1
|
Nissan A, Alcolombri U, Peleg N, Galili N, Jimenez-Martinez J, Molnar P, Holzner M. Global warming accelerates soil heterotrophic respiration. Nat Commun 2023; 14:3452. [PMID: 37301858 PMCID: PMC10257684 DOI: 10.1038/s41467-023-38981-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Carbon efflux from soils is the largest terrestrial carbon source to the atmosphere, yet it is still one of the most uncertain fluxes in the Earth's carbon budget. A dominant component of this flux is heterotrophic respiration, influenced by several environmental factors, most notably soil temperature and moisture. Here, we develop a mechanistic model from micro to global scale to explore how changes in soil water content and temperature affect soil heterotrophic respiration. Simulations, laboratory measurements, and field observations validate the new approach. Estimates from the model show that heterotrophic respiration has been increasing since the 1980s at a rate of about 2% per decade globally. Using future projections of surface temperature and soil moisture, the model predicts a global increase of about 40% in heterotrophic respiration by the end of the century under the worst-case emission scenario, where the Arctic region is expected to experience a more than two-fold increase, driven primarily by declining soil moisture rather than temperature increase.
Collapse
Affiliation(s)
- Alon Nissan
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland.
| | - Uria Alcolombri
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Nadav Peleg
- Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Nir Galili
- Geological Institute, Department of Earth Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Joaquin Jimenez-Martinez
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
- Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Dübendorf, 8600, Switzerland
| | - Peter Molnar
- Institute of Environmental Engineering, Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, Zürich, 8093, Switzerland
| | - Markus Holzner
- Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, Dübendorf, 8600, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest Snow and Landscape Research, WSL, Birmensdorf, 8903, Switzerland
| |
Collapse
|
2
|
Bai T, Wang P, Qiu Y, Zhang Y, Hu S. Nitrogen availability mediates soil carbon cycling response to climate warming: A meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:2608-2626. [PMID: 36744998 DOI: 10.1111/gcb.16627] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/10/2023] [Indexed: 05/31/2023]
Abstract
Global climate warming may induce a positive feedback through increasing soil carbon (C) release to the atmosphere. Although warming can affect both C input to and output from soil, direct and convincing evidence illustrating that warming induces a net change in soil C is still lacking. We synthesized the results from field warming experiments at 165 sites across the globe and found that climate warming had no significant effect on soil C stock. On average, warming significantly increased root biomass and soil respiration, but warming effects on root biomass and soil respiration strongly depended on soil nitrogen (N) availability. Under high N availability (soil C:N ratio < 15), warming had no significant effect on root biomass, but promoted the coupling between effect sizes of root biomass and soil C stock. Under relative N limitation (soil C:N ratio > 15), warming significantly enhanced root biomass. However, the enhancement of root biomass did not induce a corresponding C accumulation in soil, possibly because warming promoted microbial CO2 release that offset the increased root C input. Also, reactive N input alleviated warming-induced C loss from soil, but elevated atmospheric CO2 or precipitation increase/reduction did not. Together, our findings indicate that the relative availability of soil C to N (i.e., soil C:N ratio) critically mediates warming effects on soil C dynamics, suggesting that its incorporation into C-climate models may improve the prediction of soil C cycling under future global warming scenarios.
