1
|
Kato H. Dr. Jekyll and Mr. Hyde in sand fly saliva. Parasitol Int 2025; 105:102998. [PMID: 39581305 DOI: 10.1016/j.parint.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phlebotomine sand flies are very small hematophagous insects, and some species transmit human pathogens, such as Leishmania protozoa. Similar to other hematophagous insects, sand flies possess unique bioactive substances in their saliva to facilitate blood feeding. Active transcriptome and proteome analyses revealed that sand flies have unique molecules in their saliva that are structurally different from those of other arthropods. These components exert anticoagulant, antiplatelet, vasodilator, and anti-inflammatory effects on the host, and the unique bioactivities of each molecule are currently being characterized. Several bioactivities of salivary components have been associated with the exacerbation of Leishmania infection, and investigations on the molecular mechanisms responsible are underway. On the other hand, host immunity to some salivary components has been shown to confer protection against Leishmania infection, suggesting the potential of salivary components as vaccine candidates. Although some negative effects of protection by sand fly saliva have been reported, the identification of suitable immunogens and elucidation of appropriate protective immunity are expected for the development of a sand fly saliva vaccine against Leishmania infection.
Collapse
Affiliation(s)
- Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke city, Tochigi 329-0498, Japan.
| |
Collapse
|
2
|
Nascimento AADS, da Cunha IGM, Pereira MH, Sant'Anna MRV, Reis AB, Gontijo NF. Dog complement system is less effective against Leishmania infantum than human complement. Vet Parasitol 2024; 332:110324. [PMID: 39369469 DOI: 10.1016/j.vetpar.2024.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Dogs are important reservoir hosts for Leishmania infantum, the causative agent of visceral leishmaniasis. The complement system, as part of the innate immune defense, is responsible for initiating the fight against pathogens that may invade an organism. A failure of the complement to combat L. infantum may explain, at least in part, why a mammal species is more or less susceptible to visceral leishmaniasis. The objective of this study was to compare the effectiveness of human and dog complement systems against L. infantum parasites. The results showed that dog serum was less effective than human serum at killing promastigote and amastigote-like forms. We also compared the efficiency of human and canine sera in classic and alternative hemolytic assays, as well as the serum efficiency of non-infected and Leishmania-infected dogs. Serum from dogs was less hemolytic than human serum in both pathways tested, but the efficiency of serum from infected dogs was higher than that of non-infected dogs. When testing C3b deposition assays on parasite surfaces, serum from infected dogs was more effective against amastigote-like forms than serum from non-infected dogs. However, both types of serum proved equally effective on promastigotes, while serum from infected dogs was more effective on amastigote-like forms. Considering the efficiency of the complement system, our results indicate that dogs are more susceptible to visceral leishmaniasis than humans are.
Collapse
Affiliation(s)
- Alexandre Alves de Sousa Nascimento
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Caixa postal 486, Belo Horizonte, MG CEP: 31270-901, Brazil.
| | - Isabella Góes Mantini da Cunha
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Caixa postal 486, Belo Horizonte, MG CEP: 31270-901, Brazil.
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Caixa postal 486, Belo Horizonte, MG CEP: 31270-901, Brazil.
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Caixa postal 486, Belo Horizonte, MG CEP: 31270-901, Brazil.
| | - Alexandre Barbosa Reis
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia, ICB, Universidade Federal de Minas Gerais, Caixa postal 486, Belo Horizonte, MG CEP: 31270-901, Brazil.
| |
Collapse
|
3
|
Sant'Anna MRV, Pereira-Filho AA, Mendes-Sousa AF, Silva NCS, Gontijo NF, Pereira MH, Koerich LB, D'Avila Pessoa GC, Andersen J, Araujo RN. Inhibition of vertebrate complement system by hematophagous arthropods: inhibitory molecules, mechanisms, physiological roles, and applications. INSECT SCIENCE 2024; 31:1334-1352. [PMID: 38246860 DOI: 10.1111/1744-7917.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/28/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024]
Abstract
In arthropods, hematophagy has arisen several times throughout evolution. This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds. On the other hand, blood-sucking arthropods must overcome problems brought on by blood intake and digestion. Host blood complement acts on the bite site and is still active after ingestion, so complement activation is a potential threat to the host's skin feeding environment and to the arthropod gut enterocytes. During evolution, blood-sucking arthropods have selected, either in their saliva or gut, anticomplement molecules that inactivate host blood complement. This review presents an overview of the complement system and discusses the arthropod's salivary and gut anticomplement molecules studied to date, exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface. The possible therapeutic applications of arthropod's anticomplement molecules are also discussed.
Collapse
Affiliation(s)
- Mauricio Roberto Vianna Sant'Anna
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Adalberto Alves Pereira-Filho
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Naylene Carvalho Sales Silva
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder Figueiredo Gontijo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Marcos Horácio Pereira
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Leonardo Barbosa Koerich
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Grasielle Caldas D'Avila Pessoa
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ricardo Nascimento Araujo
- Department of Parasitology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
4
|
Andersen JF, Lei H, Strayer EC, Pham V, Ribeiro JMC. Mechanism of complement inhibition by a mosquito protein revealed through cryo-EM. Commun Biol 2024; 7:649. [PMID: 38802531 PMCID: PMC11130238 DOI: 10.1038/s42003-024-06351-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/17/2024] [Indexed: 05/29/2024] Open
Abstract
Salivary complement inhibitors occur in many of the blood feeding arthropod species responsible for transmission of pathogens. During feeding, these inhibitors prevent the production of proinflammatory anaphylatoxins, which may interfere with feeding, and limit formation of the membrane attack complex which could damage arthropod gut tissues. Salivary inhibitors are, in many cases, novel proteins which may be pharmaceutically useful or display unusual mechanisms that could be exploited pharmaceutically. Albicin is a potent inhibitor of the alternative pathway of complement from the saliva of the malaria transmitting mosquito, Anopheles albimanus. Here we describe the cryo-EM structure of albicin bound to C3bBb, the alternative C3 convertase, a proteolytic complex that is responsible for cleavage of C3 and amplification of the complement response. Albicin is shown to induce dimerization of C3bBb, in a manner similar to the bacterial inhibitor SCIN, to form an inactive complex unable to bind the substrate C3. Size exclusion chromatography and structures determined after 30 minutes of incubation of C3b, factor B (FB), factor D (FD) and albicin indicate that FBb dissociates from the inhibited dimeric complex leaving a C3b-albicin dimeric complex which apparently decays more slowly.
Collapse
Affiliation(s)
- John F Andersen
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA.
| | - Haotian Lei
- NIH-NIAID, Research Technologies Branch, Bethesda, MD, USA
| | - Ethan C Strayer
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
- Biological and Biomedical Sciences Program, Yale University, New Haven, CT, USA
| | - Van Pham
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| | - José M C Ribeiro
- NIH-NIAID, Laboratory of Malaria and Vector Research, Rockville, MD, USA
| |
Collapse
|
5
|
Fayaz S, Bahrami F, Parvizi P, Fard-Esfahani P, Ajdary S. An overview of the sand fly salivary proteins in vaccine development against leishmaniases. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:792-801. [PMID: 36721440 PMCID: PMC9867623 DOI: 10.18502/ijm.v14i6.11253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Leishmaniases are a group of vector-borne parasitic diseases transmitted through the infected sand flies. Leishmania parasites are inoculated into the host skin along with sand fly saliva. The sand fly saliva consists of biologically active molecules with anticoagulant, anti-inflammatory, and immunomodulatory properties. Such properties help the parasite circumvent the host's immune responses. The salivary compounds support the survival and multiplication of the parasite and facilitate the disease progression. It is documented that frequent exposure to uninfected sand fly bites produces neutralizing antibodies against specific salivary proteins and further activates the cellular mechanisms to prevent the establishment of the disease. The immune responses due to sand fly saliva are highly specific and depend on the composition of the salivary molecules. Hence, thorough knowledge of these compounds in different sand fly species and information about their antigenicity are paramount to designing an effective vaccine. Herein, we review the composition of the sand fly saliva, immunomodulatory properties of some of its components, immune responses to its proteins, and potential vaccine candidates against leishmaniases.
