1
|
Wei X, Lei L, Luo L, Zhou Y, Zheng Z, Chen W. Advances in osteoimmunomodulation of biomaterials after intrabone implantation: focus on surface hydrophilicity. J Mater Chem B 2024; 12:11089-11104. [PMID: 39387541 DOI: 10.1039/d4tb01907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Biomaterials intended for intrabone implantation are extensively utilized in orthopedic and dental applications. Their surface properties, particularly hydrophilicity, significantly influence the biological interactions surrounding the implant, ultimately determining the implant's in vivo fate. Recently, the role of osteoimmunomodulation in these implantable biomaterials has been recognized for its importance in regulating biomaterial-mediated osteogenesis. Consequently, it is imperative to elucidate the correlation between hydrophilicity and the immune response for the development of osteoimmunomodulatory implants. Herein, this review highlights recent advances in osteoimmunomodulation of biomaterials after intrabone implantation from a novel perspective-surface hydrophilicity, and summarizes the series of immune reactions and subsequent bone remodeling that occur in response to hydrophilic implants, focusing on protein adsorption, the behaviors of major immune cells, and osteoimmunomodulation-enhanced angiogenesis and osteogenesis. Hydrophilic biomaterials have the capacity to alter the surrounding immune microenvironment and accelerate the process of material-tissue bonding, thereby facilitating the successful integration of biomaterials with tissue. Collectively, the authors hope that this article provides strategies for modulating hydrophilicity to achieve osteoimmunomodulatory performance and further promotes the development of novel implantable biomaterials for orthopedic and dental applications.
Collapse
Affiliation(s)
- Xinpeng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Linshan Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Ling Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Ying Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zheng Zheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Wenchuan Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Oral Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Bezbradica JS, Bryant CE. Inflammasomes as regulators of mechano-immunity. EMBO Rep 2024; 25:21-30. [PMID: 38177903 PMCID: PMC10897344 DOI: 10.1038/s44319-023-00008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 01/06/2024] Open
Abstract
Mechano-immunity, the intersection between cellular or tissue mechanics and immune cell function, is emerging as an important factor in many inflammatory diseases. Mechano-sensing defines how cells detect mechanical changes in their environment. Mechano-response defines how cells adapt to such changes, e.g. form synapses, signal or migrate. Inflammasomes are intracellular immune sensors that detect changes in tissue and cell homoeostasis during infection or injury. We and others recently found that mechano-sensing of tissue topology (swollen tissue), topography (presence and distribution of foreign solid implant) or biomechanics (stiffness), alters inflammasome activity. Once activated, inflammasomes induce the secretion of inflammatory cytokines, but also change cellular mechanical properties, which influence how cells move, change their shape, and interact with other cells. When overactive, inflammasomes lead to chronic inflammation. This clearly places inflammasomes as important players in mechano-immunity. Here, we discuss a model whereby inflammasomes integrate pathogen- and tissue-injury signals, with changes in tissue mechanics, to shape the downstream inflammatory responses and allow cell and tissue mechano-adaptation. We will review the emerging evidence that supports this model.
Collapse
Affiliation(s)
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK.
| |
Collapse
|
3
|
Heath G, Semple SL, Rodríguez-Ramos T, Hardy S, Harrison P, Mulder IM, Power M, Dixon B. Surface material of acoustic transmitters influences the inflammatory response of rainbow trout (Oncorhynchus mykiss) during long-term implantation. Vet Immunol Immunopathol 2023; 264:110660. [PMID: 37820428 DOI: 10.1016/j.vetimm.2023.110660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Telemetry tags are a widely used technology for tracking animals that are difficult to observe in their natural environment. This technology has been increasingly used to monitor and study populations of high value salmonid species in Canadian waters. This study expands on a previous study of the impacts of tag implantation on the immune system of Rainbow Trout (Oncorhynchus mykiss). Pro-inflammatory cytokines and protein level markers were examined in fish that underwent peritoneal implantation of three tag types and compared to a sham surgery control group. The different materials on the surface of the tags showed differential immune induction extending over a two-month period. This included peritoneal total protein, IL-1β protein, the immunoglobulins IgT and IgM, as well as pro-inflammatory transcripts in the spleen. These results are suggestive of a prolonged, costly foreign body response which may be differentially induced by the different types of tag coating, with ceramic tags being least immunogenic. Examining tag impacts at the level of the immune system will facilitate the development of more biocompatible tags which will improve data fidelity. This will support more effective strategies for the management of fisheries resources.
