1
|
Wang DX, Bao SY, Song NN, Chen WZ, Ding XQ, Walker RJ, Fang Y. FTO-mediated m6A mRNA demethylation aggravates renal fibrosis by targeting RUNX1 and further enhancing PI3K/AKT pathway. FASEB J 2024; 38:e23436. [PMID: 38430461 DOI: 10.1096/fj.202302041r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
Chronic kidney disease (CKD) is a global health burden, with ineffective therapies leading to increasing morbidity and mortality. Renal interstitial fibrosis is a common pathway in advanced CKD, resulting in kidney function and structure deterioration. In this study, we investigate the role of FTO-mediated N6-methyladenosine (m6A) and its downstream targets in the pathogenesis of renal fibrosis. M6A modification, a prevalent mRNA internal modification, has been implicated in various organ fibrosis processes. We use a mouse model of unilateral ureteral obstruction (UUO) as an in vivo model and treated tubular epithelial cells (TECs) with transforming growth factor (TGF)-β1 as in vitro models. Our findings revealed increased FTO expression in UUO mouse model and TGF-β1-treated TECs. By modulating FTO expression through FTO heterozygous mutation mice (FTO+/- ) in vivo and small interfering RNA (siRNA) in vitro, we observed attenuation of UUO and TGF-β1-induced epithelial-mesenchymal transition (EMT), as evidenced by decreased fibronectin and N-cadherin accumulation and increased E-cadherin levels. Silencing FTO significantly improved UUO and TGF-β1-induced inflammation, apoptosis, and inhibition of autophagy. Further transcriptomic assays identified RUNX1 as a downstream candidate target of FTO. Inhibiting FTO was shown to counteract UUO/TGF-β1-induced RUNX1 elevation in vivo and in vitro. We demonstrated that FTO signaling contributes to the elevation of RUNX1 by demethylating RUNX1 mRNA and improving its stability. Finally, we revealed that the PI3K/AKT pathway may be activated downstream of the FTO/RUNX1 axis in the pathogenesis of renal fibrosis. In conclusion, identifying small-molecule compounds that target this axis could offer promising therapeutic strategies for treating renal fibrosis.
Collapse
Affiliation(s)
- Da-Xi Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
| | - Si-Yu Bao
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
| | - Na-Na Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Nephrology and Dialysis, Shanghai, China
| | - Wei-Ze Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
| | - Xiao-Qiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Nephrology and Dialysis, Shanghai, China
| | - Robert J Walker
- Department of Nephrology, University of Otago Medical School, Dunedin, New Zealand
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Kidney Disease and Blood Purification, Shanghai, China
- Shanghai Medical Center of Kidney Disease, Shanghai, China
- Shanghai Institute of Nephrology and Dialysis, Shanghai, China
| |
Collapse
|
2
|
Zhang C, Guan G, Wang J, Wei H, Cai J. MicroRNA-192-5p downregulates Fat Mass and Obesity-associated Protein to aggravate renal ischemia/reperfusion injury. Ren Fail 2023; 45:2285869. [PMID: 38044851 PMCID: PMC11001322 DOI: 10.1080/0886022x.2023.2285869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/15/2023] [Indexed: 12/05/2023] Open
Abstract
Acute kidney injury (AKI) is a common disorder without effective therapy yet. Renal ischemia/reperfusion (I/R) injury is a common cause of AKI. MicroRNA miR-192-5p has been previously reported to be upregulated in AKI models. However, its functional role in renal I/R injury is not fully understood. This study aimed to investigate the effects and the underlying mechanism of miR-192-5p in renal I/R progression. Hypoxia/reoxygenation (H/R)-induced cell injury model in HK-2 cells and I/R-induced renal injury model in mice were established in this study. Cell counting kit-8 assay was performed to determine cell viability. Quantitative real-time PCR and western blot analysis were performed to detect gene expressions. Hematoxylin-eosin and periodic acid-Schiff staining were performed to observe the histopathological changes. Enzyme-linked immunosorbent assay was performed to detect the kidney markers' expression. In vivo and in vitro results showed that miR-192-5p was up-regulated in the I/R-induced mice model and H/R-induced cell model, and miR-192-5p overexpression exacerbated I/R-induced renal damage. Then, the downstream target of miR-192-5p was analyzed by combining the differentially expressed mRNAs and the predicted genes and confirmed using a dual-luciferase reporter assay. It was found that miR-192-5p was found to regulate fat mass and obesity-associated (FTO) protein expression by directly targeting the 3' untranslated region of FTO mRNA. Moreover, in vivo and in vitro studies unveiled that FTO overexpression alleviated renal I/R injury and promoted HK-2 cell viability via stimulating autophagy flux. In conclusion, miR-192-5p aggravated I/R-induced renal injury by blocking autophagy flux via down-regulating FTO.