Collapse
Affiliation(s)
- Shima Fayaz
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Fariborz Bahrami
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | | | - Soheila Ajdary
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran,Corresponding author: Soheila Ajdary, Ph.D, Department of Immunology, Pasteur Institute of Iran, Tehran, Iran. Tel: +98-2166968857 Fax: +98-2166968857 ;
| |
Collapse
|
6
|
Evasion of the complement system by Leishmania through the uptake of factor H, a complement regulatory protein. Acta Trop 2021; 224:106152. [PMID: 34599886 DOI: 10.1016/j.actatropica.2021.106152] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/21/2022]
Abstract
Escaping the complement system is an important step in the establishment of infections. Some pathogens have acquired the ability to inactivate the complement system to ensure successful infection. This has been observed in parasites from the genus Leishmania, which inactivate C3b molecules deposited on their surface through the membrane protease GP63. In the present study, we describe a new mechanism that also acts through C3b inactivation. This mechanism involves the binding of the complement regulatory molecule factor H from serum. Factor H signals a plasma protease (factor I) to inactivate C3b molecules deposited on the surface of the parasites. According to our results, Leishmania infantum, L. amazonensis, and L. braziliensis recruit factor H from human serum. The absorption of factor H by L. infantum was studied in detail to better understand how it works. L. infantum binds factor H from human serum and factor H-like proteins from dog serum. When exposed to purified factor H, promastigotes bind this regulatory molecule and inactivate C3b in the presence of factor I. This indicates the existence of an as yet unidentified factor H-binding outer surface molecule functioning as a receptor. The two mechanisms (GP63 and factor H binding) work independently, as Leishmania promastigotes with inhibited GP63 can easily inactivate C3b molecules on the surface of the parasite. The identification of the factor H receptor could lead to the development of a vaccine target for leishmaniasis control, as blocking antibodies to factor H binding could impair the mechanism of C3b inactivation, making the parasite more susceptible to the complement system.
Collapse
|
7
|
Garrigues RJ, Powell-Pierce AD, Hammel M, Skare JT, Garcia BL. A Structural Basis for Inhibition of the Complement Initiator Protease C1r by Lyme Disease Spirochetes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2856-2867. [PMID: 34759015 PMCID: PMC8612984 DOI: 10.4049/jimmunol.2100815] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022]
Abstract
Complement evasion is a hallmark of extracellular microbial pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. Lyme disease spirochetes express nearly a dozen outer surface lipoproteins that bind complement components and interfere with their native activities. Among these, BBK32 is unique in its selective inhibition of the classical pathway. BBK32 blocks activation of this pathway by selectively binding and inhibiting the C1r serine protease of the first component of complement, C1. To understand the structural basis for BBK32-mediated C1r inhibition, we performed crystallography and size-exclusion chromatography-coupled small angle X-ray scattering experiments, which revealed a molecular model of BBK32-C in complex with activated human C1r. Structure-guided site-directed mutagenesis was combined with surface plasmon resonance binding experiments and assays of complement function to validate the predicted molecular interface. Analysis of the structures shows that BBK32 inhibits activated forms of C1r by occluding substrate interaction subsites (i.e., S1 and S1') and reveals a surprising role for C1r B loop-interacting residues for full inhibitory activity of BBK32. The studies reported in this article provide for the first time (to our knowledge) a structural basis for classical pathway-specific inhibition by a human pathogen.
Collapse
Affiliation(s)
- Ryan J Garrigues
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Alexandra D Powell-Pierce
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan/College Station, TX; and
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Jon T Skare
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M University, Bryan/College Station, TX; and
| | - Brandon L Garcia
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC;
| |
Collapse
|
8
|
Schneider CA, Calvo E, Peterson KE. Arboviruses: How Saliva Impacts the Journey from Vector to Host. Int J Mol Sci 2021; 22:ijms22179173. [PMID: 34502092 PMCID: PMC8431069 DOI: 10.3390/ijms22179173] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/21/2022] Open
Abstract
Arthropod-borne viruses, referred to collectively as arboviruses, infect millions of people worldwide each year and have the potential to cause severe disease. They are predominately transmitted to humans through blood-feeding behavior of three main groups of biting arthropods: ticks, mosquitoes, and sandflies. The pathogens harbored by these blood-feeding arthropods (BFA) are transferred to animal hosts through deposition of virus-rich saliva into the skin. Sometimes these infections become systemic and can lead to neuro-invasion and life-threatening viral encephalitis. Factors intrinsic to the arboviral vectors can greatly influence the pathogenicity and virulence of infections, with mounting evidence that BFA saliva and salivary proteins can shift the trajectory of viral infection in the host. This review provides an overview of arbovirus infection and ways in which vectors influence viral pathogenesis. In particular, we focus on how saliva and salivary gland extracts from the three dominant arbovirus vectors impact the trajectory of the cellular immune response to arbovirus infection in the skin.
Collapse
Affiliation(s)
- Christine A. Schneider
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
| | - Eric Calvo
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA;
| | - Karin E. Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA;
- Correspondence:
| |
Collapse
|
9
|
Guimaraes-Costa AB, Shannon JP, Waclawiak I, Oliveira J, Meneses C, de Castro W, Wen X, Brzostowski J, Serafim TD, Andersen JF, Hickman HD, Kamhawi S, Valenzuela JG, Oliveira F. A sand fly salivary protein acts as a neutrophil chemoattractant. Nat Commun 2021; 12:3213. [PMID: 34050141 PMCID: PMC8163758 DOI: 10.1038/s41467-021-23002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Apart from bacterial formyl peptides or viral chemokine mimicry, a non-vertebrate or insect protein that directly attracts mammalian innate cells such as neutrophils has not been molecularly characterized. Here, we show that members of sand fly yellow salivary proteins induce in vitro chemotaxis of mouse, canine and human neutrophils in transwell migration or EZ-TAXIScan assays. We demonstrate murine neutrophil recruitment in vivo using flow cytometry and two-photon intravital microscopy in Lysozyme-M-eGFP transgenic mice. We establish that the structure of this ~ 45 kDa neutrophil chemotactic protein does not resemble that of known chemokines. This chemoattractant acts through a G-protein-coupled receptor and is dependent on calcium influx. Of significance, this chemoattractant protein enhances lesion pathology (P < 0.0001) and increases parasite burden (P < 0.001) in mice upon co-injection with Leishmania parasites, underlining the impact of the sand fly salivary yellow proteins on disease outcome. These findings show that some arthropod vector-derived factors, such as this chemotactic salivary protein, activate rather than inhibit the host innate immune response, and that pathogens take advantage of these inflammatory responses to establish in the host. Immune mimicry has been shown in chemokine like moieties from bacteria and viruses. Here, the authors characterise a sand fly salivary protein that induces neutrophil chemotaxis and explore its impact in a model of parasitic infection.
Collapse
Affiliation(s)
- Anderson B Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.,Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - John P Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ingrid Waclawiak
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Jullyanna Oliveira
- Laboratório de Imunobiologia das Leishmanioses, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Waldione de Castro
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Xi Wen
- Chemotaxis Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Joseph Brzostowski
- Twinbrook Imaging Facility, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Heather D Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| |
Collapse
|
10
|
Emmons TR, Giridharan T, Singel KL, Khan ANH, Ricciuti J, Howard K, Silva-Del Toro SL, Debreceni IL, Aarts CEM, Brouwer MC, Suzuki S, Kuijpers TW, Jongerius I, Allen LAH, Ferreira VP, Schubart A, Sellner H, Eder J, Holland SM, Ram S, Lederer JA, Eng KH, Moysich KB, Odunsi K, Yaffe MB, Zsiros E, Segal BH. Mechanisms Driving Neutrophil-Induced T-cell Immunoparalysis in Ovarian Cancer. Cancer Immunol Res 2021; 9:790-810. [PMID: 33990375 DOI: 10.1158/2326-6066.cir-20-0922] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/05/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
T-cell activation and expansion in the tumor microenvironment (TME) are critical for antitumor immunity. Neutrophils in the TME acquire a complement-dependent T-cell suppressor phenotype that is characterized by inhibition of T-cell proliferation and activation through mechanisms distinct from those of myeloid-derived suppressor cells. In this study, we used ascites fluid supernatants (ASC) from patients with ovarian cancer as an authentic component of the TME to evaluate the effects of ASC on neutrophil function and mechanisms for neutrophil-driven immune suppression. ASC prolonged neutrophil life span, decreased neutrophil density, and induced nuclear hypersegmentation. Mass cytometry analysis showed that ASC induced 15 distinct neutrophil clusters. ASC stimulated complement deposition and signaling in neutrophils, resulting in surface mobilization of granule constituents, including NADPH oxidase. NADPH oxidase activation and phosphatidylserine signaling were required for neutrophil suppressor function, although we did not observe a direct role of extracellular reactive oxygen species in inhibiting T-cell proliferation. Postoperative surgical drainage fluid also induced a complement-dependent neutrophil suppressor phenotype, pointing to this effect as a general response to injury. Like circulating lymphocytes, ASC-activated neutrophils caused complement-dependent suppression of tumor-associated lymphocytes. ASC-activated neutrophils adhered to T cells and caused trogocytosis of T-cell membranes. These injury and signaling cues resulted in T-cell immunoparalysis characterized by impaired NFAT translocation, IL2 production, glucose uptake, mitochondrial function, and mTOR activation. Our results demonstrate that complement-dependent priming of neutrophil effector functions in the TME induces a T-cell nonresponsiveness distinct from established checkpoint pathways and identify targets for immunotherapy.See related Spotlight by Cassatella, p. 725.
