1
|
Abreu Reis M, Marinho Coutinho de Souza F, da Silva Nobre IC, Gomes de Fraga Dias FM, Grossi-de-Sá MF, Antonino JD. Distinct biological control agents differentially modulate the immune system of the sugarcane borer larvae (Diatraea saccharalis). J Invertebr Pathol 2024; 209:108241. [PMID: 39642983 DOI: 10.1016/j.jip.2024.108241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The humoral response plays a crucial role in insect defense against parasites and pathogens, typically producing antimicrobial peptides through the Toll, IMD, and Jak-STAT signaling pathways, as well as melanization via phenoloxidases. However, many studies use nonpathogenic or opportunistic organisms and often infect insects in nonnatural ways, such as piercing or injecting the pathogen into the hemocoel. The objective of this study was to examine the modulation of the main humoral pathway genes involved in the interaction between the nonmodel organism Diatraea saccharalis (the sugarcane borer) and different biological control agents. We identified and evaluated the expression of DsDorsal (Toll pathway), DsRelish (IMD pathway), DsSTAT (JAK/STAT pathway), DsPPO1, and DsPPO2 (PO pathway) in larvae and pupae of D. saccharalis exposed or not to different biological control agents. The biocontrol agents used were: (i) the bacterium Bacillus thuringiensis var. aizawai GC-91, which is pathogenic to D. saccharalis; (ii) the fungus Metarhizium anisopliae ESALQE9 strain, which is employed to control the froghoppers of the genus Mahanarva in sugarcane fields, though it exhibits low virulence to D. saccharalis; and (iii) the generalist parasitoid Tetrastichus howardi. Our results demonstrate that B. thuringiensis at LC30 induced the expression of DsRelish at 24 h and DsSTAT at 48 h after treatment initiation. In contrast, treatment with the M. anisopliae ESALQE9 strain reduced the levels of DsDorsal and DsSTAT 24 h post-infection compared to the control group. In larvae, DsDorsal, DsSTAT, DsPPO1, and DsPPO2 were induced in response to T. howardi, whereas no induction was observed in pupae. Notably, no immune-related genes were modulated during the pupae-parasitoid interaction. Additionally, we provide an explanation for why T. howardi shows superior parasitism success in D. saccharalis pupae compared with larvae. The data presented here introduce novel perspectives for enhancing pest management through the utilization of biocontrol agents.
Collapse
Affiliation(s)
- Manoely Abreu Reis
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Felipe Marinho Coutinho de Souza
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil
| | - Ianne Caroline da Silva Nobre
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil
| | | | - Maria Fátima Grossi-de-Sá
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica - PqEB, 70770-901 Brasília, DF, Brazil; Universidade Católica de Brasília. QS 07, Lote 01, Taguatinga Sul, 71966-700, Taguatinga, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Parque Estação Biológica - PqEB, 70770-901, Brasília, DF, Brazil
| | - José Dijair Antonino
- Departamento de Agronomia- Entomologia, Universidade Federal Rural de Pernambuco, Rua Dom Manoel de Medeiros, 52171-900 Recife, PE, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Parque Estação Biológica - PqEB, 70770-901, Brasília, DF, Brazil.
| |
Collapse
|
2
|
Cao X, Lu Y, Li J, Xia X, Gao Q, Gu W, Wang W, Meng Q. An ShK-domain serine protease of Eriocheir sinensis regulates the PO activity to resist Spiroplasma eriocheiris infection. FISH & SHELLFISH IMMUNOLOGY 2020; 105:186-194. [PMID: 32615165 DOI: 10.1016/j.fsi.2020.06.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
A novel serine protease contains two ShK-domain was found from the Chinese mitten crab Eriocheir sinensis (EsShK-SP). The full-length EsShK-SP cDNA is 1927 bp and contains a 1260-bp open reading frame encoding a protein of 420 amino acids, including a signal peptide, two ShK domain, and Tryp-SPC domain. Quantitative real-time PCR showed that EsShK-SP was expressed mainly in the hemocytes, gills, intestine, and nerve, but weakly in heart, muscle, and hepatopancreas. After infected with Spiroplasma eriocheiris, the expression of EsShK-SP was significantly up-regulated from 1 d to 9 d. The Tryp-SPC domain was ligated with pGEX-4T-1 vector and prokaryotic expressed to obtain recombinant protein rSPC. When rSPC and S. eriocheiris stimulated the hemocytes of E. sinensis, the PO activity was significantly up-regulated. The subcellular localization revealed that recombinant EsShK-SP was mainly located in the cytoplasm of Drosophila S2 cells. Both absolute real-time PCR and confocal laser scanning microscope results showed that over-expression of EsShK-SP in S2 cells could decrease the copy number of S. eriocheiris. Meanwhile, the over-expression of EsShK-SP also increased the PO activity and cell viability of S2 cells. After EsShK-SP RNA interference using dsRNA, the expression levels of proPO and activity of PO decreased significantly from 48 h to 96 h. The knockdown of EsShK-SP by RNAi resulted in the copy number of S. eriocheiris in the EsShK-SP silenced group was significantly increased compared to the control groups during S. eriocheiris infection. Meanwhile, the survival rate of crabs decreased in the EsShK-SP-dsRNA group. The above results indicated that EsShK-SP plays an important immune role during E. sinensis against S. eriocheiris through regulation of the proPO system.