Collapse
Affiliation(s)
- Tongshuo Bai
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yunpeng Qiu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yi Zhang
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuijin Hu
- Ecosystem Ecology Laboratory, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Empirical vs. light-use efficiency modelling for estimating carbon fluxes in a mid-succession ecosystem developed on abandoned karst grassland. PLoS One 2020; 15:e0237351. [PMID: 32764813 PMCID: PMC7413509 DOI: 10.1371/journal.pone.0237351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/23/2020] [Indexed: 11/19/2022] Open
Abstract
Karst systems represent an important carbon sink worldwide. However, several phenomena such as the CO2 degassing and the exchange of cave air return a considerable amount of CO2 to the atmosphere. It is therefore of paramount importance to understand the contribution of the ecosystem to the carbon budget of karst areas. In this study conducted in a mid-succession ecosystem developed on abandoned karst grassland, two types of model were assessed, estimating the gross primary production (GPP) or the net ecosystem exchange (NEE) based on seven years of eddy covariance data (2013-2019): (1) a quadratic vegetation index-based empirical model with five alternative vegetation indices as proxies of GPP and NEE, and (2) the vegetation photosynthesis model (VPM) which is a light use efficiency model to estimate only GPP. The Enhanced Vegetation Index (EVI) was the best proxy for NEE whereas SAVI performed very similarly to EVI in the case of GPP in the empirical model setting. The empirical model performed better than the VPM model which tended to underestimate GPP. Therefore, for this ecosystem, we suggest the use of the empirical model provided that the quadratic relationship observed persists. However, the VPM model would be a good alternative under a changing climate, as it is rooted in the understanding of the photosynthesis process, if the scalars it involves could be improved to better estimate GPP.
Collapse
|
4
|
Li S, Deng Y, Wang Z, Zhang Z, Kong X, Zhou W, Yi Y, Qu Y. Exploring the accuracy of amplicon-based internal transcribed spacer markers for a fungal community. Mol Ecol Resour 2019; 20:170-184. [PMID: 31599091 DOI: 10.1111/1755-0998.13097] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 08/25/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022]
Abstract
With the continual improvement in high-throughput sequencing technology and constant updates to fungal reference databases, the use of amplicon-based DNA markers as a tool to reveal fungal diversity and composition in various ecosystems has become feasible. However, both primer selection and the experimental procedure require meticulous verification. Here, we computationally and experimentally evaluated the accuracy and specificity of three widely used or newly designed internal transcribed spacer (ITS) primer sets (ITS1F/ITS2, gITS7/ITS4 and 5.8S-Fun/ITS4-Fun). In silico evaluation revealed that primer coverage varied at different taxonomic levels due to differences in degeneracy and the location of primer sets. Using even and staggered mock community standards, we identified different proportions of chimeric and mismatch reads generated by different primer sets, as well as great variation in species abundances, suggesting that primer selection would affect the results of amplicon-based metabarcoding studies. Choosing proofreading and high-fidelity polymerase (KAPA HiFi) could significantly reduce the percentage of chimeric and mismatch sequences, further reducing inflation of operational taxonomic units. Moreover, for two types of environmental fungal communities, plant endophytic and soil fungi, it was demonstrated that the three primer sets could not reach a consensus on fungal community composition or diversity, and that primer selection, not experimental treatment, determines observed soil fungal community diversity and composition. Future DNA marker surveys should pay greater attention to potential primer effects and improve the experimental scheme to increase credibility and accuracy.
Collapse
Affiliation(s)
- Shuzhen Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhujun Wang
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Zhaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.,CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiao Kong
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Wenjun Zhou
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Yanyun Yi
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Xishuangbanna, China.,Center for Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Xishuangbanna, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Yuan C, Zhu G, Yang S, Xu G, Li Y, Gong H, Wu C. Soil warming increases soil temperature sensitivity in subtropical Forests of SW China. PeerJ 2019; 7:e7721. [PMID: 31579603 PMCID: PMC6765358 DOI: 10.7717/peerj.7721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 11/20/2022] Open
Abstract
Background Soil respiration (RS) plays an important role in the concentration of atmospheric CO2 and thus in global climate patterns. Due to the feedback between RS and climate, it is important to investigate RS responses to climate warming. Methods A soil warming experiment was conducted to explore RS responses and temperature sensitivity (Q10) to climate warming in subtropical forests in Southwestern China, and infrared radiators were used to simulate climate warming. Results Warming treatment increased the soil temperature and RS value by 1.4 °C and 7.3%, respectively, and decreased the soil water level by 4.2% (%/%). Both one- and two-factor regressions showed that warming increased the Q10 values by 89.1% and 67.4%, respectively. The effects of water on Q10show a parabolic relationship to the soil water sensitivity coefficient. Both RS and Q10 show no acclimation to climate warming, suggesting that global warming will accelerate soil carbon release.