Collapse
Affiliation(s)
- Tiffany R Emmons
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Thejaswini Giridharan
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kelly L Singel
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Anm Nazmul H Khan
- Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Jason Ricciuti
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kaitlyn Howard
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Ivy L Debreceni
- Inflammation Program and Immunology Graduate Training Program, University of Iowa, Iowa City, Iowa
| | - Cathelijn E M Aarts
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Sora Suzuki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Taco W Kuijpers
- Department of Blood Cell Research, Sanquin Research and Landsteiner Laboratory, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research, Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children's Hospital, Amsterdam UMC, Amsterdam, the Netherlands
| | - Lee-Ann H Allen
- Inflammation Program, Departments of Medicine and Microbiology and Immunology, University of Iowa, Iowa City, Iowa
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Anna Schubart
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Holger Sellner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Jörg Eder
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Steven M Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kevin H Eng
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kirsten B Moysich
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Michael B Yaffe
- Center for Precision Cancer Medicine, Departments of Biological Engineering and Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Division of Acute Care Surgery, Trauma and Surgical Critical Care, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Emese Zsiros
- Department of Gynecologic Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Brahm H Segal
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York. .,Department of Internal Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, New York.,Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
11
|
Rêgo FD, Soares RP. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021; 93:e20200254. [PMID: 33950136 DOI: 10.1590/0001-37652021xxxx] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.
Collapse
Affiliation(s)
- Felipe D Rêgo
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| |
Collapse
|
12
|
Immune response dynamics and Lutzomyia longipalpis exposure characterize a biosignature of visceral leishmaniasis susceptibility in a canine cohort. PLoS Negl Trop Dis 2021; 15:e0009137. [PMID: 33617528 PMCID: PMC7943000 DOI: 10.1371/journal.pntd.0009137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 03/09/2021] [Accepted: 01/12/2021] [Indexed: 12/29/2022] Open
Abstract
Background Reports have shown correlations between the immune response to vector saliva and Leishmaniasis outcome. We followed dogs in an endemic area for two years characterizing resistance or susceptibility to canine visceral leishmaniasis (CVL) according to Leishmania infantum diagnosis and clinical development criteria. Then, we aimed to identify a biosignature based on parasite load, serum biological mediators’ interactions, and vector exposure intensity associated with CVL resistance and susceptibility. Methodology/Principal findings A prospective two-year study was conducted in an area endemic for CVL. Dogs were evaluated at 6-month intervals to determine infection, clinical manifestations, immune profile, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. After two years, 78% of the dogs were infected with L. infantum (53% susceptible and 47% resistant to CVL). Susceptible dogs presented higher splenic parasite load as well as persistence of the parasite during the follow-up, compared to resistant ones. Susceptible dogs also displayed a higher number of correlations among the investigated biological mediators, before and after infection diagnosis. At baseline, anti-saliva antibodies, indicative of exposure to the vector, were detected in 62% of the dogs, reaching 100% in one year. Higher sandfly exposure increased the risk of susceptibility to CVL by 1.6 times (CI: 1.11–2.41). We identified a discriminatory biosignature between the resistant and susceptible dogs assessing splenic parasite load, interaction of biological mediators, PGE2 serum levels and intensity of exposure to sandfly. All these parameters were elevated in susceptible dogs compared to resistant animals. Conclusions/Significance The biosignature identified in our study reinforces the idea that CVL is a complex multifactorial disease that is affected by a set of factors which are correlated and, for a better understanding of CVL, should not be evaluated in an isolated way. Visceral Leishmaniasis (VL) is a disease that can affect humans and dogs, caused by a parasite called Leishmania transmitted through the bite of sandfly insects. During the bite, together with the parasite, the insects also inoculate their saliva into the host. The host immune response produces molecules to the sandfly saliva, such as antibodies and cytokines that can impact VL resistance or susceptibility. The presence of these molecules also indicates if the insects bit the hosts. We followed dogs of a VL endemic area for two years to study Canine Visceral Leishmaniasis (CVL) and immune response to sandfly saliva. Dogs were evaluated at 6-month intervals to determine Leishmania infection, clinical manifestations, parasite load, immune response, and sandfly exposure. CVL resistance or susceptibility was determined upon the conclusion of the study. Dogs living in the endemic area were intensely bitten, as at the beginning of the study, 62% of the dogs present anti-saliva antibodies, reaching 100% after one year. Our findings revealed a biosignature of CVL susceptibility characterized by elevated parasite load, interaction of cytokines, and higher exposure to the sandfly. This data reinforced that CVL is a complex disease affected by several factors related to each other.
Collapse
|
13
|
Costa GCA, Ribeiro ICT, Melo-Junior O, Gontijo NF, Sant'Anna MRV, Pereira MH, Pessoa GCD, Koerich LB, Oliveira F, Valenzuela JG, Giunchetti RC, Fujiwara RT, Bartholomeu DC, Araujo RN. Amblyomma sculptum Salivary Protease Inhibitors as Potential Anti-Tick Vaccines. Front Immunol 2021; 11:611104. [PMID: 33633731 PMCID: PMC7901972 DOI: 10.3389/fimmu.2020.611104] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022] Open
Abstract
Amblyomma sculptum is the main tick associated with human bites in Brazil and the main vector of Rickettsia rickettsii, the causative agent of the most severe form of Brazilian spotted fever. Molecules produced in the salivary glands are directly related to feeding success and vector competence. In the present study, we identified sequences of A. sculptum salivary proteins that may be involved in hematophagy and selected three proteins that underwent functional characterization and evaluation as vaccine antigens. Among the three proteins selected, one contained a Kunitz_bovine pancreatic trypsin inhibitor domain (named AsKunitz) and the other two belonged to the 8.9 kDa and basic tail families of tick salivary proteins (named As8.9kDa and AsBasicTail). Expression of the messenger RNA (mRNA) encoding all three proteins was detected in the larvae, nymphs, and females at basal levels in unfed ticks and the expression levels increased after the start of feeding. Recombinant proteins rAs8.9kDa and rAsBasicTail inhibited the enzymatic activity of factor Xa, thrombin, and trypsin, whereas rAsKunitz inhibited only thrombin activity. All three recombinant proteins inhibited the hemolysis of both the classical and alternative pathways; this is the first description of tick members of the Kunitz and 8.9kDa families being inhibitors of the classical complement pathway. Mice immunization with recombinant proteins caused efficacies against A. sculptum females from 59.4% with rAsBasicTail immunization to more than 85% by immunization with rAsKunitz and rAs8.9kDa. The mortality of nymphs fed on immunized mice reached 70–100%. Therefore, all three proteins are potential antigens with the possibility of becoming a new tool in the control of A. sculptum.