Collapse
Affiliation(s)
- Xiaohui Cao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Yinyue Lu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jiyun Li
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xiaoli Xia
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Qi Gao
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| | - Qingguo Meng
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences & College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu, 222005, China.
| |
Collapse
|
3
|
Deng H, Hu L, Li J, Yan W, Song E, Kuang M, Liu S, He J, Weng S. The NF-κB family member dorsal plays a role in immune response against Gram-positive bacterial infection in mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103581. [PMID: 31862295 DOI: 10.1016/j.dci.2019.103581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/16/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
The NF-κB family is a set of evolutionarily conserved transcription factors that play central roles in various biological events. Dorsal is an invertebrate NF-κB family member that is essential for the regulation of immune responses. In the current study, the Dorsal gene from Scylla paramamosain (SpDorsal) was identified, which showed high homology to other crustacean Dorsal proteins. Expression of SpDorsal was highest in hemocytes and could be significantly changed after immune stimulations. In expression vector-transfected S2 cells, SpDorsal was mainly localized in the cytoplasm and could be efficiently translocated into the nucleus upon immune stimulations with the Gram-positive bacteria Staphylococcus aureus and poly (I:C), but not the Gram-negative bacteria Vibrio parahaemolyticus. As a transcription factor, SpDorsal could activate the promoter of S. paramamosain Hyastatin (SpHyastatin) in vitro, while S. paramamosain Cactus (SpCactus), a homolog of IκB, could interact with SpDorsal to prevent its nuclear translocation and inhibit its transcription factor activity. Silencing of SpDorsal in vivo using RNAi strategy significantly increased the mortality of crabs infected with S. aureus but not that with V. parahaemolyticus. These indicated that the SpDorsal signaling pathway could be mainly implicated in immune responses against Gram-positive bacterial infection in S. paramamosain.
Collapse
Affiliation(s)
- Hengwei Deng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Lei Hu
- College of Forestry and Landscape Architecture, South China Agriculture University, 510642, Guangzhou, PR China
| | - Jingjing Li
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Wenyan Yan
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Enhui Song
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, PR China; State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mingqing Kuang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Shanshan Liu
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), 519000, Zhuhai, PR China.
| | - Shaoping Weng
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China.
| |
Collapse
|
4
|
Two Roles for the Tenebrio molitor Relish in the Regulation of Antimicrobial Peptides and Autophagy-Related Genes in Response to Listeria monocytogenes. INSECTS 2020; 11:insects11030188. [PMID: 32188156 PMCID: PMC7142762 DOI: 10.3390/insects11030188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Accepted: 03/12/2020] [Indexed: 12/24/2022]
Abstract
Relish is a key NF-κB transcription factor of the immune-deficiency (Imd) pathway that combats infection by regulating antimicrobial peptides (AMPs). Understanding of the fundamental role of Tenebrio molitor Relish (TmRelish) in controlling of Listeria monocytogenes virulence through the regulation of both AMPs and autophagy-related (ATG) genes is unclear. Here, we show that TmRelish transcripts were highly abundant in the larval fat body and hemocytes compared to the gut upon L. monocytogenes infection. Furthermore, significant mortality was observed in TmRelish-silenced larvae after intracellular insult. To investigate the cause of this lethality, we measured the induction of AMPs and ATG genes in the TmRelish dsRNA-treated T. molitor larvae. The expression of TmTenecin-1, TmTenecin-4, TmColeptericin-1, TmAttacin-2, and TmCecropin-2 were suppressed in the fat body and hemocytes of dsTmRelish-injected larvae during L. monocytogenes infection. In addition, TmRelish knockdown led to a noticeable downregulation of TmATG1 (a serine-threonine protein kinase) in the fat body and hemocytes of young larvae 6 h post-infection (pi). The notable increase of autophagy genes in the early stage of infection (6 h pi), suggesting autophagy response is crucial for Listeria clearance. Taken together, these results suggest that TmRelish plays pivotal roles in not only regulation of AMP genes but also induction of autophagy genes in response to L. monocytogenes challenge in fat body and hemocytes of T. molitor larvae. Furthermore, negative regulation of several AMPs by TmRelish in the fat body, hemocytes, and gut leaves open the possibility of a crosstalk between Toll and Imd pathway.
