1
|
Mahjoubian M, Sadat Naeemi A, Sheykhan M. Comparative Toxicity of TiO 2 and Sn-Doped TiO 2 Nanoparticles in Zebrafish After Acute and Chronic Exposure. Biol Trace Elem Res 2024; 202:1-19. [PMID: 38472510 DOI: 10.1007/s12011-024-04127-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
This study was conducted to assess the toxicological potential of synthesized pure and Sn-doped TiO2 NPs (Sn-TiO2 NPs) in zebrafish after acute and chronic exposure. The pure TiO2 NPs, 4%, and 8% Sn-TiO2 NPs were synthesized and characterized using X-ray diffraction, Scanning Electron Microscope, diffuse reflectance spectra, dynamic light scattering, and zeta potential analyses. The pure TiO2 NPs, 4%, and 8% Sn-TiO2 NPs were spherical with average sizes of about 40, 28, and 21 nm, respectively, indicating significant size reduction of TiO2 NPs following Sn doping. According to our results, the LC50-96h increased in the order of 8% Sn-TiO2 NPs (45 mg L-1) < 4% Sn-TiO2 NPs (80.14 mg L-1) < pure TiO2 NPs (105.47 mg L-1), respectively. Exposure of fish to Sn-TiO2 NPs after 30 days resulted in more severe histopathological alterations in gills, liver, intestine, and kidneys than pure TiO2 NPs. Furthermore, Sn-doping significantly elevated malondialdehyde levels and micronuclei frequency, indicating increased oxidative stress and genotoxicity. Expression analysis revealed altered expression of various genes, including upregulation of pro-apoptotic Bax gene and downregulation of anti-apoptotic Bcl-2 gene, suggesting potential induction of apoptosis in response to Sn-doped NPs. Additionally, antioxidant genes (Gpx, Sod, Cat, and Ucp-2) and stress response gene (Hsp70) showed altered expression, suggesting complex cellular responses to mitigate the toxic effects. Overall, this study highlights the concerning impact of Sn-doping on the toxicity of TiO2 NPs in zebrafish and emphasizes the need for further research to elucidate the exact mechanisms underlying this enhanced toxicity.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mehdi Sheykhan
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
2
|
Di S, Qi P, Wu S, Wang Z, Zhao H, Zhao X, Wang X, Xu H, Wang X. Low-dose cadmium stress increases the bioaccumulation and toxicity of dinotefuran enantiomers in zebrafish (Danio rerio)? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116191. [PMID: 33316505 DOI: 10.1016/j.envpol.2020.116191] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Co-occurrence of pesticides and heavy metals has attracted extensive attention. The enantioselective behaviors of dinotefuran to aquatic organisms have not been reported, and the effects of cadmium (Cd) was absent, which were investigated in this study at environmentally relevant concentrations. The enantioselective accumulation and elimination of dinotefuran enantiomers were observed in zebrafish, and it had tissue specificity. The S-dinotefuran concentrations were higher than R-dinotefuran in heads and viscera, but it was opposite in muscles. There existed competition between S-dinotefuran and R-dinotefuran, and the existence of S-dinotefuran might decrease the accumulation and elimination of the R-dinotefuran in zebrafish. When co-exposure to Cd and dinotefuran, the accumulation concentrations of dinotefuran enantiomers increased in zebrafish at the initial stage, which were opposite latterly. The accumulation concentrations of R-dinotefuran in R + Cd treatment in fish were 3.4 times higher than those in R-dinotefuran treatment, and the enantiomer fraction (EF) values changed from 0.484 to 0.195. The oxidative stress of S-dinotefuran on zebrafish was highest, followed by rac- and R-dinotefuran. Co-exposure to Cd led to toxicity increase for R-dinotefuran, the malonaldehyde (MDA) content decreased significantly in R + Cd treatment during 7-28 days, while obvious declination of MDA contents was found on the 28th day in R-dinotefuran treatment. Furthermore, compared to R-dinotefuran treatment, Cd increased the relative expression of cz-sod (3.4 times), cas3 (1.6 times) and p53 (5.7 times) in R + Cd treatment. The co-exposure of Cd might alter the environmental behaviors and toxicity effects of dinotefuran enantiomers in zebrafish, including the enantioselectivity. The effects of Cd on accumulation and toxicity of R-dinotefuran were greater than those on S-dinotefuran. Thus, it is necessary to consider the effects of coexistent metals to chiral pesticides in ecological risk. SUMMARIZES: The enantioselective accumulation and elimination of dinotefuran enantiomers had tissue specificity. Cd increased the accumulation and toxicity of R-dinotefuran in zebrafish.