Collapse
Affiliation(s)
- Gabriel Cerqueira Alves Costa
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Izabela Cosso Tavares Ribeiro
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Otoni Melo-Junior
- Laboratory of Cell-Cell Interactions, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nelder F Gontijo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Marcos H Pereira
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Grasielle C D Pessoa
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo B Koerich
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jesus G Valenzuela
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo Toshio Fujiwara
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella Castanheira Bartholomeu
- Laboratory of Immunology and Genomics of Parasites, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ricardo N Araujo
- Laboratory of Physiology of Hematophagous Insects, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Understanding the immune responses involved in mediating protection or immunopathology during leishmaniasis. Biochem Soc Trans 2021; 49:297-311. [PMID: 33449103 DOI: 10.1042/bst20200606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/18/2020] [Accepted: 12/23/2020] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a vector-borne Neglected Tropical Disease (NTD) transmitted by the sand fly and is a major public health problem worldwide. Infections caused by Leishmania clinically manifest as a wide range of diseases, such as cutaneous (CL), diffuse cutaneous (DCL), mucosal (MCL) and visceral leishmaniasis (VL). The host innate and adaptative immune responses play critical roles in the defense against leishmaniasis. However, Leishmania parasites also manipulate the host immune response for their survival and replication. In addition, other factors such as sand fly salivary proteins and microbiota also promote disease susceptibility and parasite spread by modulating local immune response. Thus, a complex interplay between parasite, sand fly and the host immunity governs disease severity and outcome. In this review, we discuss the host immune response during Leishmania infection and highlight the factors associated with resistance or susceptibility.
Collapse
|
15
|
RÊGO FELIPED, SOARES RODRIGOPEDRO. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
16
|
Strayer EC, Lu S, Ribeiro J, Andersen JF. Salivary complement inhibitors from mosquitoes: Structure and mechanism of action. J Biol Chem 2020; 296:100083. [PMID: 33199367 PMCID: PMC7948415 DOI: 10.1074/jbc.ra120.015230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Inhibition of the alternative pathway (AP) of complement by saliva from Anopheles mosquitoes facilitates feeding by blocking production of the anaphylatoxins C3a and C5a, which activate mast cells leading to plasma extravasation, pain, and itching. We have previously shown that albicin, a member of the SG7 protein family from An. Albimanus, blocks the AP by binding to and inhibiting the function of the C3 convertase, C3bBb. Here we show that SG7.AF, the albicin homolog from An. freeborni, has a similar potency to albicin but is more active in the presence of properdin, a plasma protein that acts to stabilize C3bBb. Conversely, albicin is highly active in the absence or presence of properdin. Albicin and SG7.AF stabilize the C3bBb complex in a form that accumulates on surface plasmon resonance (SPR) surfaces coated with properdin, but SG7.AF binds with lower affinity than albicin. Albicin induces oligomerization of the complex in solution, suggesting that it is oligomerization that leads to stabilization on SPR surfaces. Anophensin, the albicin ortholog from An. stephensi, is only weakly active as an inhibitor of the AP, suggesting that the SG7 family may play a different functional role in this species and other species of the subgenus Cellia, containing the major malaria vectors in Africa and Asia. Crystal structures of albicin and SG7.AF reveal a novel four-helix bundle arrangement that is stabilized by an N-terminal hydrogen bonding network. These structures provide insight into the SG7 family and related mosquito salivary proteins including the platelet-inhibitory 30 kDa family.
Collapse
Affiliation(s)
- Ethan C Strayer
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Stephen Lu
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - Jose Ribeiro
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA
| | - John F Andersen
- Laboratory of Malaria and Vector Research, NIH-NIAID, Rockville, Maryland, USA.
| |
Collapse
|
17
|
Chen JY, Galwankar NS, Emch HN, Menon SS, Cortes C, Thurman JM, Merrill SA, Brodsky RA, Ferreira VP. Properdin Is a Key Player in Lysis of Red Blood Cells and Complement Activation on Endothelial Cells in Hemolytic Anemias Caused by Complement Dysregulation. Front Immunol 2020; 11:1460. [PMID: 32793201 PMCID: PMC7387411 DOI: 10.3389/fimmu.2020.01460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
The complement system alternative pathway (AP) can be activated excessively in inflammatory diseases, particularly when there is defective complement regulation. For instance, deficiency in complement regulators CD55 and CD59, leads to paroxysmal nocturnal hemoglobinuria (PNH), whereas Factor H mutations predispose to atypical hemolytic uremic syndrome (aHUS), both causing severe thrombohemolysis. Despite eculizumab being the treatment for these diseases, benefits vary considerably among patients. Understanding the molecular mechanisms involved in complement regulation is essential for developing new treatments. Properdin, the positive AP regulator, is essential for complement amplification by stabilizing enzymatic convertases. In this study, the role of properdin in red blood cell (RBC) lysis and endothelial cell opsonization in these AP-mediated diseases was addressed by developing in vitro assays using PNH patient RBCs and human primary endothelial cells, where the effects of inhibiting properdin, using novel monoclonal antibodies (MoAbs) that we generated and characterized, were compared to other complement inhibitors. In in vitro models of PNH, properdin inhibition prevented hemolysis of patient PNH type II and III RBCs more than inhibition of Factor B, C3, and C5 (>17-fold, or >81-fold, or >12-fold lower molar IC90 values, respectively). When tested in an in vitro aHUS hemolysis model, the anti-properdin MoAbs had 11-fold, and 86-fold lower molar IC90 values than inhibition of Factor B, or C3, respectively (P < 0.0001). When comparing target/inhibitor ratios in all hemolysis assays, inhibiting properdin was at least as efficient as the other complement inhibitors in most cases. In addition, using in vitro endothelial cell assays, the data indicate a critical novel role for properdin in promoting complement activation on human endothelial cells exposed to heme (a hemolysis by-product) and rH19-20 (to inhibit Factor H cell-surface protection), as occurs in aHUS. Inhibition of properdin or C3 in this system significantly reduced C3 fragment deposition by 75%. Altogether, the data indicate properdin is key in promoting RBC lysis and complement activation on human endothelial cells, contributing to the understanding of PNH and aHUS pathogenesis. Further studies to determine therapeutic values of inhibiting properdin in complement-mediated diseases, in particular those that are characterized by AP dysregulation, are warranted.
Collapse
Affiliation(s)
- Jin Y Chen
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Neeti S Galwankar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Heather N Emch
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel A Merrill
- Section of Hematology/Oncology, Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
18
|
Pereira-Filho AA, Mateus Pereira RH, da Silva NCS, Ferreira Malta LG, Serravite AM, Carvalho de Almeida CG, Fujiwara RT, Bartholomeu DC, Giunchetti RC, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Araujo RN, Gontijo NDF, Viana Sant'Anna MR. The gut anti-complement activity of Aedes aegypti: Investigating new ways to control the major human arboviruses vector in the Americas. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103338. [PMID: 32126277 DOI: 10.1016/j.ibmb.2020.103338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Aedes aegypti is the main urban vector of dengue virus, chikungunya virus and Zika virus due to its great dispersal capacity and virus susceptibility. A. aegypti feed on plant-derived sugars but females need a blood meal for egg maturation. Haematophagous arthropods need to overcome host haemostasis and local immune reactions in order to take a blood meal. In this context, molecules present in the saliva and/or intestinal contents of these arthropods must contain inhibitors of the complement system (CS). CS salivary and/or intestinal inhibitors are crucial to protect gut cells of haematophagous arthropods against complement attack. The present work aimed to investigate the anti-complement activity of A. aegypti intestinal contents on the alternative, classical and lectin pathways of the human complement system. Here we show that A. aegypti gut contents inhibited the human classical and the lectin pathways but not the alternative pathway. The A. aegypti gut content has a serine protease able to specifically cleave and inactivate human C4, which is a novel mechanism for human complement inactivation in haematophagous arthropods. The gut of female A. aegypti was capable of capturing human serum factor H (a negative complement modulator), unlike males. C3 molecules in recently blood-fed female A. aegypti remain in their original state, being inactivated to iC3b soon after a blood feed. A transmission-blocking vaccine using these complement inhibitory proteins as antigens has the potential to interfere with the insect's survival, reproductive fitness and block their infection by the arboviruses they transmit to humans.