Collapse
Affiliation(s)
- Chengjun Zhang
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Ge Guan
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jiantao Wang
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Haijian Wei
- Department of Organ Transplantation, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Jinzhen Cai
- Center of Organ Transplantation, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
3
|
Sun Y, Jin D, Zhang Z, Ji H, An X, Zhang Y, Yang C, Sun W, Zhang Y, Duan Y, Kang X, Jiang L, Zhao X, Lian F. N6-methyladenosine (m6A) methylation in kidney diseases: Mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194967. [PMID: 37553065 DOI: 10.1016/j.bbagrm.2023.194967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The N6-methyladenosine (m6A) modification is regulated by methylases, commonly referred to as "writers," and demethylases, known as "erasers," leading to a dynamic and reversible process. Changes in m6A levels have been implicated in a wide range of cellular processes, including nuclear RNA export, mRNA metabolism, protein translation, and RNA splicing, establishing a strong correlation with various diseases. Both physiologically and pathologically, m6A methylation plays a critical role in the initiation and progression of kidney disease. The methylation of m6A may also facilitate the early diagnosis and treatment of kidney diseases, according to accumulating research. This review aims to provide a comprehensive overview of the potential role and mechanism of m6A methylation in kidney diseases, as well as its potential application in the treatment of such diseases. There will be a thorough examination of m6A methylation mechanisms, paying particular attention to the interplay between m6A writers, m6A erasers, and m6A readers. Furthermore, this paper will elucidate the interplay between various kidney diseases and m6A methylation, summarize the expression patterns of m6A in pathological kidney tissues, and discuss the potential therapeutic benefits of targeting m6A in the context of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hangyu Ji
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuedong An
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cunqing Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuqing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingying Duan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
4
|
You L, Han Z, Chen H, Chen L, Lin Y, Wang B, Fan Y, Zhang M, Luo J, Peng F, Ma Y, Wang Y, Yuan L, Han Z. The role of N6-methyladenosine (m 6A) in kidney diseases. Front Med (Lausanne) 2023; 10:1247690. [PMID: 37841018 PMCID: PMC10569431 DOI: 10.3389/fmed.2023.1247690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/17/2023] Open
Abstract
Chemical modifications are a specific and efficient way to regulate the function of biological macromolecules. Among them, RNA molecules exhibit a variety of modifications that play important regulatory roles in various biological processes. More than 170 modifications have been identified in RNA molecules, among which the most common internal modifications include N6-methyladenine (m6A), n1-methyladenosine (m1A), 5-methylcytosine (m5C), and 7-methylguanine nucleotide (m7G). The most widely affected RNA modification is m6A, whose writers, readers, and erasers all have regulatory effects on RNA localization, splicing, translation, and degradation. These functions, in turn, affect RNA functionality and disease development. RNA modifications, especially m6A, play a unique role in renal cell carcinoma disease. In this manuscript, we will focus on the biological roles of m6A in renal diseases such as acute kidney injury, chronic kidney disease, lupus nephritis, diabetic kidney disease, and renal cancer.
Collapse
Affiliation(s)
- Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| | - Liuyan Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Binjian Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiyue Fan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ji Luo
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Ma
- School of Clinical Medicine, Southeast University, Nanjing, China
| | - Yanmei Wang
- Institute of Traditional Chinese Medicine, Sichuan College of Traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Li X, Ma B, Zhang W, Song Z, Zhang X, Liao M, Li X, Zhao X, Du M, Yu J, He S, Yan H. The essential role of N6-methyladenosine RNA methylation in complex eye diseases. Genes Dis 2023; 10:505-520. [PMID: 37223523 PMCID: PMC10201676 DOI: 10.1016/j.gendis.2022.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/29/2022] [Accepted: 05/08/2022] [Indexed: 11/20/2022] Open
Abstract
There are many complex eye diseases which are the leading causes of blindness, however, the pathogenesis of the complex eye diseases is not fully understood, especially the underlying molecular mechanisms of N6-methyladenosine (m6A) RNA methylation in the eye diseases have not been extensive clarified. Our review summarizes the latest advances in the studies of m6A modification in the pathogenesis of the complex eye diseases, including cornea disease, cataract, diabetic retinopathy, age-related macular degeneration, proliferative vitreoretinopathy, Graves' disease, uveal melanoma, retinoblastoma, and traumatic optic neuropathy. We further discuss the possibility of developing m6A modification signatures as biomarkers for the diagnosis of the eye diseases, as well as potential therapeutic approaches.