Collapse
Affiliation(s)
- Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Peipei Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Zhiwei Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Huiyu Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Hao Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/ Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang, Institute of Quality and Standard of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China; Agricultural Ministry Key Laboratory for Pesticide Residue Detection, Hangzhou, 310021, PR China.
| |
Collapse
|
3
|
Mahjoubian M, Naeemi AS, Sheykhan M. Toxicological effects of Ag 2O and Ag 2CO 3 doped TiO 2 nanoparticles and pure TiO 2 particles on zebrafish (Danio rerio). CHEMOSPHERE 2021; 263:128182. [PMID: 33297149 DOI: 10.1016/j.chemosphere.2020.128182] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 06/12/2023]
Abstract
In this study, the toxic effects of silver oxide and silver carbonate doped TiO2 nanoparticles (Ag2O-TiO2 NPs and Ag2CO3-TiO2NPs), TiO2 nanoparticles (TiO2 NPs), and bulk TiO2 on gene expression, lipid peroxidation, genotoxicity, and histological alterations in zebrafish (Danio rerio) was assessed. The physicochemical properties of the synthesized nanoparticles were evaluated by X-ray diffraction (XRD), Scanning Electron Microscope (SEM), diffuse reflectance spectroscopy (DRS), dynamic light scattering (DLS), and Zeta potential analyses. TiO2NPs after doping with Ag showed shift to higher wavelengths and decrease of band gap energy. Also, remarkable reduction in the size of Ag-doped TiO2NPs in comparison with the TiO2 NPs was observed. According to our results, acute toxicity increased in the order of bulk TiO2 < TiO2 NPs < Ag2O-TiO2NPs < Ag2CO3-TiO2NPs, respectively. Results of sub-lethal experiments after 30 days of exposure, showed higher expression of Gpx, Hsp70, Ucp-2, and Bax genes, and lower expression of Bcl-2 gene in Ag-doped TiO2NPs than pure TiO2 particles (TiO2 NPs and bulk TiO2) treatments (p < 0.05). However, the mRNA levels of SOD and CAT genes were significantly higher in pure TiO2 particles than doped TiO2NPs (p < 0.05). Moreover, levels of malondialdehyde, abnormalities of peripheral blood cells and severity of histological lesions in liver, gill, intestine and kidney tissues were more evident in Ag-dopedTiO2 NPs than pure TiO2 particles. It can be concluded that Ag doping of TiO2 NPs significantly increased their toxicity and resulted in more histological lesions, apoptosis and oxidative stress than pure TiO2 particles in adult zebrafish.
Collapse
Affiliation(s)
- Maryam Mahjoubian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Akram Sadat Naeemi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran.
| | - Mehdi Sheykhan
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
4
|
Qian L, Zhang J, Chen X, Qi S, Wu P, Wang C, Wang C. Toxic effects of boscalid in adult zebrafish (Danio rerio) on carbohydrate and lipid metabolism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:775-782. [PMID: 30721868 DOI: 10.1016/j.envpol.2019.01.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Boscalid as one of the most widely used succinate dehydrogenase inhibitor (SDHI) fungicides has been frequently detected in both freshwater and estuarine environments. Its acute toxic effects on zebrafish and freshwater algae have been reported in our previous studies. To further investigate its chronic toxic effects to aquatic organisms, adult zebrafish were exposed for 28 days to a series of environmentally relevant boscalid concentrations in this study. Growth indicators and histopathology were determined in this study. Results indicated that boscalid inhibited the growth of zebrafish and induced damage in the kidneys and liver. Carbohydrate and lipid metabolism as the key pathways of energy metabolism in growth of zebrafish were also investigated. Results showed boscalid caused an increase in the activity of hexokinase (HK), the content of glycogen, glucose-6-phosphatase (G6Pase), and insulin (INS) in liver and a decrease in blood glucose content and succinate dehydrogenase (SDH) activity. Boscalid reduced the total content of triacylglyceride (TG) and cholesterol (TC) and the activity of fatty acid synthase (FAS) and acetyl coenzyme A carboxylase (ACC) in the liver. Correspondingly, expression of the genes related to carbohydrate and lipid metabolism in liver and intestine was affected by boscalid, especially in the significant upregulation of G6Pase and pparα and downregulation of SGLT-1 and AMY. Results suggested that boscalid could affect carbohydrate metabolism of adult zebrafish via regulation of gluconeogenesis and glycolysis at 0.1 mg/L. Moreover, boscalid might induce an increase in β-oxidation and a decrease in lipid synthesis at 0.01 mg/L. In conclusion, our study identified that carbohydrate and lipid metabolism are the possible biological pathways that mediate boscalid-induced developmental effects.