Collapse
Affiliation(s)
- George Heath
- University of Waterloo, Department of Biology, Waterloo, Canada
| | - Shawna L Semple
- University of Waterloo, Department of Biology, Waterloo, Canada
| | | | - Sarah Hardy
- University of Waterloo, Department of Biology, Waterloo, Canada
| | - Philip Harrison
- Canadian Rivers Institute Faculty of Forestry and Environmental Management, University of New Brunswick, Fredericton, NB, Canada
| | | | - Michael Power
- University of Waterloo, Department of Biology, Waterloo, Canada
| | - Brian Dixon
- University of Waterloo, Department of Biology, Waterloo, Canada.
| |
Collapse
|
4
|
Braack KJ, Miles T, Amat F, Brown DJ, Atlas MD, Kuthubutheen J, Mulders WH, Prêle CM. Using x-ray micro computed tomography to quantify intracochlear fibrosis after cochlear implantation in a Guinea pig model. Heliyon 2023; 9:e19343. [PMID: 37662829 PMCID: PMC10474428 DOI: 10.1016/j.heliyon.2023.e19343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
Cochlear implants (CIs) allow individuals with profound hearing loss to understand speech and perceive sounds. However, not all patients obtain the full benefits that CIs can provide and the cause of this disparity is not fully understood. One possible factor for the variability in outcomes after cochlear implantation, is the development of fibrotic scar tissue around the implanted electrode. It has been hypothesised that limiting the extent of fibrosis after implantation may improve overall CI function, and longevity of the device. Currently, histology is often used to quantify the extent of intracochlear tissue growth after implantation however this method is labour intensive, time-consuming, often involves significant user bias, and causes physical distortion of the fibrosis. Therefore, this study aimed to evaluate x-ray micro computed tomography (μCT) as a method to measure the amount and distribution of fibrosis in a guinea pig model of cochlear implantation. Adult guinea pigs were implanted with an inactive electrode, and cochleae harvested eight weeks later (n = 7) and analysed using μCT, to quantify the extent of tissue reaction, followed by histological analysis to confirm that the tissue was indeed fibrotic. Cochleae harvested from an additional six animals following implantation were analysed by μCT, before and after contrast staining with osmium tetroxide (OsO4), to enhance the visualisation of soft tissues within the cochlea, including the tissue reaction. Independent analysis by two observers showed that the quantification method was robust and provided additional information on the distribution of the response within the cochlea. Histological analysis revealed that μCT visualised dense collagenous material and new bone formation but did not capture loose, areolar fibrotic tissue. Treatment with OsO4 significantly enhanced the visible tissue reaction detected using μCT. Overall, μCT is an alternative and reliable method that can be used to quantify the extent of the CI-induced intracochlear tissue response and will be a useful tool for the in vivo assessment of novel anti-fibrotic treatments.
Collapse
Affiliation(s)
- Kady J. Braack
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Tylah Miles
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
| | - Farah Amat
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Daniel J. Brown
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
| | - Marcus D. Atlas
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Ear Science Institute Australia, Subiaco, WA 6008, Australia
| | - Jafri Kuthubutheen
- Medical School, University of Western Australia, Crawley, WA 6009, Australia
- Department of Otolaryngology Head and Neck Surgery, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, WA 6009, Australia
| | | | - Cecilia M. Prêle
- Institute for Respiratory Health, University of Western Australia, Nedlands, WA 6009, Australia
- Ear Science Institute Australia, Subiaco, WA 6008, Australia
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
5
|
Barone DG, Carnicer-Lombarte A, Tourlomousis P, Hamilton RS, Prater M, Rutz AL, Dimov IB, Malliaras GG, Lacour SP, Robertson AAB, Franze K, Fawcett JW, Bryant CE. Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proc Natl Acad Sci U S A 2022; 119:e2115857119. [PMID: 35298334 PMCID: PMC8944905 DOI: 10.1073/pnas.2115857119] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/12/2022] [Indexed: 02/02/2023] Open
Abstract
SignificanceImplantable electronic medical devices (IEMDs) are used for some clinical applications, representing an exciting prospect for the transformative treatment of intractable conditions such Parkinson's disease, deafness, and paralysis. The use of IEMDs is limited at the moment because, over time, a foreign body reaction (FBR) develops at the device-neural interface such that ultimately the IEMD fails and needs to be removed. Here, we show that macrophage nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activity drives the FBR in a nerve injury model yet integration of an NLRP3 inhibitor into the device prevents FBR while allowing full healing of damaged neural tissue to occur.
