1
|
Wang C, Zhang K, Cai B, Haller JE, Carnazza KE, Hu J, Zhao C, Tian Z, Hu X, Hall D, Qiang J, Hou S, Liu Z, Gu J, Zhang Y, Seroogy KB, Burré J, Fang Y, Liu C, Brunger AT, Li D, Diao J. VAMP2 chaperones α-synuclein in synaptic vesicle co-condensates. Nat Cell Biol 2024; 26:1287-1295. [PMID: 38951706 DOI: 10.1038/s41556-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
α-Synuclein (α-Syn) aggregation is closely associated with Parkinson's disease neuropathology. Physiologically, α-Syn promotes synaptic vesicle (SV) clustering and soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex assembly. However, the underlying structural and molecular mechanisms are uncertain and it is not known whether this function affects the pathological aggregation of α-Syn. Here we show that the juxtamembrane region of vesicle-associated membrane protein 2 (VAMP2)-a component of the SNARE complex that resides on SVs-directly interacts with the carboxy-terminal region of α-Syn through charged residues to regulate α-Syn's function in clustering SVs and promoting SNARE complex assembly by inducing a multi-component condensed phase of SVs, α-Syn and other components. Moreover, VAMP2 binding protects α-Syn against forming aggregation-prone oligomers and fibrils in these condensates. Our results suggest a molecular mechanism that maintains α-Syn's function and prevents its pathological amyloid aggregation, the failure of which may lead to Parkinson's disease.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jillian E Haller
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kathryn E Carnazza
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jiaojiao Hu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Xiao Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daniel Hall
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shouqiao Hou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinge Gu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Kim B Seroogy
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jacqueline Burré
- Helen and Robert Appel Alzheimer's Disease Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Axel T Brunger
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Meyer N, Torrent J, Balme S. Characterizing Prion-Like Protein Aggregation: Emerging Nanopore-Based Approaches. SMALL METHODS 2024:e2400058. [PMID: 38644684 DOI: 10.1002/smtd.202400058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/10/2024] [Indexed: 04/23/2024]
Abstract
Prion-like protein aggregation is characteristic of numerous neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This process involves the formation of aggregates ranging from small and potentially neurotoxic oligomers to highly structured self-propagating amyloid fibrils. Various approaches are used to study protein aggregation, but they do not always provide continuous information on the polymorphic, transient, and heterogeneous species formed. This review provides an updated state-of-the-art approach to the detection and characterization of a wide range of protein aggregates using nanopore technology. For each type of nanopore, biological, solid-state polymer, and nanopipette, discuss the main achievements for the detection of protein aggregates as well as the significant contributions to the understanding of protein aggregation and diagnostics.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, 34095, France
| | - Sébastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, Cedex 5, Montpellier, 34095, France
| |
Collapse
|
3
|
Charles-Achille S, Janot JM, Cayrol B, Balme S. Influence of Seed structure on Volume distribution of α-Synuclein Oligomer at Early Stages of Aggregation using nanopipette. Chembiochem 2024; 25:e202300748. [PMID: 38240074 DOI: 10.1002/cbic.202300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/18/2024] [Indexed: 02/04/2024]
Abstract
Understanding α-synuclein aggregation is crucial in the context of Parkinson's disease. The objective of this study was to investigate the influence of aggregation induced by preformed seeding on the volume of oligomers during the early stages, using a label-free, single-molecule characterization approach. By utilizing nanopipettes of varying sizes, the volume of the oligomers can be calculated from the amplitude of the current blockade and pipette geometry. Further investigation of the aggregates formed over time in the presence of added seeds revealed an acceleration in the formation of large aggregates and the existence of multiple distinct populations of oligomers. Additionally, we observed that spontaneously formed seeds inhibited the formation of smaller oligomers, in contrast to the effect of HNE seeds. These results suggest that the seeds play a crucial role in the formation of oligomers and their sizes during the early stages of aggregation, whereas the classical thioflavin T assay remains negative.
Collapse
Affiliation(s)
- Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095, Montpellier cedex 5, France
| | - Bastien Cayrol
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000, Montpellier, France
| | - Sebastien Balme
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, 34000, Montpellier, France
| |
Collapse
|
4
|
Sandler S, Horne RI, Rocchetti S, Novak R, Hsu NS, Castellana Cruz M, Faidon Brotzakis Z, Gregory RC, Chia S, Bernardes GJL, Keyser UF, Vendruscolo M. Multiplexed Digital Characterization of Misfolded Protein Oligomers via Solid-State Nanopores. J Am Chem Soc 2023; 145:25776-25788. [PMID: 37972287 PMCID: PMC10690769 DOI: 10.1021/jacs.3c09335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
Misfolded protein oligomers are of central importance in both the diagnosis and treatment of Alzheimer's and Parkinson's diseases. However, accurate high-throughput methods to detect and quantify oligomer populations are still needed. We present here a single-molecule approach for the detection and quantification of oligomeric species. The approach is based on the use of solid-state nanopores and multiplexed DNA barcoding to identify and characterize oligomers from multiple samples. We study α-synuclein oligomers in the presence of several small-molecule inhibitors of α-synuclein aggregation as an illustration of the potential applicability of this method to the development of diagnostic and therapeutic methods for Parkinson's disease.
Collapse
Affiliation(s)
- Sarah
E. Sandler
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert I. Horne
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sara Rocchetti
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Robert Novak
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Nai-Shu Hsu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marta Castellana Cruz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Rebecca C. Gregory
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Sean Chia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Bioprocessing
Technology Institute, Agency for Science, Technology and Research
(A*STAR), Singapore 138668
| | - Gonçalo J. L. Bernardes
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ulrich F. Keyser
- Cavendish
Laboratory, Maxwell Centre, Department of Physics, University of Cambridge, Cambridge CB3 0HE, U.K.
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
5
|
Liu Y, Wang X, Campolo G, Teng X, Ying L, Edel JB, Ivanov AP. Single-Molecule Detection of α-Synuclein Oligomers in Parkinson's Disease Patients Using Nanopores. ACS NANO 2023; 17:22999-23009. [PMID: 37947369 PMCID: PMC10690843 DOI: 10.1021/acsnano.3c08456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation in the brain has been significantly implicated in Parkinson's disease (PD). Beyond the brain, oligomers of α-Synuclein are also found in cerebrospinal fluid (CSF) and blood, where the analysis of these aggregates may provide diagnostic routes and enable a better understanding of disease mechanisms. However, detecting α-Syn in CSF and blood is challenging due to its heterogeneous protein size and shape, and low abundance in clinical samples. Nanopore technology offers a promising route for the detection of single proteins in solution; however, the method often lacks the necessary selectivity in complex biofluids, where multiple background biomolecules are present. We address these limitations by developing a strategy that combines nanopore-based sensing with molecular carriers that can specifically capture α-Syn oligomers with sizes of less than 20 nm. We demonstrate that α-Synuclein oligomers can be detected directly in clinical samples, with minimal sample processing, by their ion current characteristics and successfully utilize this technology to differentiate cohorts of PD patients from healthy controls. The measurements indicate that detecting α-Syn oligomers present in CSF may potentially provide valuable insights into the progression and monitoring of Parkinson's disease.
Collapse
Affiliation(s)
- Yaxian Liu
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Xiaoyi Wang
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Giulia Campolo
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Xiangyu Teng
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Liming Ying
- National
Heart and Lung Institute, Imperial College
London, Molecular Sciences Research Hub, London W12 0BZ, United Kingdom
| | - Joshua B. Edel
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| | - Aleksandar P. Ivanov
- Department
of Chemistry, Imperial College London, Molecular
Sciences Research Hub, London W12 0BZ, United
Kingdom
| |
Collapse
|
6
|
Aftahy K, Arrasate P, Bashkirov PV, Kuzmin PI, Maurizot V, Huc I, Frolov VA. Molecular Sensing and Manipulation of Protein Oligomerization in Membrane Nanotubes with Bolaamphiphilic Foldamers. J Am Chem Soc 2023; 145:25150-25159. [PMID: 37948300 PMCID: PMC10682987 DOI: 10.1021/jacs.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 11/12/2023]
Abstract
Adaptive and reversible self-assembly of supramolecular protein structures is a fundamental characteristic of dynamic living matter. However, the quantitative detection and assessment of the emergence of mesoscale protein complexes from small and dynamic oligomeric precursors remains highly challenging. Here, we present a novel approach utilizing a short membrane nanotube (sNT) pulled from a planar membrane reservoir as nanotemplates for molecular reconstruction, manipulation, and sensing of protein oligomerization and self-assembly at the mesoscale. The sNT reports changes in membrane shape and rigidity caused by membrane-bound proteins as variations of the ionic conductivity of the sNT lumen. To confine oligomerization to the sNT, we have designed and synthesized rigid oligoamide foldamer tapes (ROFTs). Charged ROFTs incorporate into the planar and sNT membranes, mediate protein binding to the membranes, and, driven by the luminal electric field, shuttle the bound proteins between the sNT and planar membranes. Using Annexin-V (AnV) as a prototype, we show that the sNT detects AnV oligomers shuttled into the nanotube by ROFTs. Accumulation of AnV on the sNT induces its self-assembly into a curved lattice, restricting the sNT geometry and inhibiting the material uptake from the reservoir during the sNT extension, leading to the sNT fission. By comparing the spontaneous and ROFT-mediated entry of AnV into the sNT, we reveal how intricate membrane curvature sensing by small AnV oligomers controls the lattice self-assembly. These results establish sNT-ROFT as a powerful tool for molecular reconstruction and functional analyses of protein oligomerization and self-assembly, with broad application to various membrane processes.