Collapse
Affiliation(s)
- Le Qian
- College of Sciences, China Agricultural University, Beijing, China
| | - Jie Zhang
- College of Sciences, China Agricultural University, Beijing, China
| | - Xiangguang Chen
- College of Sciences, China Agricultural University, Beijing, China
| | - Suzhen Qi
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Agricultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Peizhuo Wu
- College of Sciences, China Agricultural University, Beijing, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
He Z, Xu Y, Wang W, Liu X. Stereoselective bioaccumulation and elimination of chiral PCBs 95 and 149 in earthworm Eisenia fetida. CHEMOSPHERE 2018; 212:497-503. [PMID: 30153619 DOI: 10.1016/j.chemosphere.2018.08.075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The chiral signatures and environmental behaviors of chiral polychlorinated biphenyls (PCBs) have been extensively studied. However, information regarding chiral PCBs in invertebrates, especially earthworms, is limited. This study aimed to investigate the stereoselective bioaccumulation, elimination, and biotransformation of chiral PCBs 95 and 149 in an earthworm-soil system. Preferential enrichment of (+)-atropisomers and elimination of (-)-atropisomers were observed, for both PCBs 95 and 149, during the uptake and elimination phases, respectively, leading to higher enantiomer fractions (EFs). A significant linear correlation between the total concentrations of chiral PCBs and EF values was found in earthworms. The EF values increased with the increase in exposure time and further increased during the elimination phase, indicating the biotransformation of chiral PCBs. Hydroxylated metabolites of PCB 95 were found in earthworms for the first time, thus verifying the ability of earthworms to metabolize chiral PCBs. However, no methylsulfonyl metabolites were observed for PCBs 95 and 149. These findings might be helpful for understanding the biological processes of chiral PCBs in species at lower trophic levels.
Collapse
Affiliation(s)
- Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | - Yaping Xu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China
| | - Wenwen Wang
- Agilent Technologies (China) Company, Ltd., Beijing 100102, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, PR China.
| |
Collapse
|
6
|
He Z, Wang Y, Zhang Y, Cheng H, Liu X. Stereoselective bioaccumulation of chiral PCB 91 in earthworm and its metabolomic and lipidomic responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:421-430. [PMID: 29587213 DOI: 10.1016/j.envpol.2018.03.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/03/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
Stereoselective bioaccumulation, elimination, metabolomic and lipidomic responses of earthworm Eisenia fetida exposed to chiral polychlorinated biphenyl (PCB) 91 in an earthworm-soil system were investigated. Preferential bioaccumulation of (-)-PCB 91 and elimination of (+)-PCB 91 were observed following 50 and 500 μg/kgdwt exposures. Enantiomer fraction (EF) values decreased over time during the uptake and elimination periods. Metabolomics and lipidomics techniques based on ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) revealed significant changes in 108 metabolites after earthworms exposure to (+)-, (-)-, and (±)-PCB 91, compared to control groups. Forty two of these metabolites were identified as amino acids, nucleosides, fatty acids, dicarboxylic acids, vitamins or others. Lysophospholipids including six lysophosphatidylcholines (LPC), six lysophosphatidylethanolamine (LPE), eight lysophosphatidylinositol (LPI) and five lysophosphatidylserine (LPS) were also differentially expressed between exposure and control groups. Alterations in the levels of metabolites and lipids indicated stereoselective effects of chiral PCB 91 on earthworm amino acid, energy, and nucleotide metabolism, neurodevelopment and gene expression. Overall, the effects of (+)-PCB 91 were more pronounced than that of (-)- and (±)-PCB 91.
Collapse
Affiliation(s)
- Zeying He
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China
| | - Yuehua Wang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China
| | - Yanwei Zhang
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China
| | - Haiyan Cheng
- SCIEX, Analytical Instrument Trading Co., Ltd, Beijing, 100015, PR China
| | - Xiaowei Liu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety, Ministry of Agriculture, Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300191, PR China.