Collapse
Affiliation(s)
- Chaoxiang Yuan
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, China
| | - Guiqing Zhu
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, China
| | - Shuangna Yang
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, China
| | - Gang Xu
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, China
| | - Yingyun Li
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, China
| | - Hede Gong
- School of Geography and Ecotourism, Southwest Forestry University, Kunming, China
| | - Chuansheng Wu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| |
Collapse
|
6
|
Quan Q, Tian D, Luo Y, Zhang F, Crowther TW, Zhu K, Chen HYH, Zhou Q, Niu S. Water scaling of ecosystem carbon cycle feedback to climate warming. SCIENCE ADVANCES 2019; 5:eaav1131. [PMID: 31457076 PMCID: PMC6703863 DOI: 10.1126/sciadv.aav1131] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/15/2019] [Indexed: 05/22/2023]
Abstract
It has been well established by field experiments that warming stimulates either net ecosystem carbon uptake or release, leading to negative or positive carbon cycle-climate change feedback, respectively. This variation in carbon-climate feedback has been partially attributed to water availability. However, it remains unclear under what conditions water availability enhances or weakens carbon-climate feedback or even changes its direction. Combining a field experiment with a global synthesis, we show that warming stimulates net carbon uptake (negative feedback) under wet conditions, but depresses it (positive feedback) under very dry conditions. This switch in carbon-climate feedback direction arises mainly from scaling effects of warming-induced decreases in soil water content on net ecosystem productivity. This water scaling of warming effects offers generalizable mechanisms not only to help explain varying magnitudes and directions of observed carbon-climate feedback but also to improve model prediction of ecosystem carbon dynamics in response to climate change.
Collapse
Affiliation(s)
- Quan Quan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Dashuan Tian
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
- Department of Earth System Science, Tsinghua University, Beijing 100084, China
| | - Fangyue Zhang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
| | - Tom W. Crowther
- Institute of Integrative Biology, ETH-Zürich, Universitätstrasse 16, 8006 Zürich, Switzerland
| | - Kai Zhu
- Department of Environmental Studies, University of California, Santa Cruz, CA 95060, USA
| | - Han Y. H. Chen
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Qingping Zhou
- Institute of Qinghai-Tibetan Plateau, Southwest University for Nationalities, Chengdu 610041, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Yuquanlu, Beijing 100049, China
- Corresponding author.
| |
Collapse
|
7
|
Bradford MA, McCulley RL, Crowther TW, Oldfield EE, Wood SA, Fierer N. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat Ecol Evol 2019; 3:223-231. [PMID: 30643243 DOI: 10.1038/s41559-018-0771-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 11/26/2018] [Indexed: 11/09/2022]
Abstract
Climate warming may stimulate microbial metabolism of soil carbon, causing a carbon-cycle-climate feedback whereby carbon is redistributed from the soil to atmospheric CO2. The magnitude of this feedback is uncertain, in part because warming-induced shifts in microbial physiology and/or community composition could retard or accelerate soil carbon losses. Here, we measure microbial respiration rates for soils collected from 22 sites in each of 3 years, at locations spanning boreal to tropical climates. Respiration was measured in the laboratory with standard temperatures, moisture and excess carbon substrate, to allow physiological and community effects to be detected independent of the influence of these abiotic controls. Patterns in respiration for soils collected across the climate gradient are consistent with evolutionary theory on physiological responses that compensate for positive effects of temperature on metabolism. Respiration rates per unit microbial biomass were as much as 2.6 times higher for soils sampled from sites with a mean annual temperature of -2.0 versus 21.7 °C. Subsequent 100-d incubations suggested differences in the plasticity of the thermal response among microbial communities, with communities sampled from sites with higher mean annual temperature having a more plastic response. Our findings are consistent with adaptive metabolic responses to contrasting thermal regimes that are also observed in plants and animals. These results may help build confidence in soil-carbon-climate feedback projections by improving understanding of microbial processes represented in biogeochemical models.