Collapse
Affiliation(s)
- Damiano G. Barone
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Alejandro Carnicer-Lombarte
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - Panagiotis Tourlomousis
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Russell S. Hamilton
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Malwina Prater
- Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Alexandra L. Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Ivan B. Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Stephanie P. Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronics Interface, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Avril A. B. Robertson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom
- Max-Planck-Zentrum für Physik und Medizin, 91054 Erlangen, Germany
- Institute of Medical Physics and Microtissue Engineering, Friedrich-Alexander University Erlangen–Nuremberg, 91052 Erlangen, Germany
| | - James W. Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic
| | - Clare E. Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
- Division of Medicine, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| |
Collapse
|
6
|
Pinar AA, S Samuel CS. Immune Mechanisms and Related Targets for the Treatment of Fibrosis in Various Organs. Curr Mol Med 2022; 22:240-249. [PMID: 35034593 DOI: 10.2174/1566524022666220114122839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022]
Abstract
Inflammation and fibrosis are two inter-related disease pathologies with several overlapping components. Three specific cell types, macrophages, T helper cells and myofibroblasts, each play important roles in regulating both processes. Following tissue injury, an inflammatory stimulus is often necessary to initiate tissue repair, where cytokines released from infiltrating and resident immune and inflammatory cells stimulate the proliferation and activation of extracellular matrix-producing myofibroblasts. However, persistent tissue injury drives an inappropriate pro-fibrotic response. Additionally, activated myofibroblasts can take on the role of traditional antigen-presenting cells, secrete pro-inflammatory cytokines, and recruit inflammatory cells to fibrotic foci, amplifying the fibrotic response in a vicious cycle. Moreover, inflammatory cells have been shown to play contradictory roles in the initiation, amplification and resolution of fibrotic disease processes. The central role of the inflammasome molecular platform in contributing to fibrosis is only beginning to be fully appreciated. In this review, we discuss the immune mechanisms that can lead to fibrosis, the inflammasomes that have been implicated in the fibrotic process in the context of the immune response to injury, and also discuss current and emerging therapies that target inflammasome-induced collagen deposition to treat organ fibrosis.
Collapse
Affiliation(s)
- Anita A Pinar
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Chrishan S S Samuel
- Cardiovascular Disease Program, Monash Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Carnicer-Lombarte A, Chen ST, Malliaras GG, Barone DG. Foreign Body Reaction to Implanted Biomaterials and Its Impact in Nerve Neuroprosthetics. Front Bioeng Biotechnol 2021; 9:622524. [PMID: 33937212 PMCID: PMC8081831 DOI: 10.3389/fbioe.2021.622524] [Citation(s) in RCA: 157] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/19/2021] [Indexed: 12/04/2022] Open
Abstract
The implantation of any foreign material into the body leads to the development of an inflammatory and fibrotic process-the foreign body reaction (FBR). Upon implantation into a tissue, cells of the immune system become attracted to the foreign material and attempt to degrade it. If this degradation fails, fibroblasts envelop the material and form a physical barrier to isolate it from the rest of the body. Long-term implantation of medical devices faces a great challenge presented by FBR, as the cellular response disrupts the interface between implant and its target tissue. This is particularly true for nerve neuroprosthetic implants-devices implanted into nerves to address conditions such as sensory loss, muscle paralysis, chronic pain, and epilepsy. Nerve neuroprosthetics rely on tight interfacing between nerve tissue and electrodes to detect the tiny electrical signals carried by axons, and/or electrically stimulate small subsets of axons within a nerve. Moreover, as advances in microfabrication drive the field to increasingly miniaturized nerve implants, the need for a stable, intimate implant-tissue interface is likely to quickly become a limiting factor for the development of new neuroprosthetic implant technologies. Here, we provide an overview of the material-cell interactions leading to the development of FBR. We review current nerve neuroprosthetic technologies (cuff, penetrating, and regenerative interfaces) and how long-term function of these is limited by FBR. Finally, we discuss how material properties (such as stiffness and size), pharmacological therapies, or use of biodegradable materials may be exploited to minimize FBR to nerve neuroprosthetic implants and improve their long-term stability.
