of SlMED18 in male gametogenesis of tomato. Additionally, SlMED18 is able to rescue developmental abnormalities of the Arabidopsis med18 mutant, indicating that most biological functions have been conserved in both species.
Collapse
Affiliation(s)
- Fernando Pérez-Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022, Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022, Valencia, Spain
| | - Iván Del Olmo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, EEZ-CSIC, 18008, Granada, Spain
| | - Isabel Egea
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, 30100, Espinardo-Murcia, Spain
| | - Francisco B Flores
- Departamento de Biología del Estrés y Patología Vegetal, CEBAS-CSIC, 30100, Espinardo-Murcia, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - José A Jarillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus Montegancedo UPM, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, 46022, Valencia, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120, Almería, Spain
| |
Collapse
|
26
|
Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:75-87. [PMID: 29807608 DOI: 10.1016/j.plantsci.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The SEPALLATA (SEP) MADS-box transcription factors play essential roles in reproductive growth, especially in floral organ differentiation. Here, SlCMB1, a tomato SEP MADS-box gene, was isolated. SlCMB1 is noticeably expressed in inflorescences and flowers. Its transcript levels were higher in sepals than in other floral organs and decreased during sepal development. Tomato plants with reduced SlCMB1 mRNA levels displayed longer, branched and indeterminate inflorescences that exhibited a transition from reproductive to vegetative growth and enlarged and abnormally fused sepals. The transcript levels of genes known to regulate the development of inflorescence architecture and sepal size in tomato were dramatically changed. In addition, the expression levels of cell elongation-related and gibberellin biosynthetic genes also showed significant differences between the transgenic lines and the wild type, and the GA content of the peduncle in the transgenic lines was higher than that in the wild type. Yeast two-hybrid assay showed that SlCMB1 could interact individually with MC, J, AP2a and SlMBP21. Overall, our results indicate that SlCMB1 is an important regulator involved in the development of inflorescence architecture and sepal size in tomato plants.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
27
|
Trevaskis B. Developmental Pathways Are Blueprints for Designing Successful Crops. FRONTIERS IN PLANT SCIENCE 2018; 9:745. [PMID: 29922318 PMCID: PMC5996307 DOI: 10.3389/fpls.2018.00745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/15/2018] [Indexed: 05/29/2023]
Abstract
Genes controlling plant development have been studied in multiple plant systems. This has provided deep insights into conserved genetic pathways controlling core developmental processes including meristem identity, phase transitions, determinacy, stem elongation, and branching. These pathways control plant growth patterns and are fundamentally important to crop biology and agriculture. This review describes the conserved pathways that control plant development, using Arabidopsis as a model. Historical examples of how plant development has been altered through selection to improve crop performance are then presented. These examples, drawn from diverse crops, show how the genetic pathways controlling development have been modified to increase yield or tailor growth patterns to suit local growing environments or specialized crop management practices. Strategies to apply current progress in genomics and developmental biology to future crop improvement are then discussed within the broader context of emerging trends in plant breeding. The ways that knowledge of developmental processes and understanding of gene function can contribute to crop improvement, beyond what can be achieved by selection alone, are emphasized. These include using genome re-sequencing, mutagenesis, and gene editing to identify or generate novel variation in developmental genes. The expanding scope for comparative genomics, the possibility to engineer new developmental traits and new approaches to resolve gene-gene or gene-environment interactions are also discussed. Finally, opportunities to integrate fundamental research and crop breeding are highlighted.
Collapse
Affiliation(s)
- Ben Trevaskis
- CSIRO Agriculture and Food, Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| |
Collapse
|
28
|
A tomato MADS-box protein, SlCMB1, regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening. Sci Rep 2018; 8:3413. [PMID: 29467500 PMCID: PMC5821886 DOI: 10.1038/s41598-018-21672-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
The MADS-box transcription factors play essential roles in many physiological and biochemical processes of plants, especially in fruit ripening. Here, a tomato MADS-box gene, SlCMB1, was isolated. SlCMB1 expression declined with the fruit ripening from immature green to B + 7 (7 days after Breaker) fruits in the wild type (WT) and was lower in Nr and rin mutants fruits. Tomato plants with reduced SlCMB1 mRNA displayed delayed fruit ripening, reduced ethylene production and carotenoid accumulation. The ethylene production in SlCMB1-RNAi fruits decreased by approximately 50% as compared to WT. The transcripts of ethylene biosynthesis genes (ACS2, ACS4, ACO1 and ACO3), ethylene-responsive genes (E4, E8 and ERF1) and fruit ripening-related genes (RIN, TAGL1, FUL1, FUL2, LoxC and PE) were inhibited in SlCMB1-RNAi fruits. The carotenoid accumulation was decreased and two carotenoid synthesis-related genes (PSY1 and PDS) were down-regulated while three lycopene cyclase genes (CYCB, LCYB and LCYE) were up-regulated in transgenic fruits. Furthermore, yeast two-hybrid assay showed that SlCMB1 could interact with SlMADS-RIN, SlMADS1, SlAP2a and TAGL1, respectively. Collectively, these results indicate that SlCMB1 is a new component to the current model of regulatory network that regulates ethylene biosynthesis and carotenoid accumulation during fruit ripening.