Collapse
Affiliation(s)
- Mark A Bradford
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA.
| | - Rebecca L McCulley
- Department of Plant and Soil Science, University of Kentucky, Lexington, KY, USA
| | | | - Emily E Oldfield
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Stephen A Wood
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA.,The Nature Conservancy, Arlington, VA, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA.,Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| |
Collapse
|
8
|
Collalti A, Trotta C, Keenan TF, Ibrom A, Bond‐Lamberty B, Grote R, Vicca S, Reyer CPO, Migliavacca M, Veroustraete F, Anav A, Campioli M, Scoccimarro E, Šigut L, Grieco E, Cescatti A, Matteucci G. Thinning Can Reduce Losses in Carbon Use Efficiency and Carbon Stocks in Managed Forests Under Warmer Climate. JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS 2018; 10:2427-2452. [PMID: 31007835 PMCID: PMC6472666 DOI: 10.1029/2018ms001275] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 09/10/2018] [Accepted: 09/16/2018] [Indexed: 05/10/2023]
Abstract
Forest carbon use efficiency (CUE, the ratio of net to gross primary productivity) represents the fraction of photosynthesis that is not used for plant respiration. Although important, it is often neglected in climate change impact analyses. Here we assess the potential impact of thinning on projected carbon cycle dynamics and implications for forest CUE and its components (i.e., gross and net primary productivity and plant respiration), as well as on forest biomass production. Using a detailed process-based forest ecosystem model forced by climate outputs of five Earth System Models under four representative climate scenarios, we investigate the sensitivity of the projected future changes in the autotrophic carbon budget of three representative European forests. We focus on changes in CUE and carbon stocks as a result of warming, rising atmospheric CO2 concentration, and forest thinning. Results show that autotrophic carbon sequestration decreases with forest development, and the decrease is faster with warming and in unthinned forests. This suggests that the combined impacts of climate change and changing CO2 concentrations lead the forests to grow faster, mature earlier, and also die younger. In addition, we show that under future climate conditions, forest thinning could mitigate the decrease in CUE, increase carbon allocation into more recalcitrant woody pools, and reduce physiological-climate-induced mortality risks. Altogether, our results show that thinning can improve the efficacy of forest-based mitigation strategies and should be carefully considered within a portfolio of mitigation options.
Collapse
Affiliation(s)
- Alessio Collalti
- Impacts on Agriculture, Forests and Ecosystem Services DivisionFoundation Euro‐Mediterranean Center on Climate Change (CMCC)ViterboItaly
- National Research Council of ItalyInstitute for Agriculture and Forestry Systems in the Mediterranean (CNR‐ISAFOM)RendeItaly
| | - Carlo Trotta
- Department for Innovation in Biological, Agro‐food and Forest SystemsUniversity of TusciaViterboItaly
| | - Trevor F. Keenan
- Earth Sciences DivisionLawrence Berkeley National LaboratoryBerkeleyCAUSA
- Department of Environmental Science Policy and ManagementUniversity of CaliforniaBerkeleyCAUSA
| | - Andreas Ibrom
- Department Environmental EngineeringTechnical University of Denmark (DTU)LyngbyDenmark
| | - Ben Bond‐Lamberty
- Pacific Northwest National LaboratoryJoint Global Change Research Institute at the University of Maryland‐College ParkCollege ParkMDUSA
| | - Ruediger Grote
- Institute of Meteorology and Climate Research (IMK‐IFU)Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Sara Vicca
- Centre of Excellence PLECO (Pant and Vegetation Ecology), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | | | | | - Alessandro Anav
- College of Engineering, Mathematics and Physical SciencesUniversity of ExeterExeterUK
| | - Matteo Campioli
- Department Environmental EngineeringTechnical University of Denmark (DTU)LyngbyDenmark
| | - Enrico Scoccimarro