Collapse
Affiliation(s)
- Alejandro Carnicer-Lombarte
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Shao-Tuan Chen
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Amin Yavari S, Castenmiller SM, van Strijp JAG, Croes M. Combating Implant Infections: Shifting Focus from Bacteria to Host. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002962. [PMID: 32914481 DOI: 10.1002/adma.202002962] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/28/2020] [Indexed: 05/06/2023]
Abstract
The widespread use of biomaterials to support or replace body parts is increasingly threatened by the risk of implant-associated infections. In the quest for finding novel anti-infective biomaterials, there generally has been a one-sided focus on biomaterials with direct antibacterial properties, which leads to excessive use of antibacterial agents, compromised host responses, and unpredictable effectiveness in vivo. This review sheds light on how host immunomodulation, rather than only targeting bacteria, can endow biomaterials with improved anti-infective properties. How antibacterial surface treatments are at risk to be undermined by biomaterial features that dysregulate the protection normally provided by critical immune cell subsets, namely, neutrophils and macrophages, is discussed. Accordingly, how the precise modification of biomaterial surface biophysical cues, or the incorporation of immunomodulatory drug delivery systems, can render biomaterials with the necessary immune-compatible and immune-protective properties to potentiate the host defense mechanisms is reviewed. Within this context, the protective role of host defense peptides, metallic particles, quorum sensing inhibitors, and therapeutic adjuvants is discussed. The highlighted immunomodulatory strategies may lay a foundation to develop anti-infective biomaterials, while mitigating the increasing threat of antibacterial drug resistance.
Collapse
Affiliation(s)
- Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Suzanne M Castenmiller
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| | - Michiel Croes
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3508GA, The Netherlands
| |
Collapse
|
9
|
The Impact of Engineered Silver Nanomaterials on the Immune System. NANOMATERIALS 2020; 10:nano10050967. [PMID: 32443602 PMCID: PMC7712063 DOI: 10.3390/nano10050967] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/07/2023]
Abstract
Over the last decades there has been a tremendous volume of research efforts focused on engineering silver-based (nano)materials. The interest in silver has been mostly driven by the element capacity to kill pathogenic bacteria. In this context, the main area of application has been medical devices that are at significant risk of becoming colonized by bacteria and subsequently infected. However, silver nanomaterials have been incorporated in a number of other commercial products which may or may not benefit from antibacterial protection. The rapid expansion of such products raises important questions about a possible adverse influence on human health. This review focuses on examining currently available literature and summarizing the current state of knowledge of the impact of silver (nano)materials on the immune system. The review also looks at various surface modification strategies used to generate silver-based nanomaterials and the immunomodulatory potential of these materials. It also highlights the immune response triggered by various silver-coated implantable devices and provides guidance and perspective towards engineering silver nanomaterials for modulating immunological consequences.