| |
Collapse
|
7
|
Chai T, Cui F, Song Y, Ye L, Li T, Qiu J, Liu X. Enantioselective Toxicity in Adult Zebrafish ( Danio rerio) Induced by Chiral PCB91 through Multiple Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5448-5458. [PMID: 29641891 DOI: 10.1021/acs.est.8b00023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study aimed to further investigate the toxic mechanism of chiral polychlorinated biphenyl (PCB) 91 in adult zebrafish ( Danio rerio) exposed to racemic (rac-), (+)-, or (-)-PCB91 for 63 days. The enantioselective mortalities of adult zebrafish exposed to rac-/(+)-/(-)-PCB91 were 95.86, 50.08, and 81.50%, respectively. Tubular necrosis and cellular hypertrophy occurred in the kidneys of (-)-PCB91-treated groups, whereas demyelination and immune cell infiltration occurred in brains of the rac-, (+)-, and (-)-PCB91-treated groups. Additionally, exposure to chiral PCB91 enantioselectively induced neurotoxicity, apoptosis, and inflammation in brain tissues owing to perturbations of gene expression, protein content and sphingolipid levels. The high mortality after rac-/(+)-PCB91 exposure might be due to toxic effects on brain tissue, while the high mortality after (-)-PCB91 exposure might be due to toxic effects on kidney as well as brain tissues. Thus, our findings offer an important reference for elucidating the enantioselective toxicological mechanism of chiral PCBs in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Feng Cui
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Yue Song
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety , Chinese Academy of Agricultural Sciences and Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture , Beijing 100081 , China
| | - Linlin Ye
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Tiantian Li
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety , Chinese Academy of Agricultural Sciences and Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture , Beijing 100081 , China
| | - Xingquan Liu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science , Zhejiang A & F University , Lin'an , Zhejiang 311300 , P.R. China
| |
Collapse
|
8
|
Singh R, Khatri P, Srivastava N, Jain S, Brahmachari V, Mukhopadhyay A, Mazumder S. Fluoride exposure abates pro-inflammatory response and induces in vivo apoptosis rendering zebrafish (Danio rerio) susceptible to bacterial infections. FISH & SHELLFISH IMMUNOLOGY 2017; 63:314-321. [PMID: 28223109 DOI: 10.1016/j.fsi.2017.02.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/21/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
The present study describes the immunotoxic effect of chronic fluoride exposure on adult zebrafish (Danio rerio). Zebrafish were exposed to fluoride (71.12 mg/L; 1/10 LC50) for 30 d and the expression of selected genes studied. We observed significant elevation in the detoxification pathway gene cyp1a suggesting chronic exposure to non-lethal concentration of fluoride is indeed toxic to fish. Fluoride mediated pro-oxidative stress is implicated with the downregulation in superoxide dismutase 1 and 2 (sod1/2) genes. Fluoride affected DNA repair machinery by abrogating the expression of the DNA repair gene rad51 and growth arrest and DNA damage inducible beta a gene gadd45ba. The upregulated expression of casp3a coupled with altered Bcl-2 associated X protein/B-cell lymphoma 2 ratio (baxa/bcl2a) clearly suggested chronic fluoride exposure induced the apoptotic cascade in zebrafish. Fluoride-exposed zebrafish when challenged with non-lethal dose of fish pathogen A. hydrophila revealed gross histopathology in spleen, bacterial persistence and significant mortality. We report that fluoride interferes with system-level output of pro-inflammatory cytokines tumour necrosis factor-α, interleukin-1β and interferon-γ, as a consequence, bacteria replicate efficiently causing significant fish mortality. We conclude, chronic fluoride exposure impairs the redox balance, affects DNA repair machinery with pro-apoptotic implications and suppresses pro-inflammatory cytokines expression abrogating host immunity to bacterial infections.
Collapse
Affiliation(s)
- Rashmi Singh
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Preeti Khatri
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Nidhi Srivastava
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shruti Jain
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Vani Brahmachari
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Asish Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal 700010, India
| | - Shibnath Mazumder
- Immunobiology Laboratory, Department of Zoology, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
9
|
Chai T, Cui F, Yin Z, Yang Y, Qiu J, Wang C. Chiral PCB 91 and 149 Toxicity Testing in Embryo and Larvae (Danio rerio): Application of Targeted Metabolomics via UPLC-MS/MS. Sci Rep 2016; 6:33481. [PMID: 27629264 PMCID: PMC5024159 DOI: 10.1038/srep33481] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
In this study, we aimed to investigate the dysfunction of zebrafish embryos and larvae induced by rac-/(+)-/(-)- PCB91 and rac-/(-)-/(+)- PCB149. UPLC-MS/MS (Ultra-performance liquid chromatography coupled with mass spectrometry) was employed to perform targeted metabolomics analysis, including the quantification of 22 amino acids and the semi-quantitation of 22 other metabolites. Stereoselective changes in target metabolites were observed in embryos and larvae after exposure to chiral PCB91 and PCB149, respectively. In addition, statistical analyses, including PCA and PLS-DA, combined with targeted metabolomics were conducted to identify the characteristic metabolites and the affected pathways. Most of the unique metabolites in embryos and larvae after PCB91/149 exposure were amino acids, and the affected pathways for zebrafish in the developmental stage were metabolic pathways. The stereoselective effects of PCB91/149 on the metabolic pathways of zebrafish embryos and larvae suggest that chiral PCB91/149 exposure has stereoselective toxicity on the developmental stages of zebrafish.