- Climate Simulation and Prediction DivisionFoundation Euro‐Mediterranean Center on Climate Change (CMCC)BolognaItaly
| | - Ladislav Šigut
- Department of Matter and Energy FluxesGlobal Change Research Institute CASBrnoCzech Republic
| | - Elisa Grieco
- Impacts on Agriculture, Forests and Ecosystem Services DivisionFoundation Euro‐Mediterranean Center on Climate Change (CMCC)ViterboItaly
| | - Alessandro Cescatti
- Directorate for Sustainable ResourcesEuropean Commission, Joint Research CentreIspraItaly
| | - Giorgio Matteucci
- National Research Council of ItalyInstitute for Agriculture and Forestry Systems in the Mediterranean (CNR‐ISAFOM)RendeItaly
| |
Collapse
|
9
|
Satellite-Based Inversion and Field Validation of Autotrophic and Heterotrophic Respiration in an Alpine Meadow on the Tibetan Plateau. REMOTE SENSING 2017. [DOI: 10.3390/rs9060615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Liang N, Teramoto M, Takagi M, Zeng J. High-resolution data on the impact of warming on soil CO 2 efflux from an Asian monsoon forest. Sci Data 2017; 4:170026. [PMID: 28291228 PMCID: PMC5386236 DOI: 10.1038/sdata.2017.26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/19/2017] [Indexed: 12/03/2022] Open
Abstract
This paper describes a project for evaluation of global warming’s impacts on soil carbon dynamics in Japanese forest ecosystems. We started a soil warming experiment in late 2008 in a 55-year-old evergreen broad-leaved forest at the boundary between the subtropical and warm-temperate biomes in southern Japan. We used infrared carbon-filament heat lamps to increase soil temperature by about 2.5 °C at a depth of 5 cm and continuously recorded CO2 emission from the soil surface using a multichannel automated chamber system. Here, we present details of the experimental processes and datasets for the CO2 emission rate, soil temperature, and soil moisture from control, trenched, and warmed trenched plots. The long term of the study and its high resolution make the datasets meaningful for use in or development of coupled climate-ecosystem models to tune their dynamic behaviour as well as to provide mean parameters for decomposition of soil organic carbon to support future predictions of soil carbon sequestration.
Collapse
Affiliation(s)
- Naishen Liang
- Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Munemasa Teramoto
- Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | - Masahiro Takagi
- Faculty of Agriculture, University of Miyazaki, 11300 Tano-cho, Miyazaki 889-1702, Japan
| | - Jiye Zeng
- Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
11
|
Sustained acceleration of soil carbon decomposition observed in a 6-year warming experiment in a warm-temperate forest in southern Japan. Sci Rep 2016; 6:35563. [PMID: 27748424 PMCID: PMC5066277 DOI: 10.1038/srep35563] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/03/2016] [Indexed: 11/09/2022] Open
Abstract
To examine global warming's effect on soil organic carbon (SOC) decomposition in Asian monsoon forests, we conducted a soil warming experiment with a multichannel automated chamber system in a 55-year-old warm-temperate evergreen broadleaved forest in southern Japan. We established three treatments: control chambers for total soil respiration, trenched chambers for heterotrophic respiration (Rh), and warmed trenched chambers to examine warming effect on Rh. The soil was warmed with an infrared heater above each chamber to increase soil temperature at 5 cm depth by about 2.5 °C. The warming treatment lasted from January 2009 to the end of 2014. The annual warming effect on Rh (an increase per °C) ranged from 7.1 to17.8% °C-1. Although the warming effect varied among the years, it averaged 9.4% °C-1 over 6 years, which was close to the value of 10.1 to 10.9% °C-1 that we calculated using the annual temperature-efflux response model of Lloyd and Taylor. The interannual warming effect was positively related to the total precipitation in the summer period, indicating that summer precipitation and the resulting soil moisture level also strongly influenced the soil warming effect in this forest.
Collapse
|