Collapse
Affiliation(s)
- Kathrin Aftahy
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - Pedro Arrasate
- Biofisika
Institute (CSIC, UPV/EHU), University of
the Basque Country, Leioa 48940, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country, Leioa 48940, Spain
| | - Pavel V. Bashkirov
- Research
Institute for Systems Biology and Medicine, Moscow 117246, Russia
| | - Petr I. Kuzmin
- A.N.
Frumkin Institute of Physical Chemistry and Electrochemistry, Moscow 119071, Russia
| | - Victor Maurizot
- Univ. Bordeaux,
CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), Pessac 33600, France
| | - Ivan Huc
- Department
of Pharmacy, Ludwig-Maximilians-Universität
München, Munich 81377, Germany
| | - Vadim A. Frolov
- Biofisika
Institute (CSIC, UPV/EHU), University of
the Basque Country, Leioa 48940, Spain
- Department
of Biochemistry and Molecular Biology, University
of the Basque Country, Leioa 48940, Spain
- Ikerbasque,
Basque Foundation for Science, Bilbao 48009, Spain
| |
Collapse
|
7
|
Tyoe O, Aryal C, Diao J. Docosahexaenoic acid promotes vesicle clustering mediated by alpha-Synuclein via electrostatic interaction. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:96. [PMID: 37823961 PMCID: PMC10611297 DOI: 10.1140/epje/s10189-023-00353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023]
Abstract
α-Synuclein (α-Syn) is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease, dementia, and other neurodegenerative diseases known as synucleinopathies. However, the functional role of α-Syn is still unclear, although it has been shown to be involved in the regulation of neurotransmitter release via the interaction with synaptic vesicles (SVs), vesicle clustering, and SNARE complex assembly. Fatty acids have significant occupancy in synaptic vesicles; and recent studies suggest the interaction of fatty acids with α-Syn affect the formation of (pathological) aggregates, but it is less clear how fatty acids affects the functional role of α-Syn including α-Syn-membrane interactions, in particular with (SV-like) vesicles. Here, we report the concentration dependent effect of docosahexaenoic acid (DHA) in synaptic-like vesicle clustering via α-Syn interaction. Through molecular dynamics simulation, we revealed that DHA promoted vesicle clustering is due to the electrostatic interaction between DHA in the membrane and the N-terminal region of α-Syn. Moreover, this increased electrostatic interaction arises from a change in the macroscopic properties of the protein-membrane interface induced by (preferential solvation of) DHA. Our results provide insight as to how DHA regulates vesicle clustering mediated by α-Syn and may further be useful to understand its physiological as well as pathological role. Description: In physiological environments, α-Synuclein (α-Syn) localizes at nerve termini and synaptic vesicles and interacts with anionic phospholipid membranes to promote vesicle clustering. Docosahexaenoic acid (DHA) increases binding affinity between α-Syn and lipid membranes by increasing electrostatic interaction energy through modulating the local and global membrane environment and conformational properties of α-Syn.
Collapse
Affiliation(s)
- Owen Tyoe
- Department of Physics, University of Cincinnati College of Arts and Sciences, Cincinnati, OH, 45221, USA
| | - Chinta Aryal
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Jiajie Diao
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
8
|
Abrao-Nemeir I, Meyer N, Nouvel A, Charles-Achille S, Janot JM, Torrent J, Balme S. Aβ42 fibril and non-fibril oligomers characterization using a nanopipette. Biophys Chem 2023; 300:107076. [PMID: 37480837 DOI: 10.1016/j.bpc.2023.107076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
The Aβ42 aggregates with different structures and morphology was investigated through a single molecule label-free technique. To this end, the quartz nanopipettes were functionalized with polyethylene glycol. The set of Aβ42- epigallocatechin-3-gallate fibrils with length (from 85 nm to 250 nm) obtained by sonication was detected. The comparison of experimental and computed value of the amplitude of relative current blockade using a geometrical model show that for fibrils longer than 80 nm, the discriminating parameter is their diameter. Then, non-fibril oligomers obtain from Aβ42(Osaka) aggregation at different time seed was investigated. The analysis of the amplitude of relative current blockade shows that detected oligomers are smaller than 30 nm regardless the aggregation time. In addition, the wide distributions of the dwell time suggests the polymorph character of the sample.
Collapse
Affiliation(s)
- Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Nathan Meyer
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France; INM, University of Montpellier, INSERM, Montpellier, France
| | - Alexis Nouvel
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Joan Torrent
- INM, University of Montpellier, INSERM, Montpellier, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 University of Montpellier ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France.
| |
Collapse
|
9
|
Meyer N, Bentin J, Janot JM, Abrao-Nemeir I, Charles-Achille S, Pratlong M, Aquilina A, Trinquet E, Perrier V, Picaud F, Torrent J, Balme S. Ultrasensitive Detection of Aβ42 Seeds in Cerebrospinal Fluid with a Nanopipette-Based Real-Time Fast Amyloid Seeding and Translocation Assay. Anal Chem 2023; 95:12623-12630. [PMID: 37587130 DOI: 10.1021/acs.analchem.3c00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
In this work, early-stage Aβ42 aggregates were detected using a real-time fast amyloid seeding and translocation (RT-FAST) assay. Specifically, Aβ42 monomers were incubated in buffer solution with and without preformed Aβ42 seeds in a quartz nanopipette coated with L-DOPA. Then, formed Aβ42 aggregates were analyzed on flyby resistive pulse sensing at various incubation time points. Aβ42 aggregates were detected only in the sample with Aβ42 seeds after 180 min of incubation, giving an on/off readout of the presence of preformed seeds. Moreover, this RT-FAST assay could detect preformed seeds spiked in 4% cerebrospinal fluid/buffer solution. However, in this condition, the time to detect the first aggregates was increased. Analysis of Cy3-labeled Aβ42 monomer adsorption on a quartz substrate after L-DOPA coating by confocal fluorescence spectroscopy and molecular dynamics simulation showed the huge influence of Aβ42 adsorption on the aggregation process.
Collapse
Affiliation(s)
- Nathan Meyer
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Jeremy Bentin
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Imad Abrao-Nemeir
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Saly Charles-Achille
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Maud Pratlong
- PerkinElmer, Parc Marcel Boiteux, 30200 Codolet, France
| | | | - Eric Trinquet
- PerkinElmer, Parc Marcel Boiteux, 30200 Codolet, France
| | - Veronique Perrier
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutique, EA4662, Université Bourgogne-Franche-Comté (UFR Sciences et Techniques), Centre Hospitalier Universitaire de Besançon, 16 route de Gray, 25030 Besançon, France
| | - Joan Torrent
- INM UM, CNRS, INSERM, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
10
|
Awasthi S, Ying C, Li J, Mayer M. Simultaneous Determination of the Size and Shape of Single α-Synuclein Oligomers in Solution. ACS NANO 2023; 17:12325-12335. [PMID: 37327131 PMCID: PMC10339783 DOI: 10.1021/acsnano.3c01393] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/18/2023]
Abstract
Soluble oligomers of amyloid-forming proteins are implicated as toxic species in the context of several neurodegenerative diseases. Since the size and shape of these oligomers influence their toxicity, their biophysical characterization is essential for a better understanding of the structure-toxicity relationship. Amyloid oligomers are difficult to characterize by conventional approaches due to their heterogeneity in size and shape, their dynamic aggregation process, and their low abundance. This work demonstrates that resistive pulse measurements using polymer-coated solid-state nanopores enable single-particle-level characterization of the size and shape of individual αSyn oligomers in solution within minutes. A comparison of the resulting size distribution with single-particle analysis by transmission electron microscopy and mass photometry reveals good agreement with superior resolution by nanopore-based characterization. Moreover, nanopore-based analysis has the capability to combine rapid size analysis with an approximation of the oligomer shape. Applying this shape approximation to putatively toxic oligomeric species that range in size from 18 ± 7 aggregated monomers (10S) to 29 ± 10 aggregated monomers (15S) and in concentration from picomolar to nanomolar revealed oligomer shapes that agree well with previous estimates by cryo-EM with the added advantage that nanopore-based analysis occurs rapidly, in solution, and has the potential to become a widely accessible technique.