Collapse
Affiliation(s)
- Xiaohua Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Binyun Ma
- Department of Medicine/Hematology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Wenfang Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, China
| | - Zongming Song
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xiaodan Zhang
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Mengyu Liao
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Xue Li
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Xueru Zhao
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Mei Du
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Jinguo Yu
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| | - Shikun He
- Henan Provincial People’s Hospital, Henan Eye Hospital, Henan Eye Institute, Henan Key Laboratory of Ophthalmology and Visual Science, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou, Henan 450003, China
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
- Department of Pathology and Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Hua Yan
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Medical University. Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
6
|
Long noncoding RNA ENST00000436340 promotes podocyte injury in diabetic kidney disease by facilitating the association of PTBP1 with RAB3B. Cell Death Dis 2023; 14:130. [PMID: 36792603 PMCID: PMC9932062 DOI: 10.1038/s41419-023-05658-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023]
Abstract
Dysfunction of podocytes has been regarded as an important early pathologic characteristic of diabetic kidney disease (DKD), but the regulatory role of long noncoding RNAs (lncRNAs) in this process remains largely unknown. Here, we performed RNA sequencing in kidney tissues isolated from DKD patients and nondiabetic renal cancer patients undergoing surgical resection and discovered that the novel lncRNA ENST00000436340 was upregulated in DKD patients and high glucose-induced podocytes, and we showed a significant correlation between ENST00000436340 and kidney injury. Gain- and loss-of-function experiments showed that silencing ENST00000436340 alleviated high glucose-induced podocyte injury and cytoskeleton rearrangement. Mechanistically, we showed that fat mass and obesity- associate gene (FTO)-mediated m6A induced the upregulation of ENST00000436340. ENST00000436340 interacted with polypyrimidine tract binding protein 1 (PTBP1) and augmented PTBP1 binding to RAB3B mRNA, promoted RAB3B mRNA degradation, and thereby caused cytoskeleton rearrangement and inhibition of GLUT4 translocation to the plasma membrane, leading to podocyte injury and DKD progression. Together, our results suggested that upregulation of ENST00000436340 could promote podocyte injury through PTBP1-dependent RAB3B regulation, thus suggesting a novel form of lncRNA-mediated epigenetic regulation of podocytes that contributes to the pathogenesis of DKD.
Collapse
|
7
|
Yang Y, Li Q, Ling Y, Leng L, Ma Y, Xue L, Lu G, Ding Y, Li J, Tao S. m6A eraser FTO modulates autophagy by targeting SQSTM1/P62 in the prevention of canagliflozin against renal fibrosis. Front Immunol 2023; 13:1094556. [PMID: 36685533 PMCID: PMC9845768 DOI: 10.3389/fimmu.2022.1094556] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
The dysregulation of autophagy contributes to renal fibrosis. N6-Methyladenosine (m6A) RNA modification is a critical mediator of autophagy. Our previous studies have reported that the disorder of the PPARα/fatty acid oxidation (FAO) axis in renal tubular cells is suppressed by STAT6, which is involved in the regulation of renal fibrotic processes. Here, we found that canagliflozin significantly upregulates SQSTM1/P62, promoting PPARα-mediated FAO by inducing autophagy-dependent STAT6 degradation both in TGF-β1-treated HK2 cells and in unilateral ureteral occlusion (UUO) and ischemia-reperfusion (I/R) renal fibrosis mouse models. Knockdown of P62/SQSTM1 led to the impairment autophagic flux and the dysregulation of the STAT6/PPARα axis, which was confirmed by SQSTM1/P62cKO mice with UUO treatment along with bioinformatics analysis. Furthermore, SQSTM1/P62 deficiency in renal tubular cells inhibited canagliflozin's effects that prevent FAO disorder in renal tubular cells and renal fibrosis. Mechanistically, the level of m6A eraser FTO, which interacted with SQSTM1 mRNA, decreased in the renal tubular cells both in vitro and in vivo after canagliflozin administration. Decrease in FTO stabilized SQSTM1 mRNA, which induced autophagosome formation. Collectively, this study uncovered a previously unrecognized function of canagliflozin in FTO in the autophagy modulation through the regulation of SQSTM1 mRNA stability in the renal tubular STAT6/PPARα/FAO axis and renal fibrosis.