Collapse
|
5
|
Cotter SC, Reavey CE, Tummala Y, Randall JL, Holdbrook R, Ponton F, Simpson SJ, Smith JA, Wilson K. Diet modulates the relationship between immune gene expression and functional immune responses. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:128-141. [PMID: 30954680 PMCID: PMC6527921 DOI: 10.1016/j.ibmb.2019.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 06/02/2023]
Abstract
Nutrition is vital to health and the availability of resources has long been acknowledged as a key factor in the ability to fight off parasites, as investing in the immune system is costly. Resources have typically been considered as something of a "black box", with the quantity of available food being used as a proxy for resource limitation. However, food is a complex mixture of macro- and micronutrients, the precise balance of which determines an animal's fitness. Here we use a state-space modelling approach, the Geometric Framework for Nutrition (GFN), to assess for the first time, how the balance and amount of nutrients affects an animal's ability to mount an immune response to a pathogenic infection. Spodoptera littoralis caterpillars were assigned to one of 20 diets that varied in the ratio of macronutrients (protein and carbohydrate) and their calorie content to cover a large region of nutrient space. Caterpillars were then handled or injected with either live or dead Xenorhabdus nematophila bacterial cells. The expression of nine genes (5 immune, 4 non-immune) was measured 20 h post immune challenge. For two of the immune genes (PPO and Lysozyme) we also measured the relevant functional immune response in the hemolymph. Gene expression and functional immune responses were then mapped against nutritional intake. The expression of all immune genes was up-regulated by injection with dead bacteria, but only those in the IMD pathway (Moricin and Relish) were substantially up-regulated by both dead and live bacterial challenge. Functional immune responses increased with the protein content of the diet but the expression of immune genes was much less predictable. Our results indicate that diet does play an important role in the ability of an animal to mount an adequate immune response, with the availability of protein being the most important predictor of the functional (physiological) immune response. Importantly, however, immune gene expression responds quite differently to functional immunity and we would caution against using gene expression as a proxy for immune investment, as it is unlikely to be reliable indicator of the immune response, except under specific dietary conditions.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Catherine E Reavey
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Yamini Tummala
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Joanna L Randall
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Robert Holdbrook
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Fleur Ponton
- Charles Perkins Centre, University of Sydney, NSW, 2006, Australia; Department of Biological Sciences, Macquarie University, NSW, 2109, Australia
| | | | - Judith A Smith
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
6
|
Chowdhury M, Zhang J, Xu XX, He Z, Lu Y, Liu XS, Wang YF, Yu XQ. An in vitro study of NF-κB factors cooperatively in regulation of Drosophila melanogaster antimicrobial peptide genes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 95:50-58. [PMID: 30735676 DOI: 10.1016/j.dci.2019.01.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 06/09/2023]
Abstract
An important innate immune response in Drosophila melanogaster is the production of antimicrobial peptides (AMPs). Expression of AMP genes is mediated by the Toll and immune deficiency (IMD) pathways via NF-κB transcription factors Dorsal, DIF and Relish. Dorsal and DIF act downstream of the Toll pathway, whereas Relish acts in the IMD pathway. Dorsal and DIF are held inactive in the cytoplasm by the IκB protein Cactus, while Relish contains an IκB-like inhibitory domain at the C-terminus. NF-κB factors normally form homodimers and heterodimers to regulate gene expression, but formation of heterodimers between Relish and DIF or Dorsal and the specificity and activity of the three NF-κB homodimers and heterodimers are not well understood. In this study, we compared the activity of Rel homology domains (RHDs) of Dorsal, DIF and Relish in activation of Drosophila AMP gene promoters, demonstrated that Relish-RHD (Rel-RHD) interacted with both Dorsal-RHD and DIF-RHD, Relish-N interacted with DIF and Dorsal, and overexpression of individual RHD and co-expression of any two RHDs activated the activity of AMP gene promoters to various levels, suggesting formation of homodimers and heterodimers among Dorsal, DIF and Relish. Rel-RHD homodimers were stronger activators than heterodimers of Rel-RHD with either DIF-RHD or Dorsal-RHD, while DIF-RHD-Dorsal-RHD heterodimers were stronger activators than either DIF-RHD or Dorsal-RHD homodimers in activation of AMP gene promoters. We also identified the nucleotides at the 6th and 8th positions of the 3' half-sites of the κB motifs that are important for the specificity and activity of NF-κB transcription factors.