Collapse
Affiliation(s)
- Saurabh Awasthi
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Cuifeng Ying
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| | - Jiali Li
- University
of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Michael Mayer
- Adolphe
Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland
| |
Collapse
|
11
|
Abrao‐Nemeir I, Bentin J, Meyer N, Janot J, Torrent J, Picaud F, Balme S. Investigation of α-Synuclein and Amyloid-β(42)-E22Δ Oligomers Using SiN Nanopore Functionalized with L-Dopa. Chem Asian J 2022; 17:e202200726. [PMID: 36038502 PMCID: PMC9826174 DOI: 10.1002/asia.202200726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Solid-state nanopores are an emerging technology used as a high-throughput, label-free analytical method for the characterization of protein aggregation in an aqueous solution. In this work, we used Levodopamine to coat a silicon nitride nanopore surface that was fabricated through a dielectric breakdown in order to reduce the unspecific adsorption. The coating of inner nanopore wall by investigation of the translocation of heparin. The functionalized nanopore was used to investigate the aggregation of amyloid-β and α-synuclein, two biomarkers of degenerative diseases. In the first application, we demonstrate that the α-synuclein WT is more prone to form dimers than the variant A53T. In the second one, we show for the Aβ(42)-E22Δ (Osaka mutant) that the addition of Aβ(42)-WT monomers increases the polymorphism of oligomers, while the incubation with Aβ(42)-WT fibrils generates larger aggregates.
Collapse
Affiliation(s)
- Imad Abrao‐Nemeir
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jeremy Bentin
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Nathan Meyer
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France,Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Jean‐Marc Janot
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Joan Torrent
- Neurological institute of MontpellierUniversity of Montpellier, INSERM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| | - Fabien Picaud
- Laboratory of Nanomedicin, Imagery and Therapeutics, EA4662University hospital center of BesançonUniversity of Bourgogne-Franche-Comté (UFR Sciences et Techniques)16 route de Gray25030BesançonFrance
| | - Sebastien Balme
- European Institute of Membranes, UMR5635University of Montpelier, ENCSM CNRSPlace Eugène Bataillon34095Montpellier cedex 5France
| |
Collapse
|
12
|
Yang L, Hu J, Li MC, Xu M, Gu ZY. Solid-state nanopore: chemical modifications, interactions, and functionalities. Chem Asian J 2022; 17:e202200775. [PMID: 36071031 DOI: 10.1002/asia.202200775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Indexed: 11/08/2022]
Abstract
Nanopore technology is a burgeoning detection technology for single-molecular sensing and ion rectification. Solid-state nanopores have attracted more and more attention because of their higher stability and tunability than biological nanopores. However, solid-state nanopores still suffer the drawbacks of low signal-to-noise ratio and low resolution, which hinders their practical applications. Thus, developing operatical and useful methods to overcome the shortages of solid-state nanopores is urgently needed. Here, we summarize the recent research on nanopore modification to achieve this goal. Modifying solid-state nanopores with different coating molecules can improve the selectivity, sensitivity, and stability of nanopores. The modified molecules can introduce different functions into the nanopores, greatly expanding the applications of this novel detection technology. We hope that this review of nanopore modification will provide new ideas for this field.
Collapse
Affiliation(s)
- Lei Yang
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Jun Hu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Min-Chao Li
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Ming Xu
- Nanjing Normal University, College of Chemistry and Materials Science, CHINA
| | - Zhi-Yuan Gu
- Nanjing Normal University, College of Chemistry and Materials Science, 1 Wenyuan Rd, 210023, Nanjing, CHINA
| |
Collapse
|
13
|
Jeong KB, Kim JS, Dhanasekar NN, Lee MK, Chi SW. Application of nanopore sensors for biomolecular interactions and drug discovery. Chem Asian J 2022; 17:e202200679. [PMID: 35929410 DOI: 10.1002/asia.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
Biomolecular interactions, including protein-protein, protein-nucleic acid, and protein/nucleic acid-ligand interactions, play crucial roles in various cellular signaling and biological processes, and offer attractive therapeutic targets in numerous human diseases. Currently, drug discovery is limited by the low efficiency and high cost of conventional ensemble-averaging-based techniques for biomolecular interaction analysis and high-throughput drug screening. Nanopores are an emerging technology for single-molecule sensing of biomolecules. Owing to the robust advantages of single-molecule sensing, nanopore sensors have contributed tremendously to nucleic acid sequencing and disease diagnostics. In this minireview, we summarize the recent developments and outlooks in single-molecule sensing of various biomolecular interactions for drug discovery applications using biological and solid-state nanopore sensors.
Collapse
Affiliation(s)
- Ki-Baek Jeong
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Jin-Sik Kim
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
| | - Naresh Niranjan Dhanasekar
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
| | - Mi-Kyung Lee
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Critical Diseases Diagnostics Convergence Research Center, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| | - Seung-Wook Chi
- Disease Target Structure Research Center, Division of Biomedical Research, KRIBB, 34141, Daejeon, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology, 34113, Daejeon, Republic of Korea
| |
Collapse
|
14
|
Ying C, Ma T, Xu L, Rahmani M. Localized Nanopore Fabrication via Controlled Breakdown. NANOMATERIALS 2022; 12:nano12142384. [PMID: 35889608 PMCID: PMC9323289 DOI: 10.3390/nano12142384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Nanopore sensors provide a unique platform to detect individual nucleic acids, proteins, and other biomolecules without the need for fluorescent labeling or chemical modifications. Solid-state nanopores offer the potential to integrate nanopore sensing with other technologies such as field-effect transistors (FETs), optics, plasmonics, and microfluidics, thereby attracting attention to the development of commercial instruments for diagnostics and healthcare applications. Stable nanopores with ideal dimensions are particularly critical for nanopore sensors to be integrated into other sensing devices and provide a high signal-to-noise ratio. Nanopore fabrication, although having benefited largely from the development of sophisticated nanofabrication techniques, remains a challenge in terms of cost, time consumption and accessibility. One of the latest developed methods—controlled breakdown (CBD)—has made the nanopore technique broadly accessible, boosting the use of nanopore sensing in both fundamental research and biomedical applications. Many works have been developed to improve the efficiency and robustness of pore formation by CBD. However, nanopores formed by traditional CBD are randomly positioned in the membrane. To expand nanopore sensing to a wider biomedical application, controlling the localization of nanopores formed by CBD is essential. This article reviews the recent strategies to control the location of nanopores formed by CBD. We discuss the fundamental mechanism and the efforts of different approaches to confine the region of nanopore formation.
Collapse
Affiliation(s)
- Cuifeng Ying
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
- Correspondence:
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China;
| | - Lei Xu
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| | - Mohsen Rahmani
- Advanced Optics and Photonics Laboratory, Department of Engineering, School of Science &Technology, Nottingham Trent University, Nottingham NG1 4FQ, UK; (L.X.); (M.R.)
| |
Collapse
|
15
|
Wei G, Hu R, Li Q, Lu W, Liang H, Nan H, Lu J, Li J, Zhao Q. Oligonucleotide Discrimination Enabled by Tannic Acid-Coordinated Film-Coated Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6443-6453. [PMID: 35544765 DOI: 10.1021/acs.langmuir.2c00638] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Discrimination of nucleotides serves as the basis for DNA sequencing using solid-state nanopores. However, the translocation of DNA is usually too fast to be detected, not to mention nucleotide discrimination. Here, we utilized polyphenolic TA and Fe3+, an attractive metal-organic thin film, and achieved a fast and robust surface coating for silicon nitride nanopores. The hydrophilic coating layer can greatly reduce the low-frequency noise of an original unstable nanopore, and the nanopore size can be finely tuned in situ at the nanoscale by simply adjusting the relative ratio of Fe3+ and TA monomers. Moreover, the hydrogen bonding interaction formed between the hydroxyl groups provided by TA and the phosphate groups of DNAs significantly increases the residence time of a short double-strand (100 bp) DNA. More importantly, we take advantage of the different strengths of hydrogen bonding interactions between the hydroxyl groups provided by TA and the analytes to discriminate between two oligonucleotide samples (oligodeoxycytidine and oligodeoxyadenosine) with similar sizes and lengths, of which the current signal patterns are significantly different using the coated nanopore. The results shed light on expanding the biochemical functionality of surface coatings on solid-state nanopores for future biomedical applications.