Collapse
Affiliation(s)
- Youjing Yang
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China
| | - Qianmin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yi Ling
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Linxin Leng
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yu Ma
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yue Ding
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianzhong Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Jianzhong Li, ; Shasha Tao,
| | - Shasha Tao
- Chongqing University Central Hospital and Chongqing Emergency Medical Center, Chongqing, China,School of Public Health, Medical College of Soochow University, Suzhou, China,*Correspondence: Jianzhong Li, ; Shasha Tao,
| |
Collapse
|
8
|
Ni WJ, Lu H, Ma NN, Hou BB, Zeng J, Zhou H, Shao W, Meng XM. RNA N 6 -methyladenosine modifications and potential targeted therapeutic strategies in kidney disease. Br J Pharmacol 2023; 180:5-24. [PMID: 36196023 DOI: 10.1111/bph.15968] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022] Open
Abstract
Epigenetic modifications have received increasing attention and have been shown to be extensively involved in kidney development and disease progression. Among them, the most common RNA modification, N6 -methyladenosine (m6 A), has been shown to dynamically and reversibly exert its functions in multiple ways, including splicing, export, decay and translation initiation efficiency to regulate mRNA fate. Moreover, m6 A has also been reported to exert biological effects by destabilizing base pairing to modulate various functions of RNAs. Most importantly, an increasing number of kidney diseases, such as renal cell carcinoma, acute kidney injury and chronic kidney disease, have been found to be associated with aberrant m6 A patterns. In this review, we comprehensively review the critical roles of m6 A in kidney diseases and discuss the possibilities and relevance of m6 A-targeted epigenetic therapy, with an integrated comprehensive description of the detailed alterations in specific loci that contribute to cellular processes that are associated with kidney diseases.
Collapse
Affiliation(s)
- Wei-Jian Ni
- Department of Pharmacy, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China.,Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hao Lu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Nan-Nan Ma
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Bing-Bing Hou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jing Zeng
- Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui, 230001, China
| | - Hong Zhou
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China
| | - Wei Shao
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| |
Collapse
|
9
|
Li X, Li Y, Wang Y, He X. The m 6A demethylase FTO promotes renal epithelial-mesenchymal transition by reducing the m 6A modification of lncRNA GAS5. Cytokine 2022; 159:156000. [PMID: 36058192 DOI: 10.1016/j.cyto.2022.156000] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/24/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is the main pathological change of a variety of chronic kidney diseases (CKD). Epigenetic modifications of fibrosis-prone genes regulate RIF progression. This study aimed to investigate long non-coding RNA (lncRNA) N6-methyladenosine (m6A) modification and its role in regulating RIF progression. METHODS Unilateral ureteral occlusion (UUO) was employed to construct the RIF in vivo model; and TGF-β1-treated HK-2 and HKC-8 cells were used for in vitro experiments. The mRNA and protein expressions were assessed using qRT-PCR and western blot. The proliferation and migration were evaluated by EdU assay and transwell assay, respectively. In addition, levels of inflammatory cytokines were determined by ELISA assay and qRT-PCR. Moreover, lncRNA GAS5 m6A level was detected using Me-RIP assay. HE and Masson staining were employed to evaluate fibrotic lesions of the kidney. RESULTS FTO expression was elevated in HK-2 and HKC-8 cells after TGF-β1 treatment and mouse kidney tissue following UUO, and lncRNA GAS5 was downregulated. LncRNA GAS5 overexpression or FTO silencing suppressed TGF-β1-induced the increase of EMT-related proteins (Vimentin, Snail and N-cadherin) and inflammatory cytokines (IL-6, IL-1β and TNF-α) levels in HK-2 cells. FTO suppressed lncRNA GAS5 expression by reducing the m6A modification of lncRNA GAS5. Additionally, FTO knockdown could suppress EMT process and inflammation response induced by TGF-β1 and UUO in vitro and in vivo. As expected, FTO knockdown abrogated the promotion effects of lncRNA GAS5 silencing on TGF-β1-induced EMT process and inflammation response in HK-2 and HKC-8 cells. CONCLUSION FTO promoted EMT process and inflammation response through reducing the m6A modification of lncRNA GAS5.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China; Laboratory of Pediatrics Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Yongzhen Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China; Laboratory of Pediatrics Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Ying Wang
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China; Laboratory of Pediatrics Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China
| | - Xiaojie He
- Department of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China; Laboratory of Pediatrics Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, PR China.