Collapse
|
29
|
Egea I, Pineda B, Ortíz-Atienza A, Plasencia FA, Drevensek S, García-Sogo B, Yuste-Lisbona FJ, Barrero-Gil J, Atarés A, Flores FB, Barneche F, Angosto T, Capel C, Salinas J, Vriezen W, Esch E, Bowler C, Bolarín MC, Moreno V, Lozano R. The SlCBL10 Calcineurin B-Like Protein Ensures Plant Growth under Salt Stress by Regulating Na + and Ca 2+ Homeostasis. PLANT PHYSIOLOGY 2018; 176:1676-1693. [PMID: 29229696 PMCID: PMC5813568 DOI: 10.1104/pp.17.01605] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 05/19/2023]
Abstract
Characterization of a new tomato (Solanum lycopersicum) T-DNA mutant allowed for the isolation of the CALCINEURIN B-LIKE PROTEIN 10 (SlCBL10) gene whose lack of function was responsible for the severe alterations observed in the shoot apex and reproductive organs under salinity conditions. Physiological studies proved that SlCBL10 gene is required to maintain a proper low Na+/Ca2+ ratio in growing tissues allowing tomato growth under salt stress. Expression analysis of the main responsible genes for Na+ compartmentalization (i.e. Na+/H+ EXCHANGERs, SALT OVERLY SENSITIVE, HIGH-AFFINITY K+ TRANSPORTER 1;2, H+-pyrophosphatase AVP1 [SlAVP1] and V-ATPase [SlVHA-A1]) supported a reduced capacity to accumulate Na+ in Slcbl10 mutant leaves, which resulted in a lower uploading of Na+ from xylem, allowing the toxic ion to reach apex and flowers. Likewise, the tomato CATION EXCHANGER 1 and TWO-PORE CHANNEL 1 (SlTPC1), key genes for Ca2+ fluxes to the vacuole, showed abnormal expression in Slcbl10 plants indicating an impaired Ca2+ release from vacuole. Additionally, complementation assay revealed that SlCBL10 is a true ortholog of the Arabidopsis (Arabidopsis thaliana) CBL10 gene, supporting that the essential function of CBL10 is conserved in Arabidopsis and tomato. Together, the findings obtained in this study provide new insights into the function of SlCBL10 in salt stress tolerance. Thus, it is proposed that SlCBL10 mediates salt tolerance by regulating Na+ and Ca2+ fluxes in the vacuole, cooperating with the vacuolar cation channel SlTPC1 and the two vacuolar H+-pumps, SlAVP1 and SlVHA-A1, which in turn are revealed as potential targets of SlCBL10.
Collapse
Affiliation(s)
- Isabel Egea
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Félix A Plasencia
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Stéphanie Drevensek
- Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024. F-75005 Paris, France
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Fernando J Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Javier Barrero-Gil
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Francisco B Flores
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Fredy Barneche
- Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024. F-75005 Paris, France
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| | - Julio Salinas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Wim Vriezen
- Bayer Vegetable Seeds, 6083 AB Nunhem, The Netherlands
| | | | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024. F-75005 Paris, France
| | - Maria C Bolarín
- Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, 30100 Espinardo, Murcia, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia. s/n. 46022 Valencia, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, 04120 Almería, Spain
| |
Collapse
|
30
|
Yin W, Yu X, Chen G, Tang B, Wang Y, Liao C, Zhang Y, Hu Z. Suppression of SlMBP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:938. [PMID: 30022990 PMCID: PMC6039764 DOI: 10.3389/fpls.2018.00938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/11/2018] [Indexed: 05/04/2023]
Abstract
MADS-box genes have been demonstrated to participate in a number of processes in tomato development, especially fruit ripening. In this study, we reported a novel MADS-box gene, SlMBP15, which is implicated in fruit ripening. Based on statistical analysis, the ripening time of SlMBP15-silenced tomato was delayed by 2-4 days compared with that of the wild-type (WT). The accumulation of carotenoids and biosynthesis of ethylene in fruits were decreased in SlMBP15-silenced tomato. Genes related to carotenoid and ethylene biosynthesis were greatly repressed. SlMBP15 can interact with RIN, a MADS-box regulator affecting the carotenoid accumulation and ethylene biosynthesis in tomato. In addition, SlMBP15-silenced tomato produced dark green leaves, and its plant height was reduced. The gibberellin (GA) content of transgenic plants was lower than that of the WT and GA biosynthesis genes were repressed. These results demonstrated that SlMBP15 not only positively regulated tomato fruit ripening but also affected the morphogenesis of the vegetative organs.