Collapse
Affiliation(s)
- Adalberto Alves Pereira-Filho
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Henrique Mateus Pereira
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Naylene Carvalho Sales da Silva
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Luccas Gabriel Ferreira Malta
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Artur Metzker Serravite
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Caio Gabriel Carvalho de Almeida
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Toshio Fujiwara
- Department of Parasitology, Laboratory of Immunology and Genomics of Parasites, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Daniella Castanheira Bartholomeu
- Department of Parasitology, Laboratory of Immunology and Genomics of Parasites, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Laboratory of Cell-Cell Interactions, Morphology Department, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Leonardo Barbosa Koerich
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Marcos Horácio Pereira
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Nascimento Araujo
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Nelder de Figueiredo Gontijo
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Physiology of Haematophagous Insects Laboratory, Department of Parasitology, Biological Sciences Institute, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Polanska N, Ishemgulova A, Volfova V, Flegontov P, Votypka J, Yurchenko V, Volf P. Sergentomyia schwetzi: Salivary gland transcriptome, proteome and enzymatic activities in two lineages adapted to different blood sources. PLoS One 2020; 15:e0230537. [PMID: 32208452 PMCID: PMC7092997 DOI: 10.1371/journal.pone.0230537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/02/2020] [Indexed: 11/18/2022] Open
Abstract
During the blood feeding, sand fly females inject saliva containing immunomodulatory and anti-haemostatic molecules into their vertebrate hosts. The saliva composition is species-specific, likely due to an adaptation to particular haemostatic pathways of their preferred host. Research on sand fly saliva is limited to the representatives of two best-studied genera, Phlebotomus and Lutzomyia. Although the members of the genus Sergentomyia are highly abundant in many areas in the Old World, their role in human disease transmission remains uncertain. Most Sergentomyia spp. preferentially attack various species of reptiles, but feeding on warm-blooded vertebrates, including humans and domestic animals, has been repeatedly described, especially for Sergentomyia schwetzi, of which salivary gland transcriptome and proteome is analyzed in the current study. Illumina RNA sequencing and de novo assembly of the reads and their annotation revealed 17,293 sequences homologous to other arthropods’ proteins. In the sialome, all proteins typical for sand fly saliva were identified–antigen 5-related, lufaxin, yellow-related, PpSP15-like, D7-related, ParSP25-like, and silk proteins, as well as less frequent salivary proteins included 71kDa-like, ParSP80-like, SP16-like, and ParSP17-like proteins. Salivary enzymes include apyrase, hyaluronidase, endonuclease, amylase, lipase A2, adenosine deaminase, pyrophosphatase, 5’nucleotidase, and ribonuclease. Proteomics analysis of salivary glands identified 631 proteins, 81 of which are likely secreted into the saliva. We also compared two S. schwetzi lineages derived from the same origin. These lineages were adapted for over 40 generations for blood feeding either on mice (S-M) or geckos (S-G), two vertebrate hosts with different haemostatic mechanisms. Altogether, 20 and 40 annotated salivary transcripts were up-regulated in the S-M and S-G lineage, respectively. Proteomic comparison revealed ten salivary proteins more abundant in the lineage S-M, whereas 66 salivary proteins were enriched in the lineage S-G. No difference between lineages was found for apyrase activity; contrarily the hyaluronidase activity was significantly higher in the lineage feeding on mice.
Collapse
Affiliation(s)
- Nikola Polanska
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Aygul Ishemgulova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vera Volfova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Jan Votypka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
Saab NAA, Nascimento AAS, Queiroz DC, da Cunha IGM, Filho AAP, D'Ávila Pessoa GC, Koerich LB, Pereira MH, Sant'Anna MRV, Araújo RN, Gontijo NF. How Lutzomyia longipalpis deals with the complement system present in the ingested blood: The role of soluble inhibitors and the adsorption of factor H by midgut. JOURNAL OF INSECT PHYSIOLOGY 2020; 120:103992. [PMID: 31816296 DOI: 10.1016/j.jinsphys.2019.103992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Complement inhibitors are present in all hematophagous arthropods. Lutzomyia longipalpis is an important vector of Leishmania infantum, the etiologic agent of visceral leishmaniasis in the Americas. Studies with this vector identified complement inhibitors and respective inhibitory mechanisms. Despite the studies conducted with L. longipalpis, there is a gap in the knowledge about what happens in vivo with the complement present in the blood ingested. The experiments reported here show that the soluble inhibitor present in the intestinal lumen can act on the classical pathway of the human complement system by inhibiting the cascade soon after the activation of the C4 component. This means that this inhibitor can inhibit both the classical and lectin pathways. In the absence of salivary or gut inhibitors, the intestinal epithelium can activate the alternative pathway. At the same time, it can activate the lectin and the classical pathways by binding of MBL as well as by an antibody-independent C1 deposition mechanism. Without the salivary and intestinal inhibitors, the sand fly midgut epithelium may be more susceptible to complement attack as indicated by the C9/C3 deposition ratio when compared with intestines after a blood feed on a human host. In L. longipalpis, most of the C3 molecules present inside the midgut after a blood meal are found in their native form (not activated C3) or are present as iC3b (its inactivated form). C3b inactivation to iC3b, on the intestinal surface, is probably performed by a mechanism involving the uptake of factor H by the intestinal epithelium. Factor H is a negative complement regulator present in the plasma. Collectively, these results indicate how the complement inhibitors are necessary for a successful hematophagy in a sand fly model.
Collapse
Affiliation(s)
- Natália Alvim Araújo Saab
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Alexandre Alves Souza Nascimento
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Daniel Costa Queiroz
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Isabella Goés Mantini da Cunha
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Adalberto Alves Pereira Filho
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Grasielle Caldas D'Ávila Pessoa
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Leonardo Barbosa Koerich
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Marcos Horácio Pereira
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| | - Mauricio Roberto Viana Sant'Anna
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Ricardo Nascimento Araújo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| | - Nelder Figueiredo Gontijo
- Laboratório de Fisiologia de Insetos Hematófagos, Departamento de Parasitologia/ICB, Universidade Federal de Minas Gerais, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Mendes-Sousa AF, Rocha Filho EDA, Macêdo MA, Barros VC. Anti-complement activity in salivary glands and midgut of Chagas disease vector, Panstrongylus megistus (Hemiptera, Triatominae). Rev Inst Med Trop Sao Paulo 2019; 61:e38. [PMID: 31411268 PMCID: PMC6690578 DOI: 10.1590/s1678-9946201961038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/01/2019] [Indexed: 11/21/2022] Open
Abstract
The triatomine insect Panstrongylus megistus , one of the most
important Chagas disease vectors in Brazil, presents salivary molecules
pharmacologically active to counteract homeostatic responses from the host,
including inhibitors of the human complement system, a major effector of immune
responses. The aim of the present study was to investigate the effect of
P. megistus salivary gland extract (SGE) on the complement
system from different host species and characterize the inhibitory effect of SGE
and intestinal contents on human complement. Glands and midguts from fourth
instar nymphs were used. Hemolytic assays were performed with sheep erythrocytes
as complement activators by using human, rats and chickens sera in the presence
or absence of SGE. An ELISA assay was carried out detect deposition of the C3b
component on IgG- or agarose-sensitized microplates, in the presence or absence
of SGE or midgut contents. P. megistus SGE was able to
significantly inhibit the complement of the three studied species (human, rat
and chiken). Both, SGE and midgut contents inhibited C3b deposition in either
the classical or the alternative pathways. As conclusions, SGE and midgut from
P. megistus possess anti-complement activity. The
inhibitors are effective against different host species and act on the initial
steps of the complement system cascade. These inhibitors may have a role in
blood feeding and Trypanosoma cruzi transmission by the
vector.
Collapse
|
22
|
Jablonka W, Kim IH, Alvarenga PH, Valenzuela JG, Ribeiro JMC, Andersen JF. Functional and structural similarities of D7 proteins in the independently-evolved salivary secretions of sand flies and mosquitoes. Sci Rep 2019; 9:5340. [PMID: 30926880 PMCID: PMC6440969 DOI: 10.1038/s41598-019-41848-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/18/2019] [Indexed: 11/09/2022] Open
Abstract
The habit of blood feeding evolved independently in many insect orders of families. Sand flies and mosquitoes belong to separate lineages of blood-feeding Diptera and are thus considered to have evolved the trait independently. Because of this, sand fly salivary proteins differ structurally from those of mosquitoes, and orthologous groups are nearly impossible to define. An exception is the long-form D7-like proteins that show conservation with their mosquito counterparts of numerous residues associated with the N-terminal domain binding pocket. In mosquitoes, this pocket is responsible for the scavenging of proinflammatory cysteinyl leukotrienes and thromboxanes at the feeding site. Here we show that long-form D7 proteins AGE83092 and ABI15936 from the sand fly species, Phlebotomus papatasi and P. duboscqi, respectively, inhibit the activation of platelets by collagen and the thromboxane A2 analog U46619. Using isothermal titration calorimetry, we also demonstrate direct binding of U46619 and cysteinyl leukotrienes C4, D4 and E4 to the P. papatasi protein. The crystal structure of P. duboscqi ABI15936 was determined and found to contain two domains oriented similarly to those of the mosquito proteins. The N-terminal domain contains an apparent eicosanoid binding pocket. The C-terminal domain is smaller in overall size than in the mosquito D7s and is missing some helical elements. Consequently, it does not contain an obvious internal binding pocket for small-molecule ligands that bind to many mosquito D7s. Structural similarities indicate that mosquito and sand fly D7 proteins have evolved from similar progenitors, but phylogenetics and differences in intron/exon structure suggest that they may have acquired the ability to bind vertebrate eicosanoids independently, indicating a convergent evolution scenario.