Collapse
Affiliation(s)
- Guanghao Wei
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Qiuhui Li
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Wenlong Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Hanyu Liang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang, 310022 Hangzhou, China
| | - Hexin Nan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang, 310022 Hangzhou, China
| | - Jing Lu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010 Jiangsu, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Zhejiang, 310022 Hangzhou, China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010 Jiangsu, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
| |
Collapse
|
16
|
Klose D, Vemulapalli SPB, Richman M, Rudnick S, Aisha V, Abayev M, Chemerovski M, Shviro M, Zitoun D, Majer K, Wili N, Goobes G, Griesinger C, Jeschke G, Rahimipour S. Cu 2+-Induced self-assembly and amyloid formation of a cyclic D,L-α-peptide: structure and function. Phys Chem Chem Phys 2022; 24:6699-6715. [PMID: 35234757 DOI: 10.1039/d1cp05415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including β-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-β-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.
Collapse
Affiliation(s)
- Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Sahithya Phani Babu Vemulapalli
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Safra Rudnick
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vered Aisha
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Abayev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Marina Chemerovski
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Shviro
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - David Zitoun
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Katharina Majer
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Nino Wili
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gil Goobes
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
17
|
Fu J, Wu L, Hu G, Li F, Ge Q, Lu Z, Tu J. Solid-state nanopore analysis on the conformation change of DNA polymerase I induced by a DNA substrate. Analyst 2022; 147:3087-3095. [DOI: 10.1039/d2an00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We studied the conformational changes between a Klenow fragment and its monomer complex with a DNA substrate using a SiN nanopore and found that the monomer complex has a tighter structure and transports slower.
Collapse
Affiliation(s)
- Jiye Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Linlin Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Gang Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Fuyao Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jing Tu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
18
|
Hanif S, Muhammad P, Niu Z, Ismail M, Morsch M, Zhang X, Li M, Shi B. Nanotechnology‐Based Strategies for Early Diagnosis of Central Nervous System Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Sumaira Hanif
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Pir Muhammad
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Zheng Niu
- Province's Key Lab of Brain Targeted Bionanomedicine School of Pharmacy Henan University Kaifeng Henan 475004 China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Centre for Biomedical Innovation School of Life Sciences Henan University Kaifeng Henan 475004 China
| | - Marco Morsch
- Department of Biomedical Sciences Macquarie University Centre for Motor Neuron Disease Research Macquarie University NSW 2109 Australia
| | - Xiaoju Zhang
- Department of Respiratory and Critical Care Medicine Henan Provincial People's Hospital Zhengzhou Henan 450003 China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine The Third Affiliated Hospital Sun Yat-sen University Guangzhou Guangdong 510630 China
| | - Bingyang Shi
- Department of Biomedical Sciences Faculty of Medicine & Health & Human Sciences Macquarie University NSW 2109 Australia
| |
Collapse
|
19
|
Wu K, Li D, Xiu P, Ji B, Diao J. O-GlcNAcylation inhibits the oligomerization of alpha-synuclein by declining intermolecular hydrogen bonds through a steric effect. Phys Biol 2020; 18:016002. [DOI: 10.1088/1478-3975/abb6dc] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Single-molecule studies of amyloid proteins: from biophysical properties to diagnostic perspectives. Q Rev Biophys 2020; 53:e12. [PMID: 33148356 DOI: 10.1017/s0033583520000086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.
Collapse
|
21
|
Hu R, Tong X, Zhao Q. Four Aspects about Solid-State Nanopores for Protein Sensing: Fabrication, Sensitivity, Selectivity, and Durability. Adv Healthc Mater 2020; 9:e2000933. [PMID: 32734703 DOI: 10.1002/adhm.202000933] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/11/2020] [Indexed: 12/27/2022]
Abstract
Solid-state nanopores are a mimic of innate biological nanopores embedded on lipid membranes. They are fabricated on thin suspended layers of synthetic materials that provide superior thermal, mechanical, chemical stability, and geometry flexibility. As their counterpart biological nanopores reach the goal of DNA sequencing and become commercial, solid-state nanopores thrive in aspects of protein sensing and have become an important research component for clinical diagnostic technologies. This review focuses on resistive pulse sensing modes, which are versatile for low-cost, portable sensing devices and summarizes four main aspects toward commercially available resistive pulse-based protein sensing techniques using solid-state nanopores. In each aspect of fabrication, sensitivity, selectivity, and durability, brief fundamentals are introduced and the challenges and improvements are discussed. The rapid advance of a practical technique requires greater multidisciplinary cooperation. The review aims at clarifying existing obstacles in solid-state nanopore based protein sensing, intriguing readers with existing solutions and finally encouraging multidisciplinary researchers to advance the development of this promising protein sensing methodology.
Collapse
Affiliation(s)
- Rui Hu
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
| | - Xin Tong
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
| | - Qing Zhao
- State Key Lab for Mesoscopic Physics and Frontiers Science Center for Nano‐optoelectronics School of Physics Peking University Beijing 100871 China
- Peking University Yangtze Delta Institute of Optoelectronics Nantong Jiangsu 226010 China
- Collaborative Innovation Center of Quantum Matter Beijing 100084 China
| |
Collapse
|
22
|
Reynaud L, Bouchet-Spinelli A, Raillon C, Buhot A. Sensing with Nanopores and Aptamers: A Way Forward. SENSORS 2020; 20:s20164495. [PMID: 32796729 PMCID: PMC7472324 DOI: 10.3390/s20164495] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
In the 90s, the development of a novel single molecule technique based on nanopore sensing emerged. Preliminary improvements were based on the molecular or biological engineering of protein nanopores along with the use of nanotechnologies developed in the context of microelectronics. Since the last decade, the convergence between those two worlds has allowed for biomimetic approaches. In this respect, the combination of nanopores with aptamers, single-stranded oligonucleotides specifically selected towards molecular or cellular targets from an in vitro method, gained a lot of interest with potential applications for the single molecule detection and recognition in various domains like health, environment or security. The recent developments performed by combining nanopores and aptamers are highlighted in this review and some perspectives are drawn.
Collapse
|
23
|
Cai B, Liu J, Zhao Y, Xu X, Bu B, Li D, Zhang L, Dong W, Ji B, Diao J. Single-vesicle imaging quantifies calcium's regulation of nanoscale vesicle clustering mediated by α-synuclein. MICROSYSTEMS & NANOENGINEERING 2020; 6:38. [PMID: 34567651 PMCID: PMC8433175 DOI: 10.1038/s41378-020-0147-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/18/2020] [Accepted: 02/03/2020] [Indexed: 06/13/2023]
Abstract
Although numerous studies have shown that the protein α-synuclein (α-Syn) plays a central role in Parkinson's disease, dementia with Lewy bodies, and other neurodegenerative diseases, the protein's physiological function remains poorly understood. Furthermore, despite recent reports suggesting that, under the influence of Ca2+, α-Syn can interact with synaptic vesicles, the mechanisms underlying that interaction are far from clear. Thus, we used single-vesicle imaging to quantify the extent to which Ca2+ regulates nanoscale vesicle clustering mediated by α-Syn. Our results revealed not only that vesicle clustering required α-Syn to bind to anionic lipid vesicles, but also that different concentrations of Ca2+ exerted different effects on how α-Syn induced vesicle clustering. In particular, low concentrations of Ca2+ inhibited vesicle clustering by blocking the electrostatic interaction between the lipid membrane and the N terminus of α-Syn, whereas high concentrations promoted vesicle clustering, possibly due to the electrostatic interaction between Ca2+ and the negatively charged lipids that is independent of α-Syn. Taken together, our results provide critical insights into α-Syn's physiological function, and how Ca2+ regulates vesicle clustering mediated by α-Syn.
Collapse
Affiliation(s)
- Bin Cai
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| | - Jie Liu
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, 100081 China
| | - Yunfei Zhao
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Xiangyu Xu
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing, 100081 China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 China
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027 China
| | - Lei Zhang
- Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter (Ministry of Education), School of Science, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000 China
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027 China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, 100191 China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267 USA
| |
Collapse
|
24
|
On-Chip Detection of the Biomarkers for Neurodegenerative Diseases: Technologies and Prospects. MICROMACHINES 2020; 11:mi11070629. [PMID: 32605280 PMCID: PMC7407176 DOI: 10.3390/mi11070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD) and glaucoma are all regarded as neurodegenerative diseases (neuro-DDs) because these diseases are highly related to the degeneration loss of functions and death of neurons with aging. The conventional diagnostic methods such as neuroimaging for these diseases are not only expensive but also time-consuming, resulting in significant financial burdens for patients and public health challenge for nations around the world. Hence early detection of neuro-DDs in a cost-effective and rapid manner is critically needed. For the past decades, some chip-based detection technologies have been developed to address this challenge, showing great potential in achieving point-of-care (POC) diagnostics of neuro-DDs. In this review, chip-based detection of neuro-DDs' biomarkers enabled by different transducing mechanisms is evaluated.