Collapse
Affiliation(s)
- Munmun Chowdhury
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA
| | - Jie Zhang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA
| | - Xiao-Xia Xu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA; College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen He
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA; School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yuzhen Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xu-Sheng Liu
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yu-Feng Wang
- School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Qiang Yu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO, 64110, USA; School of Life Sciences, Central China Normal University, Wuhan, 430079, China; Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Chowdhury M, Li CF, He Z, Lu Y, Liu XS, Wang YF, Ip YT, Strand MR, Yu XQ. Toll family members bind multiple Spätzle proteins and activate antimicrobial peptide gene expression in Drosophila. J Biol Chem 2019; 294:10172-10181. [PMID: 31088910 DOI: 10.1074/jbc.ra118.006804] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 05/10/2019] [Indexed: 12/31/2022] Open
Abstract
The Toll signaling pathway in Drosophila melanogaster regulates several immune-related functions, including the expression of antimicrobial peptide (AMP) genes. The canonical Toll receptor (Toll-1) is activated by the cytokine Spätzle (Spz-1), but Drosophila encodes eight other Toll genes and five other Spz genes whose interactions with one another and associated functions are less well-understood. Here, we conducted in vitro assays in the Drosophila S2 cell line with the Toll/interleukin-1 receptor (TIR) homology domains of each Toll family member to determine whether they can activate a known target of Toll-1, the promoter of the antifungal peptide gene drosomycin. All TIR family members activated the drosomycin promoter, with Toll-1 and Toll-7 TIRs producing the highest activation. We found that the Toll-1 and Toll-7 ectodomains bind Spz-1, -2, and -5, and also vesicular stomatitis virus (VSV) virions, and that Spz-1, -2, -5, and VSV all activated the promoters of drosomycin and several other AMP genes in S2 cells expressing full-length Toll-1 or Toll-7. In vivo experiments indicated that Toll-1 and Toll-7 mutants could be systemically infected with two bacterial species (Enterococcus faecalis and Pseudomonas aeruginosa), the opportunistic fungal pathogen Candida albicans, and VSV with different survival times in adult females and males compared with WT fly survival. Our results suggest that all Toll family members can activate several AMP genes. Our results further indicate that Toll-1 and Toll-7 bind multiple Spz proteins and also VSV, but they differentially affect adult survival after systemic infection, potentially because of sex-specific differences in Toll-1 and Toll-7 expression.
Collapse
Affiliation(s)
- Munmun Chowdhury
- From the Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110
| | - Chun-Feng Li
- From the Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110.,the State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhen He
- From the Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110.,the School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yuzhen Lu
- the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xu-Sheng Liu
- the School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Yu-Feng Wang
- the School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Y Tony Ip
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Michael R Strand
- the Department of Entomology, University of Georgia, Athens, Georgia 30602, and
| | - Xiao-Qiang Yu
- From the Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, .,the School of Life Sciences, Central China Normal University, Wuhan 430079, China.,the Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
8
|
Salcedo-Porras N, Guarneri A, Oliveira PL, Lowenberger C. Rhodnius prolixus: Identification of missing components of the IMD immune signaling pathway and functional characterization of its role in eliminating bacteria. PLoS One 2019; 14:e0214794. [PMID: 30943246 PMCID: PMC6447187 DOI: 10.1371/journal.pone.0214794] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
The innate immune system in insects is regulated by specific signalling pathways. Most immune related pathways were identified and characterized in holometabolous insects such as Drosophila melanogaster, and it was assumed they would be highly conserved in all insects. The hemimetabolous insect, Rhodnius prolixus, has served as a model to study basic insect physiology, but also is a major vector of the human parasite, Trypanosoma cruzi, that causes 10,000 deaths annually. The publication of the R. prolixus genome revealed that one of the main immune pathways, the Immune-deficiency pathway (IMD), was incomplete and probably non-functional, an observation shared with other hemimetabolous insects including the pea aphid (Acyrthosiphon pisum) and the bedbug (Cimex lectularius). It was proposed that the IMD pathway is inactive in R. prolixus as an adaptation to prevent eliminating beneficial symbiont gut bacteria. We used bioinformatic analyses based on reciprocal BLAST and HMM-profile searches to find orthologs for most of the "missing" elements of the IMD pathway and provide data that these are regulated in response to infection with Gram-negative bacteria. We used RNAi strategies to demonstrate the role of the IMD pathway in regulating the expression of specific antimicrobial peptides (AMPs) in the fat body of R. prolixus. The data indicate that the IMD pathway is present and active in R. prolixus, which opens up new avenues of research on R. prolixus-T. cruzi interactions.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Alessandra Guarneri