Collapse
Affiliation(s)
- Willy Jablonka
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Il Hwan Kim
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Patricia H Alvarenga
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Jesus G Valenzuela
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - Jose M C Ribeiro
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA
| | - John F Andersen
- The Laboratory of Malaria and Vector Research, NIAID, National Institutes of Health, Rockville, Maryland, 20852, USA.
| |
Collapse
|
23
|
Arcà B, Ribeiro JM. Saliva of hematophagous insects: a multifaceted toolkit. CURRENT OPINION IN INSECT SCIENCE 2018; 29:102-109. [PMID: 30551815 DOI: 10.1016/j.cois.2018.07.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 07/20/2018] [Indexed: 06/09/2023]
Abstract
Transcriptomic, proteomic and genomic studies significantly improved our understanding of the complexity of blood feeding insect saliva providing unparalleled evolutionary insights. Salivary genes appeared to be under strong selective pressure with gene duplication and functional diversification being a powerful driver in the evolution of novel salivary genes/functions. The first insect salivary proteins responsible for complement inhibition were identified and a widespread mechanism of action shared by unrelated salivary protein families was recognized and named kratagonism. microRNAs were for the first time described in the saliva of a few blood feeding arthropods raising intriguing questions on their possible contribution to vertebrate host manipulation and pathogen transmission and further emphasizing how much we still have to learn on blood feeding insect saliva.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Josè Mc Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, 12735 Twinbrook Parkway, Rockville, MD 20852, USA
| |
Collapse
|
24
|
Batista LFS, Utsunomiya YT, Silva TBF, Carneiro MM, Paiva JSF, Silva RB, Tomokane TY, Rossi CN, Pacheco AD, Torrecilha RBP, Silveira FT, Marcondes M, Nunes CM, Laurenti MD. Canine leishmaniasis: Genome-wide analysis and antibody response to Lutzomyia longipalpis saliva. PLoS One 2018; 13:e0197215. [PMID: 29742167 PMCID: PMC5942812 DOI: 10.1371/journal.pone.0197215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023] Open
Abstract
The anti-inflammatory properties of sand fly saliva favor the establishment of the Leishmania infantum infection. In contrast, an antibody response against Lutzomyia longipalpis saliva is often associated with a protective cell-mediated response against canine visceral leishmaniasis. Genetic studies may demonstrate to what extent the ability to secrete anti-saliva antibodies depends on genetic or environmental factors. However, the genetic basis of canine antibody response against sand fly saliva has not been assessed. The aim of this study was to identify chromosomal regions associated with the anti-Lu. longipalpis salivary IgG response in 189 dogs resident in endemic areas in order to provide information for prophylactic strategies. Dogs were classified into five groups based on serological and parasitological diagnosis and clinical evaluation. Anti-salivary gland homogenate (SGH) IgG levels were assessed by Enzyme-Linked Immunosorbent Assay (ELISA). Genomic DNA was isolated from blood samples and genotyped using a SNP chip with 173,662 single nucleotide polymorphism (SNP) markers. The following linear regression model was fitted: IgG level = mean + origin + sex + age + use of a repellent collar, and the residuals were assumed as pseudo-phenotypes for the association test between phenotypes and genotypes (GWA). A component of variance model that takes into account polygenic and sample structure effects (EMMAX) was employed for GWA. Phenotypic findings indicated that anti-SGH IgG levels remained higher in exposed and subclinically infected dogs than in severely diseased dogs even in regression model residuals. Five associated markers were identified on chromosomes 2, 20 and 31. The mapped genes included CD180 (RP105) and MITF related to the rapid activation of B lymphocytes and differentiation into antibody-secreting plasma cells. The findings pointed to chromosomal segments useful for functional confirmation studies and a search for adjuvant molecules of the anti-saliva response.
Collapse
Affiliation(s)
- Luís F. S. Batista
- Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
- Escola de Saúde, Universidade Salvador, Salvador, Bahia, Brazil
| | - Yuri T. Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Thaís B. F. Silva
- Laboratório de Patologia de Doenças Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Thaíse Y. Tomokane
- Laboratório de Patologia de Doenças Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio N. Rossi
- Departmento de Clínica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Acácio D. Pacheco
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Rafaela B. P. Torrecilha
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Fernando T. Silveira
- Deparatmento de Parasitologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Mary Marcondes
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Cáris M. Nunes
- Departmento de Saúde Animal e Produção, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Márcia D. Laurenti
- Laboratório de Patologia de Doenças Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Jenny L, Dobó J, Gál P, Pál G, Lam WA, Schroeder V. MASP-1 of the complement system enhances clot formation in a microvascular whole blood flow model. PLoS One 2018; 13:e0191292. [PMID: 29324883 PMCID: PMC5764403 DOI: 10.1371/journal.pone.0191292] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 01/02/2018] [Indexed: 12/04/2022] Open
Abstract
The complement and coagulation systems closely interact with each other. These interactions are believed to contribute to the proinflammatory and prothrombotic environment involved in the development of thrombotic complications in many diseases. Complement MASP-1 (mannan-binding lectin-associated serine protease-1) activates coagulation factors and promotes clot formation. However, this was mainly shown in purified or plasma-based static systems. Here we describe the role of MASP-1 and complement activation in fibrin clot formation in a microvascular, whole blood flow model. This microfluidic system simulates blood flow through microvessels at physiological flow and shear rates and represents the closest model system to human physiology so far. It features parallel microchannels cultured with endothelial cells in a transparent microfluidic chip allowing real-time evaluation of clot formation by confocal microscopy. To test their effects on clot formation, we added the following activators or inhibitors (individually or in combination) to whole blood and performed perfusion experiments: rMASP-1cf (recombinant active form of MASP-1), complement activator zymosan, selective MASP-1 inhibitor SGMI-1 (based on the Schistocerca gregaria protease inhibitor scaffold), classical pathway inhibitor rSALO (recombinant salivary anti-complement from Lutzomyia longipalpis). Addition of rMASP-1cf resulted in accelerated fibrin clot formation while addition of SGMI-1 delayed it. Complement activation by zymosan led to increased clot formation and this effect was partially reversed by addition of rSALO and almost abolished in combination with SGMI-1. We show for the first time a strong influence of MASP-1, complement activation and pathway-specific inhibition on coagulation in a microvascular flow system that is closest to human physiology, further underpinning the in vivo relevance of coagulation and complement interactions.
Collapse
Affiliation(s)
- Lorenz Jenny
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - József Dobó
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | - Wilbur A. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
| | - Verena Schroeder
- Experimental Haemostasis Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Mendes-Sousa AF, Vale VF, Queiroz DC, Pereira-Filho AA, da Silva NCS, Koerich LB, Moreira LA, Pereira MH, Sant'Anna MR, Araújo RN, Andersen J, Valenzuela JG, Gontijo NF. Inhibition of the complement system by saliva of Anopheles (Nyssorhynchus) aquasalis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 92:12-20. [PMID: 29128668 PMCID: PMC6318795 DOI: 10.1016/j.ibmb.2017.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/19/2017] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
Anopheline mosquitoes are vectors of malaria parasites. Their saliva contains anti-hemostatic and immune-modulator molecules that favor blood feeding and parasite transmission. In this study, we describe the inhibition of the alternative pathway of the complement system (AP) by Anopheles aquasalis salivary gland extracts (SGE). According to our results, the inhibitor present in SGE acts on the initial step of the AP blocking deposition of C3b on the activation surfaces. Properdin, which is a positive regulatory molecule of the AP, binds to SGE. When SGE was treated with an excess of properdin, it was unable to inhibit the AP. Through SDS-PAGE analysis, A. aquasalis presented a salivary protein with the same molecular weight as recombinant complement inhibitors belonging to the SG7 family described in the saliva of other anopheline species. At least some SG7 proteins bind to properdin and are AP inhibitors. Searching for SG7 proteins in the A. aquasalis genome, we retrieved a salivary protein that shared an 85% identity with albicin, which is the salivary alternative pathway inhibitor from A. albimanus. This A. aquasalis sequence was also very similar (81% ID) to the SG7 protein from A. darlingi, which is also an AP inhibitor. Our results suggest that the salivary complement inhibitor from A. aquasalis is an SG7 protein that can inhibit the AP by binding to properdin and abrogating its stabilizing activity. Albicin, which is the SG7 from A. albimanus, can directly inhibit AP convertase. Given the high similarity of SG7 proteins, the SG7 from A. aquasalis may also directly inhibit AP convertase in the absence of properdin.