Collapse
Affiliation(s)
- Wencheng Yin
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Boyan Tang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Yanjie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
- *Correspondence: Zongli Hu,
| |
Collapse
|
31
|
Pérez‐Martín F, Yuste‐Lisbona FJ, Pineda B, Angarita‐Díaz MP, García‐Sogo B, Antón T, Sánchez S, Giménez E, Atarés A, Fernández‐Lozano A, Ortíz‐Atienza A, García‐Alcázar M, Castañeda L, Fonseca R, Capel C, Goergen G, Sánchez J, Quispe JL, Capel J, Angosto T, Moreno V, Lozano R. A collection of enhancer trap insertional mutants for functional genomics in tomato. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1439-1452. [PMID: 28317264 PMCID: PMC5633825 DOI: 10.1111/pbi.12728] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/03/2017] [Accepted: 03/15/2017] [Indexed: 05/06/2023]
Abstract
With the completion of genome sequencing projects, the next challenge is to close the gap between gene annotation and gene functional assignment. Genomic tools to identify gene functions are based on the analysis of phenotypic variations between a wild type and its mutant; hence, mutant collections are a valuable resource. In this sense, T-DNA collections allow for an easy and straightforward identification of the tagged gene, serving as the basis of both forward and reverse genetic strategies. This study reports on the phenotypic and molecular characterization of an enhancer trap T-DNA collection in tomato (Solanum lycopersicum L.), which has been produced by Agrobacterium-mediated transformation using a binary vector bearing a minimal promoter fused to the uidA reporter gene. Two genes have been isolated from different T-DNA mutants, one of these genes codes for a UTP-glucose-1-phosphate uridylyltransferase involved in programmed cell death and leaf development, which means a novel gene function reported in tomato. Together, our results support that enhancer trapping is a powerful tool to identify novel genes and regulatory elements in tomato and that this T-DNA mutant collection represents a highly valuable resource for functional analyses in this fleshy-fruited model species.
Collapse
Affiliation(s)
- Fernando Pérez‐Martín
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | | | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - María Pilar Angarita‐Díaz
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Begoña García‐Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Teresa Antón
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Sibilla Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Antonia Fernández‐Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Ana Ortíz‐Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Manuel García‐Alcázar
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Laura Castañeda
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Rocío Fonseca
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Geraldine Goergen
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge Sánchez
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Jorge L. Quispe
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC)Universidad Politécnica de ValenciaValenciaSpain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL)Universidad de AlmeríaAlmeríaSpain
| |
Collapse
|
32
|
Natural and induced loss of function mutations in SlMBP21 MADS-box gene led to jointless-2 phenotype in tomato. Sci Rep 2017; 7:4402. [PMID: 28667273 PMCID: PMC5493662 DOI: 10.1038/s41598-017-04556-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Abscission is the mechanism by which plants disconnect unfertilized flowers, ripe fruits, senescent or diseased organs from the plant. In tomato, pedicel abscission is an important agronomic factor that controls yield and post-harvest fruit quality. Two non-allelic mutations, jointless (j) and jointless-2 (j-2), controlling pedicel abscission zone formation have been documented but only j-2 has been extensively used in breeding. J was shown to encode a MADS-box protein. Using a combination of physical mapping and gene expression analysis we identified a positional candidate, Solyc12g038510, associated with j-2 phenotype. Targeted knockout of Solyc12g038510, using CRISPR/Cas9 system, validated our hypothesis. Solyc12g038510 encodes the MADS-box protein SlMBP21. Molecular analysis of j-2 natural variation revealed two independent loss-of-function mutants. The first results of an insertion of a Rider retrotransposable element. The second results of a stop codon mutation that leads to a truncated protein form. To bring new insights into the role of J and J-2 in abscission zone formation, we phenotyped the single and the double mutants and the engineered alleles. We showed that J is epistatic to J-2 and that the branched inflorescences and the leafy sepals observed in accessions harboring j-2 alleles are likely the consequences of linkage drags.