- Instituto René Rachou, Avenida Augusto de Lima, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, CCS, Ilha do Fundão, Rio de Janeiro, Brazil
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
9
|
Zhang J, Yang W, Xu J, Yang W, Li Q, Zhong Y, Cao Y, Yu XQ, Deng X. Regulation of antimicrobial peptide genes via insulin-like signaling pathway in the silkworm Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 103:12-21. [PMID: 30321587 DOI: 10.1016/j.ibmb.2018.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/29/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are important effector molecules of insect humoral immunity, and expression of AMPs is mainly regulated by the Toll and immune deficiency (IMD) pathways. FoxO, a key downstream regulator of the insulin-like signaling (ILS) pathway, has been recently reported to be involved in the regulation of AMPs in Drosophila melanogaster. In the present study, we investigated AMP gene expression and the regulation pathway controlled by the starvation in the silkworm Bombyx mori. We discovered that antibacterial activity in the hemolymph of B. mori larvae was increased by starvation, and expression of AMP genes (BmCecB6, BmAtta1, BmLeb3 and BmDefB) as well as the ILS target genes (FoxO, InR and Brummer) were strongly activated in the fat body by starvation. Moreover, phosphorylation of Akt kinase was reduced in the Bm-12 cells after starvation, suggesting that the ILS pathway was inhibited by starvation. We then showed that more FoxO protein was present in the cytoplasm than in the nucleus of Bm-12 cells under normal conditions, but more FoxO was detected in the nucleus after cells were starved for 8 h, indicating that FoxO was activated by starvation. In summary, our results indicated that starvation can activate AMP gene expression in B. mori via the ILS/FoxO signaling pathway.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China; Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA
| | - Weike Yang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Junfeng Xu
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Wanying Yang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingrong Li
- The Sericultural and Agri-Food Research Institute of the Guangdong Academy of Agricultural Sciences, Guangzhou, 510610, China
| | - Yangjin Zhong
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Cao
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO, 64110, USA.
| | - Xiaojuan Deng
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding/Guangdong Provincial Sericulture and Mulberry Engineering Research Center, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Guo Z, Qin J, Zhou X, Zhang Y. Insect Transcription Factors: A Landscape of Their Structures and Biological Functions in Drosophila and beyond. Int J Mol Sci 2018; 19:ijms19113691. [PMID: 30469390 PMCID: PMC6274879 DOI: 10.3390/ijms19113691] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription factors (TFs) play essential roles in the transcriptional regulation of functional genes, and are involved in diverse physiological processes in living organisms. The fruit fly Drosophila melanogaster, a simple and easily manipulated organismal model, has been extensively applied to study the biological functions of TFs and their related transcriptional regulation mechanisms. It is noteworthy that with the development of genetic tools such as CRISPR/Cas9 and the next-generation genome sequencing techniques in recent years, identification and dissection the complex genetic regulatory networks of TFs have also made great progress in other insects beyond Drosophila. However, unfortunately, there is no comprehensive review that systematically summarizes the structures and biological functions of TFs in both model and non-model insects. Here, we spend extensive effort in collecting vast related studies, and attempt to provide an impartial overview of the progress of the structure and biological functions of current documented TFs in insects, as well as the classical and emerging research methods for studying their regulatory functions. Consequently, considering the importance of versatile TFs in orchestrating diverse insect physiological processes, this review will assist a growing number of entomologists to interrogate this understudied field, and to propel the progress of their contributions to pest control and even human health.
Collapse
Affiliation(s)
- Zhaojiang Guo
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Jianying Qin
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Xiaomao Zhou
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China.