Collapse
Affiliation(s)
| | - Vladimir Fazito Vale
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | - Daniel Costa Queiroz
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | | | | | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | | | - Marcos Horácio Pereira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, UFMG, Belo Horizonte, MG, Brazil.
| | | | | | - John Andersen
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Jesus Gilberto Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | | |
Collapse
|
27
|
Blatt AZ, Saggu G, Cortes C, Herbert AP, Kavanagh D, Ricklin D, Lambris JD, Ferreira VP. Factor H C-Terminal Domains Are Critical for Regulation of Platelet/Granulocyte Aggregate Formation. Front Immunol 2017; 8:1586. [PMID: 29218045 PMCID: PMC5703703 DOI: 10.3389/fimmu.2017.01586] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/03/2017] [Indexed: 11/16/2022] Open
Abstract
Platelet/granulocyte aggregates (PGAs) increase thromboinflammation in the vasculature, and PGA formation is tightly controlled by the complement alternative pathway (AP) negative regulator, Factor H (FH). Mutations in FH are associated with the prothrombotic disease atypical hemolytic uremic syndrome (aHUS), yet it is unknown whether increased PGA formation contributes to the thrombosis seen in patients with aHUS. Here, flow cytometry assays were used to evaluate the effects of aHUS-related mutations on FH regulation of PGA formation and characterize the mechanism. Utilizing recombinant fragments of FH spanning the entire length of the protein, we mapped the regions of FH most critical for limiting AP activity on the surface of isolated human platelets and neutrophils, as well as the regions most critical for regulating PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP). FH domains 19–20 were the most critical for limiting AP activity on platelets, neutrophils, and at the platelet/granulocyte interface. The role of FH in PGA formation was attributed to its ability to regulate AP-mediated C5a generation. AHUS-related mutations in domains 19–20 caused differential effects on control of PGA formation and AP activity on platelets and neutrophils. Our data indicate FH C-terminal domains are key for regulating PGA formation, thus increased FH protection may have a beneficial impact on diseases characterized by increased PGA formation, such as cardiovascular disease. Additionally, aHUS-related mutations in domains 19–20 have varying effects on control of TRAP-mediated PGA formation, suggesting that some, but not all, aHUS-related mutations may cause increased PGA formation that contributes to excessive thrombosis in patients with aHUS.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Gurpanna Saggu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Andrew P Herbert
- The School of Chemistry, University of Edinburgh, Edinburgh, United Kingdom
| | - David Kavanagh
- The National Renal Complement Therapeutics Centre, Newcastle upon Tyne, United Kingdom.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
28
|
Mendes-Sousa AF, do Vale VF, Silva NCS, Guimaraes-Costa AB, Pereira MH, Sant'Anna MRV, Oliveira F, Kamhawi S, Ribeiro JMC, Andersen JF, Valenzuela JG, Araujo RN. The Sand Fly Salivary Protein Lufaxin Inhibits the Early Steps of the Alternative Pathway of Complement by Direct Binding to the Proconvertase C3b-B. Front Immunol 2017; 8:1065. [PMID: 28912782 PMCID: PMC5583147 DOI: 10.3389/fimmu.2017.01065] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 08/16/2017] [Indexed: 02/03/2023] Open
Abstract
Saliva of the blood feeding sand fly Lutzomyia longipalpis was previously shown to inhibit the alternative pathway (AP) of the complement system. Here, we have identified Lufaxin, a protein component in saliva, as the inhibitor of the AP. Lufaxin inhibited the deposition of C3b, Bb, Properdin, C5b, and C9b on agarose-coated plates in a dose-dependent manner. It also inhibited the activation of factor B in normal serum, but had no effect on the components of the membrane attack complex. Surface plasmon resonance (SPR) experiments demonstrated that Lufaxin stabilizes the C3b-B proconvertase complex when passed over a C3b surface in combination with factor B. Lufaxin was also shown to inhibit the activation of factor B by factor D in a reconstituted C3b-B, but did not inhibit the activation of C3 by reconstituted C3b-Bb. Proconvertase stabilization does not require the presence of divalent cations, but addition of Ni2+ increases the stability of complexes formed on SPR surfaces. Stabilization of the C3b-B complex to prevent C3 convertase formation (C3b-Bb formation) is a novel mechanism that differs from previously described strategies used by other organisms to inhibit the AP of the host complement system.
Collapse
Affiliation(s)
- Antonio F Mendes-Sousa
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Campus Senador Helvídio Nunes de Barros, Universidade Federal do Piauí, Picos, Piauí, Brazil
| | - Vladimir Fazito do Vale
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Laboratory of Simuliids and Onchocerciasis, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naylene C S Silva
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson B Guimaraes-Costa
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Marcos H Pereira
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio R V Sant'Anna
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - José M C Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - John F Andersen
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ricardo N Araujo
- Physiology of Hematophagous Insects Laboratory, Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Garcia BL, Zwarthoff SA, Rooijakkers SHM, Geisbrecht BV. Novel Evasion Mechanisms of the Classical Complement Pathway. THE JOURNAL OF IMMUNOLOGY 2017; 197:2051-60. [PMID: 27591336 DOI: 10.4049/jimmunol.1600863] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/23/2016] [Indexed: 12/20/2022]
Abstract
Complement is a network of soluble and cell surface-associated proteins that gives rise to a self-amplifying, yet tightly regulated system with fundamental roles in immune surveillance and clearance. Complement becomes activated on the surface of nonself cells by one of three initiating mechanisms known as the classical, lectin, and alternative pathways. Evasion of complement function is a hallmark of invasive pathogens and hematophagous organisms. Although many complement-inhibition strategies hinge on hijacking activities of endogenous complement regulatory proteins, an increasing number of uniquely evolved evasion molecules have been discovered over the past decade. In this review, we focus on several recent investigations that revealed mechanistically distinct inhibitors of the classical pathway. Because the classical pathway is an important and specific mediator of various autoimmune and inflammatory disorders, in-depth knowledge of novel evasion mechanisms could direct future development of therapeutic anti-inflammatory molecules.
Collapse
Affiliation(s)
- Brandon L Garcia
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| | - Seline A Zwarthoff
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Suzan H M Rooijakkers
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, the Netherlands
| | - Brian V Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506; and
| |
Collapse
|
30
|
Structure of SALO, a leishmaniasis vaccine candidate from the sand fly Lutzomyia longipalpis. PLoS Negl Trop Dis 2017; 11:e0005374. [PMID: 28278244 PMCID: PMC5344329 DOI: 10.1371/journal.pntd.0005374] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/30/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Immunity to the sand fly salivary protein SALO (Salivary Anticomplement of Lutzomyia longipalpis) protected hamsters against Leishmania infantum and L. braziliensis infection and, more recently, a vaccine combination of a genetically modified Leishmania with SALO conferred strong protection against L. donovani infection. Because of the importance of SALO as a potential component of a leishmaniasis vaccine, a plan to produce this recombinant protein for future scale manufacturing as well as knowledge of its structural characteristics are needed to move SALO forward for the clinical path. METHODOLOGY/PRINCIPAL FINDINGS Recombinant SALO was expressed as a soluble secreted protein using Pichia pastoris, rSALO(P), with yields of 1g/L and >99% purity as assessed by SEC-MALS and SDS-PAGE. Unlike its native counterpart, rSALO(P) does not inhibit the classical pathway of complement; however, antibodies to rSALO(P) inhibit the anti-complement activity of sand fly salivary gland homogenate. Immunization with rSALO(P) produces a delayed type hypersensitivity response in C57BL/6 mice, suggesting rSALO(P) lacked anti-complement activity but retained its immunogenicity. The structure of rSALO(P) was solved by S-SAD at Cu-Kalpha to 1.94 Å and refined to Rfactor 17%. SALO is ~80% helical, has no appreciable structural similarities to any human protein, and has limited structural similarity in the C-terminus to members of insect odorant binding proteins. SALO has three predicted human CD4+ T cell epitopes on surface exposed helices. CONCLUSIONS/SIGNIFICANCE The results indicate that SALO as expressed and purified from P. pastoris is suitable for further scale-up, manufacturing, and testing. SALO has a novel structure, is not similar to any human proteins, is immunogenic in rodents, and does not have the anti-complement activity observed in the native salivary protein which are all important attributes to move this vaccine candidate forward to the clinical path.