Collapse
|
25
|
Giamblanco N, Fichou Y, Janot JM, Balanzat E, Han S, Balme S. Mechanisms of Heparin-Induced Tau Aggregation Revealed by a Single Nanopore. ACS Sens 2020; 5:1158-1167. [PMID: 32216272 DOI: 10.1021/acssensors.0c00193] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Protein aggregation is involved in many diseases, including Parkinson's and Alzheimer's. The latter is characterized by intraneuronal deposition of amyloid aggregates composed of the tau protein. Although large and insoluble aggregates are typically found in affected brains, intermediate soluble oligomers are thought to represent crucial species for toxicity and spreading. Nanopore sensors constitute an emerging technology that allows the detection of the size and populations of molecular assembly present in a sample. Here, we employed conical nanopores to obtain the particle distributions during tau aggregation. We identified three distinct populations, monomers, oligomers, and fibrils, which we could quantify along the aggregation process. By comparing tau wild type with a mutant carrying the disease-associated P301L mutation, we showed that the latter mutation promotes the formation of oligomers. We furthermore highlighted that the P301L mutation promotes fibril breakage. This work demonstrates that conical nanopore is a powerful tool to measure and quantify transient protein aggregate intermediates.
Collapse
Affiliation(s)
- Nicoletta Giamblanco
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Yann Fichou
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| | - Emmanuel Balanzat
- Centre de recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 4, France
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENCSM CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex
5, France
| |
Collapse
|
26
|
Zeng S, Li S, Utterström J, Wen C, Selegård R, Zhang SL, Aili D, Zhang Z. Mechanism and Kinetics of Lipid Bilayer Formation in Solid-State Nanopores. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1446-1453. [PMID: 31971393 DOI: 10.1021/acs.langmuir.9b03637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-state nanopores provide a highly versatile platform for rapid electrical detection and analysis of single molecules. Lipid bilayer coating of the nanopores can reduce nonspecific analyte adsorption to the nanopore sidewalls and increase the sensing selectivity by providing possibilities for tethering specific ligands in a cell-membrane mimicking environment. However, the mechanism and kinetics of lipid bilayer formation from vesicles remain unclear in the presence of nanopores. In this work, we used a silicon-based, truncated pyramidal nanopore array as the support for lipid bilayer formation. Lipid bilayer formation in the nanopores was monitored in real time by the change in ionic current through the nanopores. Statistical analysis revealed that a lipid bilayer is formed from the instantaneous rupture of individual vesicle upon adsorption in the nanopores, differing from the generally agreed mechanism that lipid bilayer forms at a high vesicle surface coverage on a planar support. The dependence of the lipid bilayer formation process on the applied bias, vesicle size, and concentration was systematically studied. In addition, the nonfouling properties of the lipid bilayer coated nanopores were demonstrated during long single-stranded DNA translocation through the nanopore array. The findings indicate that the lipid bilayer formation process can be modulated by introducing nanocavities intentionally on the planar surface to create active sites or changing the vesicle size and concentration.
Collapse
Affiliation(s)
- Shuangshuang Zeng
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Shiyu Li
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Johanna Utterström
- Laboratory of Molecular Materials, Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Chenyu Wen
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Robert Selegård
- Laboratory of Molecular Materials, Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Shi-Li Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| | - Daniel Aili
- Laboratory of Molecular Materials, Division of Molecular Physics, Department of Physics, Chemistry and Biology , Linköping University , SE-581 83 Linköping , Sweden
| | - Zhen Zhang
- Division of Solid-State Electronics, Department of Electrical Engineering , Uppsala University , SE-751 21 Uppsala , Sweden
| |
Collapse
|
27
|
Eggenberger OM, Ying C, Mayer M. Surface coatings for solid-state nanopores. NANOSCALE 2019; 11:19636-19657. [PMID: 31603455 DOI: 10.1039/c9nr05367k] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since their introduction in 2001, solid-state nanopores have been increasingly exploited for the detection and characterization of biomolecules ranging from single DNA strands to protein complexes. A major factor that enables the application of nanopores to the analysis and characterization of a broad range of macromolecules is the preparation of coatings on the pore wall to either prevent non-specific adhesion of molecules or to facilitate specific interactions of molecules of interest within the pore. Surface coatings can therefore be useful to minimize clogging of nanopores or to increase the residence time of target analytes in the pore. This review article describes various coatings and their utility for changing pore diameters, increasing the stability of nanopores, reducing non-specific interactions, manipulating surface charges, enabling interactions with specific target molecules, and reducing the noise of current recordings through nanopores. We compare the coating methods with respect to the ease of preparing the coating, the stability of the coating and the requirement for specialized equipment to prepare the coating.
Collapse
Affiliation(s)
- Olivia M Eggenberger
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Cuifeng Ying
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| | - Michael Mayer
- Adolphe Merkle Institute, Chemin des Verdiers 4, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
28
|
Ying YL, Yang J, Meng FN, Li S, Li MY, Long YT. A Nanopore Phosphorylation Sensor for Single Oligonucleotides and Peptides. RESEARCH 2019; 2019:1050735. [PMID: 31912023 PMCID: PMC6944226 DOI: 10.34133/2019/1050735] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/07/2019] [Indexed: 11/07/2022]
Abstract
The phosphorylation of oligonucleotides and peptides plays a critical role in regulating virtually all cellular processes. To fully understand these complex and fundamental regulatory pathways, the cellular phosphorylate changes of both oligonucleotides and peptides should be simultaneously identified and characterized. Here, we demonstrated a single-molecule, high-throughput, label-free, general, and one-step aerolysin nanopore method to comprehensively evaluate the phosphorylation of both oligonucleotide and peptide substrates. By virtue of electrochemically confined effects in aerolysin, our results show that the phosphorylation accelerates the traversing speed of a negatively charged substrate for about hundreds of time while significantly enhances the translocation frequency of a positively charged substrate. Thereby, the kinase/phosphatase activity could be directly measured with the aerolysin nanopore from the characteristically dose-dependent event frequency of the substrates. By using this straightforward approach, a model T4 oligonucleotide kinase (PNK) further achieved the nanopore evaluation of its phosphatase activity and real-time monitoring of its phosphatase-catalyzed dephosphorylation at a single-molecule level. Our study provides a step forward to nanopore enzymology for analyzing the phosphorylation of both oligonucleotides and peptides with significant feasibility in fundamental biochemical researches, clinical diagnosis, and kinase/phosphatase-targeted drug discovery.
Collapse
Affiliation(s)
- Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing 210023, China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meng-Ying Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Chemistry and Biomedicine Innovation Center, Nanjing 210023, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
|
30
|
Pariary R, Bhattacharyya D, Bhunia A. Mitochondrial-membrane association of α-synuclein: Pros and cons in consequence of Parkinson's disease pathophysiology. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Eggenberger OM, Leriche G, Koyanagi T, Ying C, Houghtaling J, Schroeder TBH, Yang J, Li J, Hall A, Mayer M. Fluid surface coatings for solid-state nanopores: comparison of phospholipid bilayers and archaea-inspired lipid monolayers. NANOTECHNOLOGY 2019; 30:325504. [PMID: 30991368 DOI: 10.1088/1361-6528/ab19e6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In the context of sensing and characterizing single proteins with synthetic nanopores, lipid bilayer coatings provide at least four benefits: first, they minimize unwanted protein adhesion to the pore walls by exposing a zwitterionic, fluid surface. Second, they can slow down protein translocation and rotation by the opportunity to tether proteins with a lipid anchor to the fluid bilayer coating. Third, they provide the possibility to impart analyte specificity by including lipid anchors with a specific receptor or ligand in the coating. Fourth, they offer a method for tuning nanopore diameters by choice of the length of the lipid's acyl chains. The work presented here compares four properties of various lipid compositions with regard to their suitability as nanopore coatings for protein sensing experiments: (1) electrical noise during current recordings through solid-state nanopores before and after lipid coating, (2) long-term stability of the recorded current baseline and, by inference, of the coating, (3) viscosity of the coating as quantified by the lateral diffusion coefficient of lipids in the coating, and (4) the success rate of generating a suitable coating for quantitative nanopore-based resistive pulse recordings. We surveyed lipid coatings prepared from bolaamphiphilic, monolayer-forming lipids inspired by extremophile archaea and compared them to typical bilayer-forming phosphatidylcholine lipids containing various fractions of curvature-inducing lipids or cholesterol. We found that coatings from archaea-inspired lipids provide several advantages compared to conventional phospholipids; the stable, low noise baseline qualities and high viscosity make these membranes especially suitable for analysis that estimates physical protein parameters such as the net charge of proteins as they enable translocation events with sufficiently long duration to time-resolve dwell time distributions completely. The work presented here reveals that the ease or difficulty of coating a nanopore with lipid membranes did not depend significantly on the composition of the lipid mixture, but rather on the geometry and surface chemistry of the nanopore in the solid state substrate. In particular, annealing substrates containing the nanopore increased the success rate of generating stable lipid coatings.