| |
Collapse
|
10
|
Shi H, Xiang T, Feng J, Yang X, Li Y, Fang Y, Xu L, Qi Q, Shen J, Tang L, Shen Q, Wang X, Xu H, Rao J. N6-Methyladenosine Methylomic Landscape of Ureteral Deficiency in Reflux Uropathy and Obstructive Uropathy. Front Med (Lausanne) 2022; 9:924579. [PMID: 35795641 PMCID: PMC9251069 DOI: 10.3389/fmed.2022.924579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Congenital anomalies of the kidneys and urinary tracts (CAKUT) represent the most prevalent cause for renal failure in children. The RNA epigenetic modification N6-methyladenosine (m6A) methylation modulates gene expression and function post-transcriptionally, which has recently been revealed to be critical in organ development. However, it is uncertain whether m6A methylation plays a role in the pathogenesis of CAKUT. Thus, we aimed to explore the pattern of m6A methylation in CAKUT. Methods Using m6A-mRNA epitranscriptomic microarray, we investigated the m6A methylomic landscape in the ureter tissue of children with obstructive megaureter (M group) and primary vesicoureteral reflux (V group). Results A total of 228 mRNAs engaged in multiple function-relevant signaling pathways were substantially differential methylated between the “V” and “M” groups. Additionally, 215 RNA-binding proteins that recognize differentially methylated regions were predicted based on public databases. The M group showed significantly higher mRNA levels of m6A readers/writers (YTHDF1, YTHDF2, YTHDC1, YTHDC2 and WTAP) and significantly lower mRNA levels of m6A eraser (FTO) according to real-time PCR. To further investigate the differentially methylated genes, m6A methylome and transcriptome data were integrated to identified 298 hypermethylated mRNAs with differential expressions (265 upregulation and 33 downregulation) and 489 hypomethylated mRNAs with differential expressions (431 upregulation and 58 downregulation) in the M/V comparison. Conclusion The current results highlight the pathogenesis of m6A methylation in obstructive and reflux uropathy.
Collapse
Affiliation(s)
- Hua Shi
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Tianchao Xiang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jiayan Feng
- Department of Pathology, Children's Hospital of Fudan University, Shanghai, China
| | - Xue Yang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Fang
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Linan Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Qi Qi
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Jian Shen
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
| | - Liangfeng Tang
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
| | - Qian Shen
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
| | - Xiang Wang
- Department of Urology, Children's Hospital of Fudan University, Shanghai, China
- *Correspondence: Xiang Wang
| | - Hong Xu
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Kidney Development and Pediatric Kidney Disease Research Center, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
- Hong Xu
| | - Jia Rao
- Department of Nephrology, Children's Hospital of Fudan University, Shanghai, China
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and School of Basic Medical Science, Fudan University, Shanghai, China
- Jia Rao
| |
Collapse
|
11
|
Detailed resume of RNA m 6A demethylases. Acta Pharm Sin B 2022; 12:2193-2205. [PMID: 35646549 PMCID: PMC9136571 DOI: 10.1016/j.apsb.2022.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/26/2021] [Accepted: 01/03/2022] [Indexed: 02/06/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification in eukaryotic mRNA, playing critical role in various bioprocesses. Like other epigenetic modifications, m6A modification can be catalyzed by the methyltransferase complex and erased dynamically to maintain cells homeostasis. Up to now, only two m6A demethylases have been reported, fat mass and obesity-associated protein (FTO) and alkylation protein AlkB homolog 5 (ALKBH5), involving in a wide range of mRNA biological progress, including mRNA shearing, export, metabolism and stability. Furthermore, they participate in many significantly biological signaling pathway, and contribute to the progress and development of cancer along with other diseases. In this review, we focus on the studies about structure, inhibitors development and biological function of FTO and ALKBH5.
Collapse
|
12
|
Li CM, Li M, Zhao WB, Ye ZC, Peng H. Alteration of N6-Methyladenosine RNA Profiles in Cisplatin-Induced Acute Kidney Injury in Mice. Front Mol Biosci 2021; 8:654465. [PMID: 34307448 PMCID: PMC8299335 DOI: 10.3389/fmolb.2021.654465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aim: To identify the alterations of N6-methyladenosine (m6A) RNA profiles in cisplatin-induced acute kidney injury (Cis-AKI) in mice. Materials and Methods: The total level of m6A and the expression of methyltransferases and demethylases in the kidneys were measured. The profiles of methylated RNAs were determined by the microarray method. Bioinformatics analysis was performed to predict the functions. Results: Global m6A levels were increased after cisplatin treatment, accompanied by the alterations of Mettl3, Mettl14, Wtap, Fto, and Alkbh5. A total of 618 mRNAs and 98 lncRNAs were significantly differentially methylated in response to cisplatin treatment. Bioinformatics analysis indicated that the methylated mRNAs predominantly acted on the metabolic process. Conclusion: M6A epitranscriptome might be significantly altered in Cis-AKI, which is potentially implicated in the development of nephrotoxicity.