Collapse
|
31
|
Silva NCS, Vale VF, Franco PF, Gontijo NF, Valenzuela JG, Pereira MH, Sant'Anna MRV, Rodrigues DS, Lima WS, Fux B, Araujo RN. Saliva of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) inhibits classical and alternative complement pathways. Parasit Vectors 2016; 9:445. [PMID: 27515662 PMCID: PMC4982215 DOI: 10.1186/s13071-016-1726-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/25/2016] [Indexed: 01/17/2023] Open
Abstract
Background Rhipicephalus (Boophilus) microplus is the main ectoparasite affecting livestock worldwide. For a successful parasitism, ticks need to evade several immune responses of their hosts, including the activation of the complement system. In spite of the importance of R. microplus, previous work only identified one salivary molecule that blocks the complement system. The current study describes complement inhibitory activities induced by R. microplus salivary components and mechanisms elicited by putative salivary proteins on both classical and alternative complement pathways. Results We found that R. microplus saliva from fully- and partially engorged females was able to inhibit both pathways. Saliva acts strongly at the initial steps of both complement activation pathways. In the classical pathway, the saliva blocked C4 cleavage, and hence, deposition of C4b on the activation surface, suggesting that the inhibition occurs at some point between C1q and C4. In the alternative pathway, saliva acts by binding to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and reducing C3b production and deposition as well as cleavage of factor B. Saliva has no effect on formation or decay of the C6 to C8 components of the membrane attack complex. Conclusion The saliva of R. microplus is able to inhibit the early steps of classical and alternative pathways of the complement system. Saliva acts by blocking C4 cleavage and deposition of C4b on the classical pathway activation surface and, in the alternative pathway, saliva bind to initial components of the cascade (C3b and properdin) thereby preventing the C3 convertase formation and the production and deposition of additional C3b. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1726-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naylene C S Silva
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vladimir F Vale
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Laboratório de Simulídeos e Oncocercose, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Paula F Franco
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Nelder F Gontijo
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-591, Brazil
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, USA
| | - Marcos H Pereira
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-591, Brazil
| | - Mauricio R V Sant'Anna
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel S Rodrigues
- Empresa de Pesquisa Agropecuária de Minas Gerais, Fazenda Experimental Santa Rita, Rodovia MG 424 km 64, Caixa Postal 295, Prudente de Morais, 35701-970, MG, Brazil
| | - Walter S Lima
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Blima Fux
- Departamento de Patologia, Universidade Federal do Espírito Santo, Vitória, MG, Brazil
| | - Ricardo N Araujo
- Departamento de Parasitologia, Laboratório de Fisiologia de Insetos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, 21941-591, Brazil.
| |
Collapse
|
32
|
Molecular Diversity between Salivary Proteins from New World and Old World Sand Flies with Emphasis on Bichromomyia olmeca, the Sand Fly Vector of Leishmania mexicana in Mesoamerica. PLoS Negl Trop Dis 2016; 10:e0004771. [PMID: 27409591 PMCID: PMC4943706 DOI: 10.1371/journal.pntd.0004771] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/21/2016] [Indexed: 01/30/2023] Open
Abstract
Background Sand fly saliva has been shown to have proteins with potent biological activities, salivary proteins that can be used as biomarkers of vector exposure, and salivary proteins that are candidate vaccines against different forms of leishmaniasis. Sand fly salivary gland transcriptomic approach has contributed significantly to the identification and characterization of many of these salivary proteins from important Leishmania vectors; however, sand fly vectors in some regions of the world are still neglected, as Bichromomyia olmeca (formerly known as Lutzomyia olmeca olmeca), a proven vector of Leishmania mexicana in Mexico and Central America. Despite the importance of this vector in transmitting Leishmania parasite in Mesoamerica there is no information on the repertoire of B. olmeca salivary proteins and their relationship to salivary proteins from other sand fly species. Methods and Findings A cDNA library of the salivary glands of wild-caught B. olmeca was constructed, sequenced, and analyzed. We identified transcripts encoding for novel salivary proteins from this sand fly species and performed a comparative analysis between B. olmeca salivary proteins and those from other sand fly species. With this new information we present an updated catalog of the salivary proteins specific to New World sand flies and salivary proteins common to all sand fly species. We also report in this work the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein present in this sand fly species. Conclusions This study provides information on the first transcriptome of a sand fly from Mesoamerica and adds information to the limited repertoire of salivary transcriptomes from the Americas. This comparative analysis also shows a fast degree of evolution in salivary proteins from New World sand flies as compared with Old World sand flies. Leishmaniasis is a neglected disease caused by a parasite transmitted to the host by the bite of an infected sand fly. Sand fly saliva contains biologically active components that allow the sand fly to take a blood meal and also the parasite to spread in the host by countering the host immune mechanisms that fights the parasite. Research on sand fly saliva has allowed us to understand the biological functions of some of these proteins, to identify salivary proteins producing an immune response in different hosts and to select potential salivary vaccine that could be used to protect the host against the parasite. However, vectors transmitting different species of Leishmania in diverse regions of the world are still neglected. The present work focuses on the identification of the secreted proteins from the saliva of B. olmeca, a vector of Leishmania mexicana in North and Central America. We catalogued these proteins with those previously identified in other sand fly species from Old and New World. We showed here how conserved or divergent are these proteins families when comparing different sand fly species. We also report the anti-Factor Xa activity of Lofaxin, a salivary anticoagulant protein identified in the saliva of this sand fly species.
Collapse
|
33
|
Blatt AZ, Saggu G, Kulkarni KV, Cortes C, Thurman JM, Ricklin D, Lambris JD, Valenzuela JG, Ferreira VP. Properdin-Mediated C5a Production Enhances Stable Binding of Platelets to Granulocytes in Human Whole Blood. THE JOURNAL OF IMMUNOLOGY 2016; 196:4671-4680. [PMID: 27183616 DOI: 10.4049/jimmunol.1600040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 12/11/2022]
Abstract
Enhanced levels of platelet/granulocyte aggregates (PGAs) are found in patients suffering from many different inflammatory vascular diseases, and their formation in animal models of vascular disease is associated with increased thromboinflammation and worsened outcomes. The complement system, a part of the innate immune system, influences PGA formation, but the mechanisms for its effects are unknown. In this study, we have defined complement-mediated mechanisms that enhance PGA formation in human whole blood stimulated with thrombin receptor-activating peptide (TRAP) using ex vivo flow cytometry assays. We demonstrate that physiological properdin, a positive regulator of complement alternative pathway activity, increases PGA formation when added to TRAP-stimulated blood. All physiological properdin forms increase PGA formation, but properdin tetramers are the most efficient at increasing complement activity and PGA formation. Inhibition of endogenous properdin, either circulating in the blood or produced locally by leukocytes, impairs TRAP-mediated PGA formation to the same level as specific inhibition of either the alternative or classical pathway. Additionally, blocking the interaction of C5a with its cellular receptor prevents properdin-mediated increases in PGA formation. Adding either properdin tetramers or C5a to whole blood increases CD11b expression on granulocytes, and this increase is prevented by blockade of the C5a-C5a receptor axis. Finally, we demonstrate that the effects of properdin on PGA formation are tightly regulated by Factor H. Cumulatively, our data indicate that properdin enhances PGA formation via increased production of C5a, and that inhibition of properdin function has therapeutic potential to limit thromboinflammation in diseases characterized by increased PGA formation.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Gurpanna Saggu
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Koustubh V Kulkarni
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Claudio Cortes
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, Michigan
| | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel Ricklin
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Lambris
- Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, LMVR, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| |
Collapse
|