Collapse
Affiliation(s)
- Tingting Chai
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
- College of Science, China Agricultural University, Beijing 100193, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Yin
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Chai T, Cui F, Mu X, Yang Y, Qi S, Zhu L, Wang C, Qiu J. Stereoselective induction by 2,2',3,4',6-pentachlorobiphenyl in adult zebrafish (Danio rerio): Implication of chirality in oxidative stress and bioaccumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:66-76. [PMID: 27179325 DOI: 10.1016/j.envpol.2016.04.075] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/18/2016] [Accepted: 04/21/2016] [Indexed: 06/05/2023]
Abstract
This study aimed to investigate the oxidative stress process and bioaccumulation the racemic/(-)-/(+)- 2,2',3,4',6-pentachlorobiphenyl were administered to adult zebrafish (Danio rerio) after prolonged exposure of 56-days uptake and 49-days depuration experiments. Stereoselective accumulation was observed in adult samples after racemic exposure as revealed by decreased enantiomer fractions. The two enantiomers of PCB91 accumulated at different rates with logBCFk values close to 3.7, suggesting that they were highly hazardous and persistent pollutants. Exposure to racemic/(-)-/(+)- PCB91 stereoselectively induced oxidative stress owing to changes in reactive oxygen species, malondialdehyde contents, antioxidant enzyme activities and gene expressions in brain and liver tissues. In addition, the stereoselective relationship between bioconcentration and oxidative stress were also presented in this study. Our findings might be helpful for elucidating the environmental risk of the two enantiomers of PCB91 that induce toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Tingting Chai
- College of Science, China Agricultural University, Beijing 100193, China; Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiyan Mu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Suzhen Qi
- College of Science, China Agricultural University, Beijing 100193, China
| | - Lizhen Zhu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing 100081, China.
| |
Collapse
|
11
|
Chai T, Cui F, Mu X, Yang Y, Wang C, Qiu J. Exploration of Stereoselectivity in Embryo-Larvae (Danio rerio) Induced by Chiral PCB149 at the Bioconcentration and Gene Expression Levels. PLoS One 2016; 11:e0155263. [PMID: 27158819 PMCID: PMC4861327 DOI: 10.1371/journal.pone.0155263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/26/2016] [Indexed: 11/19/2022] Open
Abstract
This paper was designed to study stereoselective enrichment and changes in gene expression when zebrafish (Danio rerio) embryo-larvae were exposed to racemic, (-)- or (+)- PCB149 (2,2’,3,4’,5’,6- hexachlorobiphenyl). Based on bioconcentration analysis, non-racemic enrichment was significantly observed after racemic exposure. No isomerization between the two isomers was found after (-)/(+)-PCB149 exposure. Furthermore, based on gene expression-data mining, CYPs genes (cyp2k6, cyp19a1b, and cyp2aa4) were differential genes after (+)-PCB149 exposure. No obvious differences of dysregulation of gene expression caused by racemic and (-)-PCB149, were observed in embryo-larvae. The above results suggested that (-)-PCB149 could be considered as the main factor causing the dysregulation of gene expression in embryo-larvae after racemic exposure; and (+)-PCB149 should be pursued apart from the racemate, when considering the toxicity of chiral PCB149. Thus, the information in our study could provide new insights to assess the environmental risk of chiral PCBs in aquatic systems.
Collapse
Affiliation(s)
- Tingting Chai
- College of Science, China Agricultural University, Beijing, China
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Feng Cui
- College of Science, China Agricultural University, Beijing, China
| | - Xiyan Mu
- College of Science, China Agricultural University, Beijing, China
- Center of Fishery Resources and Ecology Environment Research, Chinese Academy of Fishery Sciences, Beijing, China
| | - Yang Yang
- College of Science, China Agricultural University, Beijing, China
| | - Chengju Wang
- College of Science, China Agricultural University, Beijing, China
- * E-mail: (CW); (JQ)
| | - Jing Qiu
- Institute of Quality Standards & Testing Technology for Agro-Products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture, Beijing, China
- * E-mail: (CW); (JQ)
| |
Collapse
|