Collapse
Affiliation(s)
- Can-Ming Li
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Li
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wen-Bo Zhao
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zeng-Chun Ye
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hui Peng
- Department of Nephrology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Zhang B, Ru F, Chen X, Chen Z. Autophagy attenuates renal fibrosis in obstructive nephropathy through inhibiting epithelial -to -mesenchymal transition. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:601-608. [PMID: 34275928 PMCID: PMC10930200 DOI: 10.11817/j.issn.1672-7347.2021.201008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To explore the relationship between autophagy and epithelial-to-mesenchymal transition (EMT), and to evaluate whether autophagy can affect the progression of renal fibrosis in obstructive nephropathy by regulating the EMT process. METHODS Unilateral ureteral obstruction (UUO) renal fibrosis model of rat was constructed, and the animals were divided into a sham group, an UUO group, an UUO+low-dose rapamycin group, and an UUO+high-dose rapamycin group. HE staining was used to observe the structure of the kidney, and Masson staining was used to observe renal interstitial collagen deposition. The expressions of E-cadherin, alpha-smooth muscle actin (α-SMA), Snail 1, and microtubule-associated protein-1 light chain 3II (LC3II) were detected by Western blotting, reflecting cellular EMT and autophagy. Transforming growth factor β1 (TGF-β1) induced-NRK52E cells model was constructed, and the cells were divided into a control group, a TGF-β1 group, and a TGF-β1+ Snail 1 siRNA group. To explore the effect of autophagy on EMT, the cells were also divided into a control group, a rapamycin group, and a Beclin 1 siRNA group. Western blotting was used to detect the expressions of E-cadherin, α-SMA, Snail 1, LC3II, collagen I, and fibronectin. RESULTS Compared with the sham group, the kidney damage in the UUO group was significantly worse; compared with the sham group, the collagen deposition in the kidney tissues in the UUO group was significantly increased, which were significantly reduced in the UUO+high-dose rapamycin group and the UUO+low-dose rapamycin group compared with the UUO group; compared with the sham group, the E-cadherin level in the kidney of the UUO group was significantly reduced, and the expression levels of α-SMA and LC3II were significantly increased (all P<0.05). Compared with the UUO group, the expression levels of E-cadherin and LC3II in the UUO+high-dose rapamycin group and the UUO+low-dose rapamycin group were significantly increased (P<0.01 and P<0.05, respectively), and the expression level of α-SMA was significantly decreased (P<0.01 and P<0.05, respectively). The expression levels of Snail 1, α-SMA, collagen I and fibronectin were significantly higher, and the E-cadherin level was significantly lower in the TGF-β1 group than those in the control group (all P<0.05). Compared with the TGF-β1 group, the expression of E-cadherin was increased significantly, and the expressions of α-SMA, collagen I and fibronectin were decreased significantly in the TGF-β1+Snail 1 siRNA group (all P<0.05). Compared with the control group, the expression levels of LC3II and E-cadherin were significantly elevated, and the expression levels of α-SMA and Snail 1 in the rapamycin group were significantly reduced (all P<0.05); the expression levels of LC3II and E-cadherin were significantly reduced, and the expression levels of α-SMA and Snail 1 were significantly increased in the Beclin 1 siRNA group (all P<0.05). CONCLUSIONS Autophagy plays an essential role in the regulation of EMT in obstructive nephropathy fibrosis. Autophagy can alleviate renal fibrosis by inhibiting EMT.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Feng Ru
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiang Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhi Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
14
|
Lin Y, Tsai M, Hsieh I, Wen M, Wang C. Deficiency of circadian gene cryptochromes in bone marrow‐derived cells protects against atherosclerosis in
LDLR
−/−
mice. FASEB J 2021; 35:e21309. [DOI: 10.1096/fj.202001818rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Yu‐Sheng Lin
- Healthcare Center Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Lung Tsai
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - I‐Chang Hsieh
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Ming‐Shien Wen
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
| | - Chao‐Yung Wang
- Department of Cardiology Chang Gung Memorial Hospital Chang Gung University College of Medicine Taoyuan City Taiwan
- Institute of Cellular and System Medicine National Health Research Institutes Zhunan Taiwan
- Department of Medical Science National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
15
|
Li X, Fan X, Yin X, Liu H, Yang Y. Alteration of N 6-methyladenosine epitranscriptome profile in unilateral ureteral obstructive nephropathy. Epigenomics 2020; 12:1157-1173. [PMID: 32543222 DOI: 10.2217/epi-2020-0126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: To reveal the alterations of N6-methyladenosine (m6A) epitranscriptome profile in kidney after unilateral ureteral obstruction in mice. Materials & methods: Total renal m6A and expressions of methyltransferases and demethylases were detected by colorimetric quantification method, real-time PCR and western blot, respectively. Methylated RNA immunoprecipitation sequencing was performed to map epitranscriptome-wide m6A profile. Results: Total m6A levels were time-dependent decreased within 1 week, with the lowest level detected at day 7. A total of 823 differentially methylated transcripts in 507 genes were identified. Specifically, demethylated mRNAs selectively acted on multiple pathways, including TGF-β and WNT. Conclusion: m6A modification has a functional importance in renal interstitial fibrosis during obstructive nephropathy and might be a promising therapeutic target.