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
11
|
Chen J, Zhang DW, Jin X, Xu XL, Zeng BP. Characterization of the Akirin Gene and Its Role in the NF-κB Signaling Pathway of Sogatella furcifera. Front Physiol 2018; 9:1411. [PMID: 30349487 PMCID: PMC6186838 DOI: 10.3389/fphys.2018.01411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Akirin is an essential nuclear protein involved in the regulation of NF-κB signaling pathway. In most invertebrates, Akirin regulates NF-κB-related Imd and Toll pathways, however, in Drosophila, it only controls the Imd pathway, whereas its role in NF-κB signaling pathway in other insect species is unclear. In the present study, we used white-backed planthopper Sogatella furcifera as a model to investigate the functional activity of Akirin in insects. The sequence of Akirin cDNA was extracted from transcriptome database of S. furcifera; it contained a 585 bp open reading frame (ORF) encoding a putative protein of 194 amino acids. S. furcifera Akirin (SfAkirin) had a molecular weight of about 21.69 kDa and a theoretical pI of 8.66 and included a nuclear localization signal (NLS) of five amino acid residues at the N-terminal region. Evolutionary analysis showed that SfAkirin was evolutionary closer to Akirins of such relatively distant species as crustaceans than to those of some insect orders like Diptera and Hymenoptera. Tissue-specific expression analysis showed that the SfAkirin gene was expressed in all examined tissues, with the highest expression levels detected in the testis, followed by the ovary, whereas the lowest expression was found in the head. Real-time quantitative PCR analysis showed that SfAkirin mRNA was strongly induced in response to injection of heat-inactivated Escherichia coli and Bacillus subtilis, whereas SfAkirin silencing by RNA interference significantly reduced the expression of NF-κB dependent transcription factors Dorsal and Relish after B. subtilis and E. coli challenge, respectively. Our results suggest that SfAkirin may control the immune response of S. furcifera against bacterial infection via both Imd and Toll signaling pathways.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Dao-Wei Zhang
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Xing Jin
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| | - Xian-Lin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Zunyi Medical University, Zunyi, China
| | - Bo-Ping Zeng
- School of Biological and Agricultural Science and Technology, Zunyi Normal University, Zunyi, China
| |
Collapse
|
12
|
Ning M, Yuan M, Liu M, Gao Q, Wei P, Gu W, Wang W, Meng Q. Characterization of cathepsin D from Eriocheir sinensis involved in Spiroplasma eriocheiris infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:1-8. [PMID: 29709775 DOI: 10.1016/j.dci.2018.04.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/03/2018] [Accepted: 04/22/2018] [Indexed: 06/08/2023]
Abstract
Cathepsin D (catD) belongs to a lysosomal aspartic protease superfamily. The full-length catD cDNA from the Chinese mitten crab Eriocheir sinensis (EscatD) was 2748 bp and contained a 1158-bp ORF encoding a protein of 385 amino acids, including a signal peptide and two N-glycosylation sites. Phylogenetic analysis showed that EscatD was clustered into a single group, together with other catD for crustaceans. Quantitative real-time PCR revealed that EscatD was expressed mainly in the eyes, hemocytes, intestine and nerve and was expressed weakly in heart, muscle and gills. After challenge with Spiroplasma eriocheiris, the expression of EscatD was significantly up-regulated from 1 d to 9 d. The copy number of S. eriocheiris in a silencing EscatD group was significantly higher than those in the control groups during S. eriocheiris infection. Meanwhile, the survival rate of crabs decreased in an EscatD-dsRNA group. We further found that knockdown of EscatD by RNA interference resulted in a downward trend of expression levels of JNK, ERK, relish and p38 during the early stage, as well as a reduction in the expression of five antimicrobial peptides genes, namely, crusrin1, crustin2, ALF1, ALF2 and ALF3. The subcellular localization experiment suggested that recombinant EscatD was mainly located in the cytoplasm. The over-expression in Drosophila S2 cells indicated that EscatD could decrease the copy number of S. eriocheiris and increase cell viability. The above results demonstrated that EscatD plays an important immune role in E. sinensis to S. eriocheiris challenge.
Collapse
Affiliation(s)
- Mingxiao Ning
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Meijun Yuan
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Min Liu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qi Gao
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Panpan Wei
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Wei Gu
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China
| | - Wen Wang
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qingguo Meng
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
13
|
Wang X, Luo H, Zhang R. Innate immune responses in the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:22-33. [PMID: 29241953 DOI: 10.1016/j.dci.2017.12.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
Innate immunity, the evolutionarily conserved defense system, has been extensively analyzed in insect models over recent decades. The significant progress in this area has formed our dominant conceptual framework of the innate immune system, but critical advances in other insects have had a profound impact on our insights into the mystery of innate immunity. In recent years, we focused on the immune responses in Antheraea pernyi, an important commercial silkworm species reared in China. Here, we review the immune responses of A. pernyi based on immune-related gene-encoded proteins that are divided into five categories, namely pattern recognition receptors, hemolymph proteinases and their inhibitors, prophenoloxidase, Toll pathway factors and antimicrobial peptides, and others. Although the summarized information is limited since the research on A. pernyi immunity is in its infancy, we hope to provide evidence for further exploration of innate immune mechanisms.