Collapse
|
33
|
Poyatos-Pertíñez S, Quinet M, Ortíz-Atienza A, Yuste-Lisbona FJ, Pons C, Giménez E, Angosto T, Granell A, Capel J, Lozano R. A Factor Linking Floral Organ Identity and Growth Revealed by Characterization of the Tomato Mutant unfinished flower development ( ufd). FRONTIERS IN PLANT SCIENCE 2016; 7:1648. [PMID: 27872633 PMCID: PMC5098122 DOI: 10.3389/fpls.2016.01648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/19/2016] [Indexed: 05/29/2023]
Abstract
Floral organogenesis requires coordinated interactions between genes specifying floral organ identity and those regulating growth and size of developing floral organs. With the aim to isolate regulatory genes linking both developmental processes (i.e., floral organ identity and growth) in the tomato model species, a novel mutant altered in the formation of floral organs was further characterized. Under normal growth conditions, floral organ primordia of mutant plants were correctly initiated, however, they were unable to complete their development impeding the formation of mature and fertile flowers. Thus, the growth of floral buds was blocked at an early stage of development; therefore, we named this mutant as unfinished flower development (ufd). Genetic analysis performed in a segregating population of 543 plants showed that the abnormal phenotype was controlled by a single recessive mutation. Global gene expression analysis confirmed that several MADS-box genes regulating floral identity as well as other genes participating in cell division and different hormonal pathways were affected in their expression patterns in ufd mutant plants. Moreover, ufd mutant inflorescences showed higher hormone contents, particularly ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) and strigol compared to wild type. Such results indicate that UFD may have a key function as positive regulator of the development of floral primordia once they have been initiated in the four floral whorls. This function should be performed by affecting the expression of floral organ identity and growth genes, together with hormonal signaling pathways.
Collapse
Affiliation(s)
- Sandra Poyatos-Pertíñez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Muriel Quinet
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Ana Ortíz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | | | - Clara Pons
- Laboratorio de Genómica de Plantas y Biotecnología, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Estela Giménez
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Antonio Granell
- Laboratorio de Genómica de Plantas y Biotecnología, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| |
Collapse
|
34
|
Poyatos-Pertíñez S, Quinet M, Ortíz-Atienza A, Bretones S, Yuste-Lisbona FJ, Lozano R. Genetic interactions of the unfinished flower development (ufd) mutant support a significant role of the tomato UFD gene in regulating floral organogenesis. PLANT REPRODUCTION 2016; 29:227-38. [PMID: 27295366 DOI: 10.1007/s00497-016-0286-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/31/2016] [Indexed: 05/08/2023]
Abstract
Genetic interactions of UFD gene support its specific function during reproductive development of tomato; in this process, UFD could play a pivotal role between inflorescence architecture and flower initiation genes. Tomato (Solanum lycopersicum L.) is a major vegetable crop that also constitutes a model species for the study of plant developmental processes. To gain insight into the control of flowering and floral development, a novel tomato mutant, unfinished flower development (ufd), whose inflorescence and flowers were unable to complete their normal development was characterized using double mutant and gene expression analyses. Genetic interactions of ufd with mutations affecting inflorescence fate (uniflora, jointless and single flower truss) were additive and resulted in double mutants displaying the inflorescence structure of the non-ufd parental mutant and the flower phenotype of the ufd mutant. In addition, ufd mutation promotes an earlier inflorescence meristem termination. Taken together, both results indicated that UFD is not involved in the maintenance of inflorescence meristem identity, although it could participate in the regulatory system that modulates the rate of meristem maturation. Regarding the floral meristem identity, the falsiflora mutation was epistatic to the ufd mutation even though FALSIFLORA was upregulated in ufd inflorescences. In terms of floral organ identity, the ufd mutation was epistatic to macrocalyx, and MACROCALYX expression was differently regulated depending on the inflorescence developmental stage. These results suggest that the UFD gene may play a pivotal role between the genes required for flowering initiation and inflorescence development (such as UNIFLORA, FALSIFLORA, JOINTLESS and SINGLE FLOWER TRUSS) and those required for further floral organ development such as the floral organ identity genes.
Collapse
Affiliation(s)
- Sandra Poyatos-Pertíñez
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Muriel Quinet
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
- Groupe de Recherche en Physiologie végétale, Earth and Life Institute, Université catholique de Louvain, Croix du Sud 4-5 bte L7.07.13, 1348, Louvain-la-Neuve, Belgium
| | - Ana Ortíz-Atienza
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Sandra Bretones
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Fernando J Yuste-Lisbona
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|