Collapse
Affiliation(s)
- Xueyan Li
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Huajian Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
16
|
Wang CY, Lin TA, Ho MY, Yeh JK, Tsai ML, Hung KC, Hsieh IC, Wen MS. Regulation of autophagy in leukocytes through RNA N 6-adenosine methylation in chronic kidney disease patients. Biochem Biophys Res Commun 2020; 527:953-959. [PMID: 32439179 DOI: 10.1016/j.bbrc.2020.04.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Patients with chronic kidney diseases have multiple cellular dysfunctions leading to increased atherosclerosis, impaired immunity, and disturbed metabolism. However, it is unclear what is the fundamental signaling served as a marker or as a mediator for the dysregulated function in their leukocytes or tissues. Here we hypothesized that the N6-Methyladenosine (m6A) modification of the RNA in the leukocytes is responsible for the cellular dysfunction in chronic kidney diseases. Patients with chronic kidney diseases had significantly less m6A abundances in leukocytes and elevated RNA demethylase FTO proteins. The uremic toxin, indoxyl sulfate, activated the autophagy flux through modulation of FTO and m6A modifications in RNA. Notably, knockdown of FTO or inhibit the m6A by 3-deazaadenosine blocks the effects of indoxyl sulfate on autophagy activation in cells. These findings provide new insights into the mechanisms underlying chronic kidney disease-associated cellular dysfunction. Targeting RNA m6A modification may be a novel strategy for the treatment of chronic kidney diseases and autophagy.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, 350, Taiwan.
| | - Tien-An Lin
- Department of General Surgery, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Yun Ho
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Jih-Kai Yeh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Lung Tsai
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Kuo-Chun Hung
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - I-Chang Hsieh
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| | - Ming-Shien Wen
- Department of Cardiology, Chang Gung Memorial Hospital, and Chang Gung University College of Medicine, Taiwan
| |
Collapse
|
17
|
Zhou P, Wu M, Ye C, Xu Q, Wang L. Meclofenamic acid promotes cisplatin-induced acute kidney injury by inhibiting fat mass and obesity-associated protein-mediated m 6A abrogation in RNA. J Biol Chem 2019; 294:16908-16917. [PMID: 31578283 DOI: 10.1074/jbc.ra119.011009] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 12/31/2022] Open
Abstract
The role of RNA methylation on the sixth N atom of adenylate (m6A) in acute kidney injury (AKI) is unknown. FTO (fat mass and obesity-associated protein) reverses the m6A modification in cisplatin-induced AKI. Here, we aimed to determine FTO's role in AKI. We induced AKI in c57BL/6 mice by intraperitoneal cisplatin injection and treated the animal with vehicle or an FTO inhibitor meclofenamic acid (MA) for 3 days. Moreover, as an in vitro model, human kidney proximal tubular cells (HK2 cells) were treated with cisplatin. We found that the cisplatin treatment reduces FTO expression and increases m6A levels in vivo and in vitro MA aggravated renal damage and increased apoptosis in cisplatin-treated kidneys, phenotypes that were correlated with reduced FTO expression and increased m6A levels. Moreover, MA promoted apoptosis in cisplatin-treated HK2 cells, which was correlated with the reduced FTO expression and increased m6A in HK2 cells. FTO protein overexpression reduced m6A levels and inhibited apoptosis in cisplatin-treated HK2 cells and also blocked the MA-induced increase in m6A levels and apoptosis rates. In agreement, overexpression of the m6A-generating methyltransferase-like 3 and 14 (METTL3 and METTL14) or siRNA-mediated FTO knockdown promoted apoptosis and enhanced m6A levels in cisplatin-treated HK2 cells. MA increased p53 mRNA and protein levels in AKI both in vitro and in vivo, and FTO overexpression reduced p53 expression and reversed the MA-induced p53 increase in AKI. In conclusion, reduced renal FTO expression in cisplatin-induced AKI increases RNA m6A levels and aggravates renal damages.