Collapse
Affiliation(s)
- Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Hao Luo
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
14
|
Transcription Factor Forkhead Regulates Expression of Antimicrobial Peptides in the Tobacco Hornworm, Manduca sexta. Sci Rep 2017; 7:2688. [PMID: 28578399 PMCID: PMC5457402 DOI: 10.1038/s41598-017-02830-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 04/19/2017] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs) play an important role in defense against microbial infections in insects. Expression of AMPs is regulated mainly by NF-κB factors Dorsal, Dif and Relish. Our previous study showed that both NF-κB and GATA-1 factors are required for activation of moricin promoter in the tobacco hornworm, Manduca sexta, and a 140-bp region in the moricin promoter contains binding sites for additional transcription factors. In this study, we identified three forkhead (Fkh)-binding sites in the 140-bp region of the moricin promoter and several Fkh-binding sites in the lysozyme promoter, and demonstrated that Fkh-binding sites are required for activation of both moricin and lysozyme promoters by Fkh factors. In addition, we found that Fkh mRNA was undetectable in Drosophila S2 cells, and M. sexta Fkh (MsFkh) interacted with Relish-Rel-homology domain (RHD) but not with Dorsal-RHD. Dual luciferase assays with moricin mutant promoters showed that co-expression of MsFkh with Relish-RHD did not have an additive effect on the activity of moricin promoter, suggesting that MsFkh and Relish regulate moricin activation independently. Our results suggest that insect AMPs can be activated by Fkh factors under non-infectious conditions, which may be important for protection of insects from microbial infection during molting and metamorphosis.
Collapse
|
15
|
Shi Z, Liang H, Hou Y. Functional analysis of a NF-κB transcription factor in the immune defense of Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2017; 107:251-260. [PMID: 27871341 DOI: 10.1017/s0007485316000845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although some novel antimicrobial peptides (AMP) have been successfully isolated from Bactrocera dorsalis Hendel, the mechanisms underlying the induction of these peptides are still elusive. The homolog of NF-κB transcription factor Relish, designated as BdRelish, was cloned from B. dorsalis. The full length cDNA of BdRelish is 3954 bp with an open reading frame that encodes 1013 amino acids. Similar to Drosophila Relish and the mammalian p100, it is a compound protein containing a conserved Rel homology domain, an IPT (Ig-like, plexins, transcription factors) domain and an IκB-like domain (four ankyrin repeats), the nuclear localization signal RKRRR is also detected at the residues 449-453, suggesting that it has homology to Relish and it is a member of the Rel family of transcription activator proteins. Reverse transcription quantitative polymerase chain reaction analysis reveals that BdRelish mRNAs are detected in different quantities from various tissues and the highest transcription level of BdRelish is determined in fat body. The injection challenge of Escherichia coli and Staphylococcus aureas significantly upregulated the expression of BdRelish. The injection of BdRelish dsRNA markedly reduced the expression of BdRelish and decreased the transcription magnitude of antimicrobial peptides. Individuals injected BdRelish dsRNA died at a significantly faster rate compared with the control groups. Therefore, BdRelish is vital for the transcription of AMPs to attack the invading bacteria.
Collapse
Affiliation(s)
- Z Shi
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou, 350002,China
| | - H Liang
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou, 350002,China
| | - Y Hou
- State Key Laboratory of Ecological Pest Control of Fujian-Taiwan Crops,Fujian Agriculture and Forestry University,Fuzhou, 350002,China
| |
Collapse
|
16
|
Lu K, Gu Y, Liu X, Lin Y, Yu XQ. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2048-2055. [PMID: 28231709 DOI: 10.1021/acs.jafc.6b05769] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cry toxins are insecticidal toxin proteins produced by a spore-forming Gram-positive bacterium Bacillus thuringiensis. Interactions between the Cry toxins and the receptors from midgut brush border membrane vesicles (BBMVs), such as cadherin, alkaline phosphatase, and aminopeptidase, are key steps for the specificity and insecticidal activity of Cry proteins. However, little is known about the midgut juice proteins that may interfere with Cry binding to the receptors. To validate the hypothesis that there exist Cry-binding proteins that can interfere with the insecticidal process of Cry toxins, we applied Cry1Ab1-coupled Sepharose beads to isolate Cry-binding proteins form midgut juice of Plutella xylostella and Spodoptera exigua. Trypsin-like serine proteases and Dorsal were found to be Cry1Ab1-binding proteins in the midgut juice of P. xylostella. Peroxidase-C (POX-C) was found to be the Cry1Ab1-binding protein in the midgut juice of S. exigua. We proposed possible insecticidal mechanisms of Cry1Ab1 mediated by the two immune-related proteins: Dorsal and POX-C. Our results suggested that there exist, in the midgut juice, Cry-binding proteins, which are different from BBMV-specific receptors.