Collapse
|
32
|
Kubánková M, Lin X, Albrecht T, Edel JB, Kuimova MK. Rapid Fragmentation during Seeded Lysozyme Aggregation Revealed at the Single Molecule Level. Anal Chem 2019; 91:6880-6886. [PMID: 30999745 DOI: 10.1021/acs.analchem.9b01221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein aggregation is associated with neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. The poorly understood pathogenic mechanism of amyloid diseases makes early stage diagnostics or therapeutic intervention a challenge. Seeded polymerization that reduces the duration of the lag phase and accelerates fibril growth is a widespread model to study amyloid formation. Seeding effects are hypothesized to be important in the "infectivity" of amyloids and are linked to the development of systemic amyloidosis in vivo. The exact mechanism of seeding is unclear yet critical to illuminating the propagation of amyloids. Here we report on the lateral and axial fragmentation of seed fibrils in the presence of lysozyme monomers at short time scales, followed by the generation of oligomers and growth of fibrils.
Collapse
Affiliation(s)
- Markéta Kubánková
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Xiaoyan Lin
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Tim Albrecht
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K.,School of Chemistry, Edgbaston Campus , University of Birmingham , Birmingham B15 2TT , U.K
| | - Joshua B Edel
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| | - Marina K Kuimova
- Department of Chemistry , Imperial College London , Exhibition Road , London SW7 2AZ , U.K
| |
Collapse
|
33
|
Cai B, Yu L, Sharum SR, Zhang K, Diao J. Single-vesicle measurement of protein-induced membrane tethering. Colloids Surf B Biointerfaces 2019; 177:267-273. [PMID: 30769228 DOI: 10.1016/j.colsurfb.2019.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 12/30/2022]
Abstract
Functions of the proteins involved in membrane tethering, a crucial step in membrane trafficking, remain elusive due to the lack of effective tools to investigate protein-lipid interaction. To address this challenge, we introduce a method to study protein-induced membrane tethering via in vitro reconstitution of lipid vesicles, including detailed steps from the preparation of the PEGylated slides to the imaging of single vesicles. Furthermore, we demonstrate the measurement of protein-vesicle interaction in tethered vesicle pairs using two representative proteins, the cytoplasmic domain of synaptotagmin-1 (C2AB) and α-synuclein. Results from Förster (fluorescence) resonance energy transfer (FRET) reveal that membrane tethering is distinguished from membrane fusion. Single-vesicle measurement also allows for assessment of dose-dependent effects of proteins and ions on membrane tethering. We envision that the continuous development of advanced techniques in the single-vesicle measurement will enable the investigation of complex protein-membrane interactions in live cells or tissues.
Collapse
Affiliation(s)
- Bin Cai
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA; Research Center for Nano-Biomaterial, Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Luning Yu
- Department of Physics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Savanna R Sharum
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| |
Collapse
|
34
|
Alza NP, Iglesias González PA, Conde MA, Uranga RM, Salvador GA. Lipids at the Crossroad of α-Synuclein Function and Dysfunction: Biological and Pathological Implications. Front Cell Neurosci 2019; 13:175. [PMID: 31118888 PMCID: PMC6504812 DOI: 10.3389/fncel.2019.00175] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022] Open
Abstract
Since its discovery, the study of the biological role of α-synuclein and its pathological implications has been the subject of increasing interest. The propensity to adopt different conformational states governing its aggregation and fibrillation makes this small 14-kDa cytosolic protein one of the main etiologic factors associated with degenerative disorders known as synucleinopathies. The structure, function, and toxicity of α-synuclein and the possibility of different therapeutic approaches to target the protein have been extensively investigated and reviewed. One intriguing characteristic of α-synuclein is the different ways in which it interacts with lipids. Though in-depth studies have been carried out in this field, the information they have produced is puzzling and the precise role of lipids in α-synuclein biology and pathology and vice versa is still largely unknown. Here we provide an overview and discussion of the main findings relating to α-synuclein/lipid interaction and its involvement in the modulation of lipid metabolism and signaling.
Collapse
Affiliation(s)
- Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Química, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Pablo A Iglesias González
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del Sur, Bahía Blanca, Argentina.,Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca, Argentina
| |
Collapse
|
35
|
Li X, Tong X, Lu W, Yu D, Diao J, Zhao Q. Label-free detection of early oligomerization of α-synuclein and its mutants A30P/E46K through solid-state nanopores. NANOSCALE 2019; 11:6480-6488. [PMID: 30892349 DOI: 10.1039/c9nr00023b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A30P and E46K are two mutants of α-synuclein (α-Syn) associated with familial early-onset Parkinson's disease (PD), and amyloid fibrils of α-Syn are the hallmarks of this disease. Detecting the heterogeneous system in the oligomerization stage of α-Syn is crucial for understanding the fibril formation and in vivo toxicity of α-Syn oligomers. Over the last two decades, solid-state nanopore technology has been developed into a reliable and versatile method in single-molecule studies. In this work, we study the time-dependent kinetics of early oligomerization of wild-type α-Syn, A30P, and E46K mutants through silicon nitride solid-state nanopores. By testing A30P, E46K, and wild-type α-Syn samples with different incubation times-from 3 to 15 days-we identify three typical types of oligomers formed in the oligomerization stage and confirm that A30P and E46K mutants aggregate faster than wild-type α-Syn. The results imply that the distinct aggregation pathways and kinetics featured by wild-type α-Syn and mutations may account for their distinct cytotoxicity and pathology in PD-related studies.
Collapse
Affiliation(s)
- Xiaoqing Li
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China.
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by a progressive loss of dopaminergic neurons from the nigrostriatal pathway, formation of Lewy bodies, and microgliosis. During the past decades multiple cellular pathways have been associated with PD pathology (i.e., oxidative stress, endosomal-lysosomal dysfunction, endoplasmic reticulum stress, and immune response), yet disease-modifying treatments are not available. We have recently used genetic data from familial and sporadic cases in an unbiased approach to build a molecular landscape for PD, revealing lipids as central players in this disease. Here we extensively review the current knowledge concerning the involvement of various subclasses of fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, sterols, and lipoproteins in PD pathogenesis. Our review corroborates a central role for most lipid classes, but the available information is fragmented, not always reproducible, and sometimes differs by sex, age or PD etiology of the patients. This hinders drawing firm conclusions about causal or associative effects of dietary lipids or defects in specific steps of lipid metabolism in PD. Future technological advances in lipidomics and additional systematic studies on lipid species from PD patient material may improve this situation and lead to a better appreciation of the significance of lipids for this devastating disease.
Collapse
|
37
|
Ying C, Houghtaling J, Eggenberger OM, Guha A, Nirmalraj P, Awasthi S, Tian J, Mayer M. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. ACS NANO 2018; 12:11458-11470. [PMID: 30335956 DOI: 10.1021/acsnano.8b06489] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanopores with diameters from 20 to 50 nm in silicon nitride (SiN x) windows are useful for single-molecule studies of globular macromolecules. While controlled breakdown (CBD) is gaining popularity as a method for fabricating nanopores with reproducible size control and broad accessibility, attempts to fabricate large nanopores with diameters exceeding ∼20 nm via breakdown often result in undesirable formation of multiple nanopores in SiN x membranes. To reduce the probability of producing multiple pores, we combined two strategies: laser-assisted breakdown and controlled pore enlargement by limiting the applied voltage. Based on laser power-dependent increases in nanopore conductance upon illumination and on the absence of an effect of ionic strength on the ratio between the nanopore conductance before and after laser illumination, we suggest that the increased rate of controlled breakdown results from laser-induced heating. Moreover, we demonstrate that conductance values before and after coating the nanopores with a fluid lipid bilayer can indicate fabrication of a single nanopore versus multiple nanopores. Complementary flux measurements of Ca2+ through the nanopore typically confirmed assessments of single or multiple nanopores that we obtained using the coating method. Finally, we show that thermal annealing of CBD pores significantly increased the success rate of coating and reduced the current noise before and after lipid coating. We characterize the geometry of these nanopores by analyzing individual resistive pulses produced by translocations of spherical proteins and demonstrate the usefulness of these nanopores for estimating the approximate molecular shape of IgG proteins.