Collapse
|
10
|
Song Y, Wu H, Gao Y, Li J, Lin K, Liu B, Lei X, Cheng P, Zhang S, Wang Y, Sun J, Bi L, Pei G. Zinc Silicate/Nano-Hydroxyapatite/Collagen Scaffolds Promote Angiogenesis and Bone Regeneration via the p38 MAPK Pathway in Activated Monocytes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16058-16075. [PMID: 32182418 DOI: 10.1021/acsami.0c00470] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent studies show that biomaterials are capable of regulating immune responses to induce a favorable osteogenic microenvironment and promote osteogenesis and angiogenesis. In this study, we investigated the effects of zinc silicate/nanohydroxyapatite/collagen (ZS/HA/Col) scaffolds on bone regeneration and angiogenesis and explored the related mechanism. We demonstrate that 10ZS/HA/Col scaffolds significantly enhanced bone regeneration and angiogenesis in vivo compared with HA/Col scaffolds. ZS/HA/Col scaffolds increased tartrate-resistant acid phosphatase (TRAP)-positive cells, nestin-positive bone marrow stromal cells (BMSCs) and CD31-positive neovessels, and expression of osteogenesis (Bmp-2 and Osterix) and angiogenesis-related (Vegf-α and Cd31) genes increased in nascent bone. ZS/HA/Col scaffolds with 10 wt % ZS activated the p38 signaling pathway in monocytes. The monocytes subsequently differentiated into TRAP+ cells and expressed higher levels of the cytokines SDF-1, TGF-β1, VEGF-α, and PDGF-BB, which recruited BMSCs and endothelial cells (ECs) to the defect areas. Blocking the p38 pathway in monocytes reduced TRAP+ differentiation and cytokine secretion and resulted in a decrease in BMSC and EC homing and angiogenesis. Overall, these findings demonstrate that 10ZS/HA/Col scaffolds modulate monocytes and, thereby, create a favorable osteogenic microenvironment that promotes BMSC migration and differentiation and vessel formation by activating the p38 signaling pathway.
Collapse
Affiliation(s)
- Yue Song
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Hao Wu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Yi Gao
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Junqin Li
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Kaifeng Lin
- Department of Orthopedics and Traumatology, 900th Hospital of PLA, Fuzhou 350025, P. R. China
| | - Bin Liu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Xing Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
- Department of Orthopedic Surgery, Linyi People's Hospital, Linyi 276002, P. R. China
| | - Pengzhen Cheng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Shuaishuai Zhang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Yixiao Wang
- Department of Ultrasound Medicine, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, The Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Long Bi
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| | - Guoxian Pei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, P. R. China
| |
Collapse
|
11
|
Chmelař J, Mrázek J, Hermannová M, Kubala L, Ambrožová G, Kocurková A, Drmota T, Nešporová K, Grusová L, Velebný V. Biodegradable free-standing films from lauroyl derivatives of hyaluronan. Carbohydr Polym 2019; 224:115162. [DOI: 10.1016/j.carbpol.2019.115162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/01/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022]
|
12
|
Vasconcelos DP, de Torre-Minguela C, Gomez AI, Águas AP, Barbosa MA, Pelegrín P, Barbosa JN. 3D chitosan scaffolds impair NLRP3 inflammasome response in macrophages. Acta Biomater 2019; 91:123-134. [PMID: 31003033 DOI: 10.1016/j.actbio.2019.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022]
Abstract
Chitosan (Ch) is used in different biomedical applications to promote tissue repair. However, tissue injury caused by biomaterial implantation lead to the release of danger signals that engage different inflammatory pathways on the host. Different implanted materials activate the inflammasome leading to the modulation of the immune response. Here we have studied how macroscopic biomaterials, Ch scaffolds with different chemical composition: 4% or 15% degree of acetylation (DA) modulate the activation of the NLRP3 inflammasome in vitro. For that, we assessed the NLRP3 inflammasome in bone marrow derived mouse macrophages (BMDM) and human macrophages cultured within 3D Ch scaffolds. We found that both Ch scaffolds did not trigger the NLRP3 inflammasome activation in macrophages. Furthermore, BMDMs and human macrophages cultured in both Ch scaffolds presented a reduction in the number of apoptosis-associated speck-like protein containing a caspase activating recruitment domain (ASC) specks and in IL-1β release upon classical NLRP3 inflammasome stimulation. We also found a decrease in proIL-1β in BMDMs after priming with LPS when cultured in Ch scaffolds with DA 4% DA after priming with LPS when compared to Ch scaffolds with 15% DA or to macrophages cultured in cell-culture plates. Our results shows that 3D Ch scaffolds with different DA impair NLRP3 inflammasome priming and activation. STATEMENT OF SIGNIFICANCE: In this research work we have assessed the role of the NLRP3 inflammasome in the macrophage response to 3D chitosan scaffolds with different degrees of acetylation (DA). To our knowledge this is the first work that demonstrates the modulatory capacity of 3D porous chitosan scaffolds in the NLRP3 inflammasome activation, because our results show that Ch scaffolds impair NLRP3 inflammasome assembly in macrophages. Interestingly, our results are in contrast with studies reported in the literature that indicate that chitosan is a powerful activator of the NLRP3 inflammasome in nanoscale chitosan products. Our studies that were performed in large scale chitosan scaffolds, stress out that the process of phagocytosis is pivotal in inflammasome assembly and activation, are rather important since they clearly illustrate the different role of the inflammasome in the biological response to large scale and nanoscale biomaterials.