Collapse
Affiliation(s)
- Peihui Zhou
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Ming Wu
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Traditional Chinese Medicine Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 200011, China
| | - Chaoyang Ye
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Traditional Chinese Medicine Institute of Kidney Disease of Shanghai University of Traditional Chinese Medicine, Key Laboratory of Liver and Kidney Diseases, Ministry of Education, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 200011, China
| | - Qingqing Xu
- Department of Nephrology, Ningbo First Hospital Ningbo Hospital of Zhejiang University, Ningbo 315000, China
| | - Li Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
18
|
MiR-122 marks the differences between subcutaneous and visceral adipose tissues and associates with the outcome of bariatric surgery. Obes Res Clin Pract 2018; 12:570-577. [PMID: 29960868 DOI: 10.1016/j.orcp.2018.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/23/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
The physiological roles and clinical impacts of the differences between visceral fat (VF) and subcutaneous fat (SF) are unclear. The present study aimed to compare the miRNA signatures between visceral fat (VF) and subcutaneous fat (SF) and study their influences on outcomes of bariatric surgery. To study the microRNA signatures of the VF and SF in obesity, we performed paired microRNA arrays of the adipose tissues from 20 bariatric surgery patients. The microRNA analysis identified miR-122 as the most significant signature between VF and SF. The tissue distribution, functions, and influences on adipogensis of miR-122 were analysed by Northern blotting, microRNA mimics and inhibitors, and whole-genome microarray analysis. The outcomes of body weight changes after bariatric surgery were analysed and correlated with the miR-122 abundances. Northern blotting confirmed that miR-122 was highly expressed in VF and SF. Bioinformatics analysis of the microarray revealed that proliferator activator receptor-γ (PPAR-γ) signalling was critically affected by miR-122. The modulation of PPAR-γ by miR-122 was confirmed in murine adipocytes and human adipose tissues. Furthermore, the differentiation of preadipocytes was significantly influenced by miR-122. In obese patients receiving bariatric surgery, the ratio of VF and SF miR-122 abundance correlated with 6-month and 1-year % excess body weight loss. Our findings indicate that miR-122 is highly expressed in adipose tissue. The abundance of miR-122 affects PPAR-γ signalling and adipocytes differentiation in vitro and human adipose tissues. Higher miR-122 in VF may be associated with greater body weight loss after bariatric surgery.
Collapse
|
19
|
Nutter CA, Kuyumcu-Martinez MN. Emerging roles of RNA-binding proteins in diabetes and their therapeutic potential in diabetic complications. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29280295 DOI: 10.1002/wrna.1459] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/19/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
Diabetes is a debilitating health care problem affecting 422 million people around the world. Diabetic patients suffer from multisystemic complications that can cause mortality and morbidity. Recent advancements in high-throughput next-generation RNA-sequencing and computational algorithms led to the discovery of aberrant posttranscriptional gene regulatory programs in diabetes. However, very little is known about how these regulatory programs are mis-regulated in diabetes. RNA-binding proteins (RBPs) are important regulators of posttranscriptional RNA networks, which are also dysregulated in diabetes. Human genetic studies provide new evidence that polymorphisms and mutations in RBPs are linked to diabetes. Therefore, we will discuss the emerging roles of RBPs in abnormal posttranscriptional gene expression in diabetes. Questions that will be addressed are: Which posttranscriptional mechanisms are disrupted in diabetes? Which RBPs are responsible for such changes under diabetic conditions? How are RBPs altered in diabetes? How does dysregulation of RBPs contribute to diabetes? Can we target RBPs using RNA-based methods to restore gene expression profiles in diabetic patients? Studying the evolving roles of RBPs in diabetes is critical not only for a comprehensive understanding of diabetes pathogenesis but also to design RNA-based therapeutic approaches for diabetic complications. WIREs RNA 2018, 9:e1459. doi: 10.1002/wrna.1459 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Curtis A Nutter
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Muge N Kuyumcu-Martinez
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas.,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
20
|
Wang CY, Lin MH, Su HT. A Method for Measuring RNA N 6-methyladenosine Modifications in Cells and Tissues. J Vis Exp 2016. [PMID: 28060253 PMCID: PMC5226359 DOI: 10.3791/54672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
N6-Methyladenosine (m6A) modifications of RNA are diverse and ubiquitous amongst eukaryotes. They occur in mRNA, rRNA, tRNA, and microRNA. Recent studies have revealed that these reversible RNA modifications affect RNA splicing, translation, degradation, and localization. Multiple physiological processes, like circadian rhythms, stem cell pluripotency, fibrosis, triglyceride metabolism, and obesity are also controlled by m6A modifications. Immunoprecipitation/sequencing, mass spectrometry, and modified northern blotting are some of the methods commonly employed to measure m6A modifications. Herein, we present a northeastern blotting technique for measuring m6A modifications. The current protocol provides good size separation of RNA, better accommodation and standardization for various experimental designs, and clear delineation of m6A modifications in various sources of RNA. While m6A modifications are known to have a crucial impact on human physiology relating to circadian rhythms and obesity, their roles in other (patho)physiological states are unclear. Therefore, investigations on m6A modifications have immense possibility to provide key insights into molecular physiology.
Collapse
Affiliation(s)
- Chao-Yung Wang
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine;
| | - Mei-Hsiu Lin
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine
| | - Hui-Ting Su
- Department of Cardiology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine
| |
Collapse
|