Collapse
Affiliation(s)
- Cuifeng Ying
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
- Department of Biomedical Engineering , University of Michigan , 2200 Bonisteel Boulevard , Ann Arbor , Michigan 48109 , United States
| | - Olivia M Eggenberger
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Anirvan Guha
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Peter Nirmalraj
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Saurabh Awasthi
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics , Nankai University , Tianjin 300071 , China
| | - Michael Mayer
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| |
Collapse
|
38
|
Houghtaling J, List J, Mayer M. Nanopore-Based, Rapid Characterization of Individual Amyloid Particles in Solution: Concepts, Challenges, and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802412. [PMID: 30225962 DOI: 10.1002/smll.201802412] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Aggregates of misfolded proteins are associated with several devastating neurodegenerative diseases. These so-called amyloids are therefore explored as biomarkers for the diagnosis of dementia and other disorders, as well as for monitoring disease progression and assessment of the efficacy of therapeutic interventions. Quantification and characterization of amyloids as biomarkers is particularly demanding because the same amyloid-forming protein can exist in different states of assembly, ranging from nanometer-sized monomers to micrometer-long fibrils that interchange dynamically both in vivo and in samples from body fluids ex vivo. Soluble oligomeric amyloid aggregates, in particular, are associated with neurotoxic effects, and their molecular organization, size, and shape appear to determine their toxicity. This concept article proposes that the emerging field of nanopore-based analytics on a single molecule and single aggregate level holds the potential to account for the heterogeneity of amyloid samples and to characterize these particles-rapidly, label-free, and in aqueous solution-with regard to their size, shape, and abundance. The article describes the concept of nanopore-based resistive pulse sensing, reviews previous work in amyloid analysis, and discusses limitations and challenges that will need to be overcome to realize the full potential of amyloid characterization on a single-particle level.
Collapse
Affiliation(s)
- Jared Houghtaling
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Jonathan List
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700, Fribourg, Switzerland
| |
Collapse
|
39
|
Lee K, Park KB, Kim HJ, Yu JS, Chae H, Kim HM, Kim KB. Recent Progress in Solid-State Nanopores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704680. [PMID: 30260506 DOI: 10.1002/adma.201704680] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/08/2018] [Indexed: 05/28/2023]
Abstract
The solid-state nanopore has attracted much attention as a next-generation DNA sequencing tool or a single-molecule biosensor platform with its high sensitivity of biomolecule detection. The platform has advantages of processability, robustness of the device, and flexibility in the nanopore dimensions as compared with the protein nanopore, but with the limitation of insufficient spatial and temporal resolution to be utilized in DNA sequencing. Here, the fundamental principles of the solid-state nanopore are summarized to illustrate the novelty of the device, and improvements in the performance of the platform in terms of device fabrication are explained. The efforts to reduce the electrical noise of solid-state nanopore devices, and thus to enhance the sensitivity of detection, are presented along with detailed descriptions of the noise properties of the solid-state nanopore. Applications of 2D materials including graphene, h-BN, and MoS2 as a nanopore membrane to enhance the spatial resolution of nanopore detection, and organic coatings on the nanopore membranes for the addition of chemical functionality to the nanopore are summarized. Finally, the recently reported applications of the solid-state nanopore are categorized and described according to the target biomolecules: DNA-bound proteins, modified DNA structures, proteins, and protein oligomers.
Collapse
Affiliation(s)
- Kidan Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeong-Beom Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyung-Jun Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Seok Yu
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hongsik Chae
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Mi Kim
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ki-Bum Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
40
|
Giamblanco N, Coglitore D, Gubbiotti A, Ma T, Balanzat E, Janot JM, Chinappi M, Balme S. Amyloid Growth, Inhibition, and Real-Time Enzymatic Degradation Revealed with Single Conical Nanopore. Anal Chem 2018; 90:12900-12908. [DOI: 10.1021/acs.analchem.8b03523] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Nicoletta Giamblanco
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Diego Coglitore
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Alberto Gubbiotti
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Roma, Italia
| | - Tianji Ma
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Emmanuel Balanzat
- Centre de Recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 CEDEX 4 Caen, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| | - Mauro Chinappi
- Dipartmento di Ingegneria Industriale, Università di Roma Tor Vergata, Via del Politecnico 1, 00133 Roma, Italia
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 Université de Montpellier ENSCM CNRS-, Place Eugène Bataillon, 34095 CEDEX 5 Montpellier , France
| |
Collapse
|
41
|
Hu R, Rodrigues JV, Pradeep Waduge J, Yamazaki H, Cressiot B, Chishti Y, Makowski L, Yu D, Shakhnovich E, Zhao Q, Wanunu M. Differential Enzyme Flexibility Probed Using Solid-State Nanopores. ACS NANO 2018; 12:4494-4502. [PMID: 29630824 PMCID: PMC9016714 DOI: 10.1021/acsnano.8b00734] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Enzymes and motor proteins are dynamic macromolecules that coexist in a number of conformations of similar energies. Protein function is usually accompanied by a change in structure and flexibility, often induced upon binding to ligands. However, while measuring protein flexibility changes between active and resting states is of therapeutic significance, it remains a challenge. Recently, our group has demonstrated that breadth of signal amplitudes in measured electrical signatures as an ensemble of individual protein molecules is driven through solid-state nanopores and correlates with protein conformational dynamics. Here, we extend our study to resolve subtle flexibility variation in dihydrofolate reductase mutants from unlabeled single molecules in solution. We first demonstrate using a canonical protein system, adenylate kinase, that both size and flexibility changes can be observed upon binding to a substrate that locks the protein in a closed conformation. Next, we investigate the influence of voltage bias and pore geometry on the measured electrical pulse statistics during protein transport. Finally, using the optimal experimental conditions, we systematically study a series of wild-type and mutant dihydrofolate reductase proteins, finding a good correlation between nanopore-measured protein conformational dynamics and equilibrium bulk fluorescence probe measurements. Our results unequivocally demonstrate that nanopore-based measurements reliably probe conformational diversity in native protein ensembles.
Collapse
Affiliation(s)
- Rui Hu
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People’s Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People’s Republic of China
| | - João V. Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - J Pradeep Waduge
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hirohito Yamazaki
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Benjamin Cressiot
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yasmin Chishti
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lee Makowski
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Dapeng Yu
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People’s Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People’s Republic of China
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, People’s Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People’s Republic of China
- Corresponding Authors:.,
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Corresponding Authors:.,
| |
Collapse
|
42
|
Lepoitevin M, Ma T, Bechelany M, Janot JM, Balme S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv Colloid Interface Sci 2017; 250:195-213. [PMID: 28942265 DOI: 10.1016/j.cis.2017.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
In nature, ion channels are highly selective pores and act as gate to ensure selective ion transport, allowing ions to cross the membrane. By mimicking them, single solid state nanopore devices emerge as a new, powerful class of molecule sensors that allow for the label-free detection of biomolecules (DNA, RNA, and proteins), non-biological polymers, as well as small molecules. In this review, we exhaustively describe the fabrication and functionalization techniques to design highly robust and selective solid state nanopores. First we outline the different materials and methods to design nanopores, we explain the ionic conduction in nanopores, and finally we summarize some techniques to modify and functionalize the surface in order to obtain biomimetic nanopores, responding to different external stimuli.
Collapse
|
43
|
Yin B, Xie W, Liang L, Deng Y, He S, He F, Zhou D, Tlili C, Wang D. Covalent Modification of Silicon Nitride Nanopore by Amphoteric Polylysine for Short DNA Detection. ACS OMEGA 2017; 2:7127-7135. [PMID: 31457292 PMCID: PMC6645049 DOI: 10.1021/acsomega.7b01245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/06/2017] [Indexed: 05/11/2023]
Abstract
In this work, we demonstrate a chemical modification approach, by means of covalent-bonding amphoteric poly-l-lysine (PLL) on the interior nanopore surface, which could intensively protect the pore from etching when exposed in the electrolyte under various pH conditions (from pH 4 to 12). Nanopore was generated via simple current dielectric breakdown methodology, covalent modification was performed in three steps, and the functional nanopore was fully characterized in terms of chemical structure, hydrophilicity, and surface morphology. I-V curves were recorded under a broad range of pH stimuli to evaluate the stability of the chemical bonding layer; the plotted curves demonstrated that nanopore with a covalent bonding layer has good pH tolerance and showed apparent reversibility. In addition, we have also measured the conductance of modified nanopore with varied KCl concentration (from 0.1 mM to 1 M) at different pH conditions (pHs 5, 7, 9, and 11). The results suggested that the surface charge density does not fluctuate with variation in salt concentration, which inferred that the SiN x nanopore was fully covered by PLL. Moreover, the PLL functionalized nanopore has realized the detection of single-stranded DNA homopolymer translocation under bias voltage of 500 mV, and the 20 nt homopolymers could be evidently differentiated in terms of the current amplitude and dwell time at pHs 5, 8, and 11.