Collapse
Affiliation(s)
- Daniela P Vasconcelos
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carlos de Torre-Minguela
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Ana I Gomez
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain
| | - Artur P Águas
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; UMIB - Unit for Multidisciplinary Biomedical Research of ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Pablo Pelegrín
- Molecular Inflammation Group, Biomedical Research Institute of Murcia (IMIB-Arrixaca), Hospital Clínico Universitario Virgen de la Arrixaca, Carretera Buenavista, 30120 Murcia, Spain.
| | - Judite N Barbosa
- i3S - Instituto de Inovação e Investigação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-125 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
13
|
Udjus C, Cero FT, Halvorsen B, Behmen D, Carlson CR, Bendiksen BA, Espe EKS, Sjaastad I, Løberg EM, Yndestad A, Aukrust P, Christensen G, Skjønsberg OH, Larsen KO. Caspase-1 induces smooth muscle cell growth in hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2019; 316:L999-L1012. [PMID: 30908936 DOI: 10.1152/ajplung.00322.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Lung diseases with hypoxia are complicated by pulmonary hypertension, leading to heart failure and death. No pharmacological treatment exists. Increased proinflammatory cytokines are found in hypoxic patients, suggesting an inflammatory pathogenesis. Caspase-1, the effector of the inflammasome, mediates inflammation through activation of the proinflammatory cytokines interleukin (IL)-18 and IL-1β. Here, we investigate inflammasome-related mechanisms that can trigger hypoxia-induced pulmonary hypertension. Our aim was to examine whether caspase-1 induces development of hypoxia-related pulmonary hypertension and is a suitable target for therapy. Wild-type (WT) and caspase-1-/- mice were exposed to 10% oxygen for 14 days. Hypoxic caspase-1-/- mice showed lower pressure and reduced muscularization in pulmonary arteries, as well as reduced right ventricular remodeling compared with WT. Smooth muscle cell (SMC) proliferation was reduced in caspase-1-deficient pulmonary arteries and in WT arteries treated with a caspase-1 inhibitor. Impaired inflammation was shown in hypoxic caspase-1-/- mice by abolished pulmonary influx of immune cells and lower levels of IL-18, IL-1β, and IL-6, which were also reduced in the medium surrounding caspase-1 abrogated pulmonary arteries. By adding IL-18 or IL-1β to caspase-1-deficient pulmonary arteries, SMC proliferation was retained. Furthermore, inhibition of both IL-6 and phosphorylated STAT3 reduced proliferation of SMC in vitro, indicating IL-18, IL-6, and STAT3 as downstream mediators of caspase-1-induced SMC proliferation in pulmonary arteries. Caspase-1 induces SMC proliferation in pulmonary arteries through the caspase-1/IL-18/IL-6/STAT3 pathway, leading to pulmonary hypertension in mice exposed to hypoxia. We propose that caspase-1 inhibition is a potential target for treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Camilla Udjus
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Fadila T Cero
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway
| | - Dina Behmen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Cathrine R Carlson
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Bård A Bendiksen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Emil K S Espe
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Else M Løberg
- Department of Pathology, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - Arne Yndestad
- K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway.,Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway.,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet and University of Oslo , Oslo , Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| | - Ole H Skjønsberg
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway
| | - Karl-Otto Larsen
- Department of Pulmonary Medicine, Oslo University Hospital Ullevål and University of Oslo , Oslo , Norway.,K. G. Jebsen Center for Cardiac Research and Center for Heart Failure Research, University of Oslo , Oslo , Norway
| |
Collapse
|
14
|
Semple SL, Mulder IM, Rodriguez-Ramos T, Power M, Dixon B. Long-term implantation of acoustic transmitters induces chronic inflammatory cytokine expression in adult rainbow trout (Oncorhynchus mykiss). Vet Immunol Immunopathol 2018; 205:1-9. [PMID: 30458996 DOI: 10.1016/j.vetimm.2018.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/14/2018] [Indexed: 12/31/2022]
Abstract