Collapse
Affiliation(s)
- Keyu Lu
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University , Xiamen, Fujian 361021, People's Republic of China
| | - Yuqing Gu
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University , Xiamen, Fujian 361021, People's Republic of China
| | - Xiaoping Liu
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University , Xiamen, Fujian 361021, People's Republic of China
| | - Yi Lin
- Fujian Provincial Key Laboratory of Biochemical Technology, Department of Bioengineering and Biotechnology, College of Chemical Engineering, Huaqiao University , Xiamen, Fujian 361021, People's Republic of China
| | - Xiao-Qiang Yu
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| |
Collapse
|
17
|
Wang S, Song X, Zhang Z, Li H, Lǚ K, Yin B, He J, Li C. Shrimp with knockdown of LvSOCS2, a negative feedback loop regulator of JAK/STAT pathway in Litopenaeus vannamei, exhibit enhanced resistance against WSSV. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:289-298. [PMID: 27497874 DOI: 10.1016/j.dci.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/31/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
JAK/STAT pathway is one of cytokine signaling pathways and mediates diversity immune responses to protect host from viral infection. In this study, LvSOCS2, a member of suppressor of cytokine signaling (SOCS) families, has been cloned and identified from Litopenaeus vannamei. The full length of LvSOCS2 is 1601 bp, including an 1194 bp open reading frame (ORF) coding for a putative protein of 397 amino acids with a calculated molecular weight of ∼42.3 kDa. LvSOCS2 expression was most abundant in gills and could respond to the challenge of LPS, Vibrio parahaemolyticus, Staphhylococcus aureus, Poly (I: C) and white spot syndrome virus (WSSV). There are several STAT binding motifs presented in the proximal promoter region of LvSOCS2 and its expression was induced by LvJAK or LvSTAT protein in a dose dependent manner, suggesting LvSOCS2 could be the transcriptional target gene of JAK/STAT pathway. Moreover, the transcription of DmVir-1, a read out of the activation of JAK/STAT pathway in Drosophila, was promoted by LvJAK but inhibited by LvSOCS2, indicating that LvSOCS2 could be a negative regulator in this pathway and thus can form a negative feedback loop. Our previous study indicated that shrimp JAK/STAT pathway played a positive role against WSSV. In this study, RNAi-mediated knockdown of LvSOCS2 shrimps showed lower susceptibility to WSSV infection and caused lessened virus loads, which further demonstrated that the JAK/STAT pathway could function as an anti-viral immunity in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Xuan Song
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zijian Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
18
|
Wang S, Li H, Lǚ K, Qian Z, Weng S, He J, Li C. Identification and characterization of transforming growth factor β-activated kinase 1 from Litopenaeus vannamei involved in anti-bacterial host defense. FISH & SHELLFISH IMMUNOLOGY 2016; 52:278-288. [PMID: 27033469 DOI: 10.1016/j.fsi.2016.03.149] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
LvTAK1, a member of transforming growth factor β-activated kinase 1 (TAK1) families, has been identified from Litopenaeus vannamei in this study. The full length of LvTAK1 is 2670 bp, including a 2277 bp open reading frame (ORF) that encoded a putative protein of 758 amino acids with a calculated molecular weight of ∼83.4 kDa LvTAK1 expression was most abundant in muscles and was up-regulated in gills after LPS, Vibrio parahaemolyticus, Staphylococcus aureus, Poly (I:C) and WSSV challenge. Both in vivo and in vitro experiments indicated that LvTAK1 could activate the expression of several antimicrobial peptide genes (AMPs). In addition, the dsRNA-mediated knockdown of LvTAK1 enhanced the susceptibility of shrimps to Vibrio parahaemolyticus, a kind of Gram-negative bacteria. These results suggested LvTAK1 played important roles in anti-bacterial infection. CoIP and subcellular localization assay demonstrated that LvTAK1 could interact with its binding protein LvTAB2, a key component of IMD pathway. Moreover, over-expression of LvTAK1 in Drosophila S2 cell could strongly induce the promoter activity of Diptericin (Dpt), a typical AMP which is used to read out of the activation of IMD pathway. These findings suggested that LvTAK1 could function as a component of IMD pathway. Interestingly, with the over-expression of LvTAK1 in S2 cell, the promoter activity of Metchnikowin (Mtk), a main target gene of Toll/Dif pathway, was up-regulated over 30 times, suggesting that LvTAK1 may also take part in signal transduction of the Toll pathway. In conclusion, we provided some evidences that the involvement of LvTAK1 in the regulation of both Toll and IMD pathways, as well as innate immune against bacterial infection in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zhe Qian
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|