Collapse
|
44
|
Bu B, Tong X, Li D, Hu Y, He W, Zhao C, Hu R, Li X, Shao Y, Liu C, Zhao Q, Ji B, Diao J. N-Terminal Acetylation Preserves α-Synuclein from Oligomerization by Blocking Intermolecular Hydrogen Bonds. ACS Chem Neurosci 2017; 8:2145-2151. [PMID: 28741930 DOI: 10.1021/acschemneuro.7b00250] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The abnormal aggregation of α-synuclein (α-Syn) is closely associated with Parkinson's disease. Different post-translational modifications of α-Syn have been identified and contribute distinctly in α-Syn aggregation and cytotoxicity. Recently, α-Syn was reported to be N-terminally acetylated in cells, yet the functional implication of this modification, especially in α-Syn oligomerization, remains unclear. By using a solid-state nanopore system, we found that N-terminal acetylation can significantly decrease α-Syn oligomerization. Replica-exchange molecular dynamics simulations further revealed that addition of an acetyl group at the N-terminus disrupts intermolecular hydrogen bonds, which slows down the initial α-Syn oligomerization. Our finding highlights the essential role of N-terminal acetylation of α-Syn in preserving its native conformation against pathological aggregation.
Collapse
Affiliation(s)
- Bing Bu
- Biomechanics
and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Tong
- State
Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory,
School of Physics, Peking University, Beijing 100871, China
| | - Dechang Li
- Biomechanics
and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Yachong Hu
- Department
of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
- Key
Laboratory of Biomedical Information Engineering of the Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Wangxiao He
- Key
Laboratory of Biomedical Information Engineering of the Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chunyu Zhao
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Rui Hu
- State
Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory,
School of Physics, Peking University, Beijing 100871, China
| | - Xiaoqing Li
- State
Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory,
School of Physics, Peking University, Beijing 100871, China
| | - Yongping Shao
- Key
Laboratory of Biomedical Information Engineering of the Ministry of
Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cong Liu
- Interdisciplinary
Research Center on Biology and Chemistry, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Zhao
- State
Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory,
School of Physics, Peking University, Beijing 100871, China
| | - Baohua Ji
- Biomechanics
and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China
| | - Jiajie Diao
- Department
of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, United States
| |
Collapse
|
45
|
Hou C, Wang Y, Liu J, Wang C, Long J. Neurodegenerative Disease Related Proteins Have Negative Effects on SNARE-Mediated Membrane Fusion in Pathological Confirmation. Front Mol Neurosci 2017; 10:66. [PMID: 28377692 PMCID: PMC5359271 DOI: 10.3389/fnmol.2017.00066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Affiliation(s)
- Chen Hou
- Center for Mitochondrial Biology and Medicine and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an, China
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an, China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an, China
| | - Changhe Wang
- Center for Mitochondrial Biology and Medicine and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine and Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, and Frontier Institute of Science and Technology, Xi'an Jiaotong University Xi'an, China
| |
Collapse
|
46
|
Li J, Hu R, Li X, Tong X, Yu D, Zhao Q. Tiny protein detection using pressure through solid-state nanopores. Electrophoresis 2017; 38:1130-1138. [DOI: 10.1002/elps.201600410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/31/2016] [Accepted: 01/01/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Ji Li
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics; Peking University; Beijing P. R. China
| | - Rui Hu
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics; Peking University; Beijing P. R. China
| | - Xiaoqing Li
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics; Peking University; Beijing P. R. China
| | - Xin Tong
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics; Peking University; Beijing P. R. China
| | - Dapeng Yu
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics; Peking University; Beijing P. R. China
- Collaborative Innovation Center of Quantum Matter; Beijing P. R. China
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics; Peking University; Beijing P. R. China
- Collaborative Innovation Center of Quantum Matter; Beijing P. R. China
| |
Collapse
|
47
|
Structural Characteristics of α-Synuclein Oligomers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 329:79-143. [DOI: 10.1016/bs.ircmb.2016.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Kakish J, Allen KJH, Harkness TA, Krol ES, Lee JS. Novel Dimer Compounds That Bind α-Synuclein Can Rescue Cell Growth in a Yeast Model Overexpressing α-Synuclein. A Possible Prevention Strategy for Parkinson's Disease. ACS Chem Neurosci 2016; 7:1671-1680. [PMID: 27673434 DOI: 10.1021/acschemneuro.6b00209] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinson's disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C8-6-I and C8-6-N, at a concentration of 0.1 μM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C8-6-I and C8-6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 105 M-1.
Collapse
Affiliation(s)
- Joe Kakish
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Kevin J. H. Allen
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Troy A. Harkness
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Ed S. Krol
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| | - Jeremy S. Lee
- Department of Biochemistry, ‡Drug Discovery and Development Research Group, College
of Pharmacy and Nutrition, and §Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Canada S7N 0W0
| |
Collapse
|
49
|
Balme S, Coulon PE, Lepoitevin M, Charlot B, Yandrapalli N, Favard C, Muriaux D, Bechelany M, Janot JM. Influence of Adsorption on Proteins and Amyloid Detection by Silicon Nitride Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8916-8925. [PMID: 27506271 DOI: 10.1021/acs.langmuir.6b02048] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For the past 2 decades, emerging single-nanopore technologies have opened the route to multiple sensing applications. Besides DNA sensing, the identification of proteins and amyloids is a promising field for early diagnosis. However, the influence of the interactions between the nanopore surface and proteins should be taken into account. In this work, we have selected three proteins (avidin, lysozyme, and IgG) that exhibit different affinities with the SiNx surface, and we have also examined lysozyme amyloid. Our results show that the piranha treatment of SiNx significantly decreases protein adsorption. Moreover, we have successfully detected all proteins (pore diameter 17 nm) and shown the possibility of discriminating between denatured lysozyme and its amyloid. For all proteins, the capture rates are lower than expected, and we evidence that they are correlated with the affinity of proteins to the surface. Our result confirms that proteins interacting only with the nanopore surface wall stay long enough to be detected. For lysozyme amyloid, we show that the use of the nanopore is suitable for determining the number of monomer units even if only the proteins interacting with the nanopore are detected.
Collapse
Affiliation(s)
- Sébastien Balme
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Pierre Eugène Coulon
- Laboratoire des Solides Irradiés, École polytechnique, Université Paris-Saclay , Route de Saclay, 91128 Palaiseau Cedex, France
| | - Mathilde Lepoitevin
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Benoît Charlot
- Institut d'Electronique et des Systèmes, Université de Montpellier , 34095 Montpellier Cedex 5, France
| | - Naresh Yandrapalli
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS UMR5236 , 34293 Montpellier, France
| | - Cyril Favard
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS UMR5236 , 34293 Montpellier, France
| | - Delphine Muriaux
- Centre d'Études d'Agents Pathogènes et Biotechnologies pour la Santé (CPBS), CNRS UMR5236 , 34293 Montpellier, France
| | - Mikhael Bechelany
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Marc Janot
- Institut Européen des Membranes, UMR5635, Université de Montpellier CNRS ENSCM , Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| |
Collapse
|
50
|
Wang C, Zhao C, Li D, Tian Z, Lai Y, Diao J, Liu C. Versatile Structures of α-Synuclein. Front Mol Neurosci 2016; 9:48. [PMID: 27378848 PMCID: PMC4913103 DOI: 10.3389/fnmol.2016.00048] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
α-Synuclein (α-syn) is an intrinsically disordered protein abundantly distributed in presynaptic terminals. Aggregation of α-syn into Lewy bodies (LB) is a molecular hallmark of Parkinson’s disease (PD). α-Syn features an extreme conformational diversity, which adapts to different conditions and fulfills versatile functions. However, the molecular mechanism of α-syn transformation and the relation between different structural species and their functional and pathogenic roles in neuronal activities and PD remain unknown. In this mini-review, we summarize the recent discoveries of α-syn structures in the membrane-bound state, in cytosol, and in the amyloid state under physiological and pathological conditions. From the current knowledge on different structural species of α-syn, we intend to find a clue about its function and toxicity in normal neurons and under disease conditions, which could shed light on the PD pathogenesis.
Collapse
Affiliation(s)
- Chuchu Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| | - Chunyu Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| | - Dan Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| | - Zhiqi Tian
- Department of Cancer Biology, College of Medicine, University of CincinnatiCincinnati, OH, USA; Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of the Education School of Life Science, Xi'an Jiaotong UniversityXi'an, China
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University Stanford, CA, USA
| | - Jiajie Diao
- Department of Cancer Biology, College of Medicine, University of Cincinnati Cincinnati, OH, USA
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|