Telemetry transmitters are frequently used in studies of wild fish migration and behavior. Although the effects of surgically implanted transmitters on survival, tag retention, healing and growth have been studied, there has been little research regarding the potential immune response induced by these transmitters. In the current study, mature rainbow trout received either surgical implantation of an acoustic transmitter or a sham surgical procedure. These fish were then sampled over a 10-week period so that pro-inflammatory cytokine expression in the spleen, peritoneal cavity lymphocytes and muscle at the surgical site could be analyzed. There were no significant differences in transcript expression for the spleen and muscle tissue between fish that had a transmitter and those that received the surgical procedure alone. However, transmitter presence significantly increased the expression of IL-6, IL-1β and TNFα in the peritoneal cells at 10 weeks indicating that tagged fish may be coping with chronic inflammation. Furthermore, tagged male fish had a higher inflammatory response in 10-week peritoneal lavage samples when compared to their tagged mature female counterparts, providing some evidence that mature female rainbow trout may have suppressed immune function when sexually mature. Externally, fish appeared to heal at similar rates regardless of the presence or absence of the transmitter, but the tag itself was prone to encapsulation and adhesion to the body wall and/or surgical site. This suggests that fish tagged with large intraperitoneal implants may not behave similarly to their wild counterparts. This research could aid in the development of improved telemetry tags that are more biocompatible, economical and better able to track fish behavior/movement.
Collapse
Affiliation(s)
- Shawna L Semple
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Ingeborg M Mulder
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Tania Rodriguez-Ramos
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Michael Power
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, ON, N2L 3G1 Canada.
| |
Collapse
|
15
|
Mahon OR, O'Hanlon S, Cunningham CC, McCarthy GM, Hobbs C, Nicolosi V, Kelly DJ, Dunne A. Orthopaedic implant materials drive M1 macrophage polarization in a spleen tyrosine kinase- and mitogen-activated protein kinase-dependent manner. Acta Biomater 2018; 65:426-435. [PMID: 29104084 DOI: 10.1016/j.actbio.2017.10.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 12/17/2022]
Abstract
Total joint replacements (TJR) are costly procedures required to relieve pain and restore function in patients suffering from end-stage arthritis. Despite great progress in the development and durability of TJRs, the generation of prosthesis-associated wear particles over time leads to an inflammatory cascade which culminates in periprosthetic osteolysis. Studies suggest that wear particles drive the polarization/differentiation of immature macrophages towards a pro-inflammatory M1 phenotype rather than an anti-inflammatory M2 phenotype associated with normal bone and wound healing. This, in turn, contributes to the initiation of peri-implant inflammation. As a result, modulating M1 macrophage cytokine production has been recognised as a viable therapeutic option. The aim of this study was to examine the impact of hydroxyapatite (HA) and poly(methyl methacrylate) (PMMA) particles on human macrophage polarization by comparing their effect on M1/M2-associated gene expression using real-time PCR. Furthermore, using immunoblotting to assess kinase activation, we sought to identify the intracellular signalling molecules activated by PMMA/HA particles and to determine whether pharmacological blockade of these molecules impacts on macrophage phenotype and cytokine production as measured by ELISA. We report that wear particles preferentially polarize macrophages towards an M1 phenotype, an effect that is dependent on activation of the membrane proximal kinase, Syk and members of the mitogen-activated protein kinase (MAPK) family of signalling molecules. Pre-treatment of macrophages with Syk inhibitors (R788/piceatannol) or MAPK inhibitors (SB203580 and PD98059), not only prevents M1 polarization, but also attenuates production of key pro-inflammatory mediators that have been specifically implicated in periprosthetic osteolysis and osteoclast differentiation. STATEMENT OF SIGNIFICANCE It is now well established that wear-debris particles from implanted materials drive deleterious inflammatory responses which can eventually lead to implant loosening. In this study, we provide further insight into the specific cellular pathways activated by wear particles in primary human immune cells. We demonstrate that PMMA bone cement and hydroxyapatite, a commonly used biomaterial, drive the polarization of macrophages towards an inflammatory phenotype and identify the specific signalling molecules that are activated in this process. Pre-treatment of macrophages with pharmacological inhibitors of these molecules in turn prevents macrophage polarization and dampens inflammatory cytokine production. Hence these signalling molecules represent potential therapeutic targets to treat or possibly prevent particulate induced osteolysis.
Collapse
|
16
|
Gonzalez Garcia LE, MacGregor-Ramiasa M, Visalakshan RM, Vasilev K. Protein Interactions with Nanoengineered Polyoxazoline Surfaces Generated via Plasma Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7322-7331. [PMID: 28658956 DOI: 10.1021/acs.langmuir.7b01279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein adsorption to biomaterials is critical in determining their suitability for specific applications, such as implants or biosensors. Here, we show that surface nanoroughness can be tailored to control the covalent binding of proteins to plasma-deposited polyoxazoline (PPOx). Nanoengineered surfaces were created by immobilizing gold nanoparticles varying in size and surface density on PPOx films. To keep the surface chemistry consistent while preserving the nanotopography, all substrates were overcoated with a nanothin PPOx film. Bovine serum albumin was chosen to study protein interactions with the nanoengineered surfaces. The results demonstrate that the amount of protein bound to the surface is not directly correlated with the increase in surface area. Instead, it is determined by nanotopography-induced geometric effects and surface wettability. A densely packed array of 16 and 38 nm nanoparticles hinders protein adsorption compared to smooth PPOx substrates, while it increases for 68 nm nanoparticles. These adaptable surfaces could be used for designing biomaterials where proteins adsorption is or is not desirable.
Collapse
Affiliation(s)
- Laura E Gonzalez Garcia
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| | - Melanie MacGregor-Ramiasa
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| | - Rahul Madathiparambil Visalakshan
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| | - Krasimir Vasilev
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
17
|
Mbalaviele G, Novack DV, Schett G, Teitelbaum SL. Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 2017; 127:2030-2039. [PMID: 28569732 DOI: 10.1172/jci93356] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There are many causes of inflammatory osteolysis, but regardless of etiology and cellular contexts, the osteoclast is the bone-degrading cell. Thus, the impact of inflammatory cytokines on osteoclast formation and function was among the most important discoveries advancing the treatment of focal osteolysis, leading to development of therapeutic agents that either directly block the bone-resorptive cell or do so indirectly via cytokine arrest. Despite these advances, a substantial number of patients with inflammatory arthritis remain resistant to current therapies, and even effective anti-inflammatory drugs frequently do not repair damaged bone. Thus, insights into events such as those impacted by inflammasomes, which signal through cytokine-dependent and -independent mechanisms, are needed to optimize treatment of inflammatory osteolysis.
Collapse
Affiliation(s)
| | - Deborah V Novack
- Department of Medicine, Division of Bone and Mineral Diseases, and.,Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Steven L Teitelbaum
- Department of Medicine, Division of Bone and Mineral Diseases, and.,Department of Pathology and Immunology, Division of Anatomic and Molecular Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
18
|
Williams DF. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater Sci Eng 2016; 3:2-35. [DOI: 10.1021/acsbiomaterials.6b00607] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- David F. Williams
- Wake Forest Institute of Regenerative Medicine, Richard H. Dean Biomedical Building, 391 Technology Way, Winston-Salem, North Carolina 27101, United States
| |
Collapse
|
19
|
Christo S, Bachhuka A, Diener KR, Vasilev K, Hayball JD. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry. Sci Rep 2016; 6:26207. [PMID: 27188492 PMCID: PMC4870632 DOI: 10.1038/srep26207] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/22/2016] [Indexed: 01/28/2023] Open
Abstract
Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.
Collapse
Affiliation(s)
- Susan Christo
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia
| | - Akash Bachhuka
- Mawson Institute, University of South Australia, SA, 5095, Australia
| | - Kerrilyn R Diener
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Krasimir Vasilev
- Mawson Institute, University of South Australia, SA, 5095, Australia.,School of Engineering, University of South Australia, SA, 5095, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Sansom Institute and Hanson Institute, School of Pharmacy and Medical Science, University of South Australia, Adelaide, SA, 5000, Australia.,Robinson Research Institute, School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, SA, 5005, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|