1
|
Yuan MH, Zhong WX, Wang YL, Liu YS, Song JW, Guo YR, Zeng B, Guo YP, Guo L. Therapeutic effects and molecular mechanisms of natural products in thrombosis. Phytother Res 2024; 38:2128-2153. [PMID: 38400575 DOI: 10.1002/ptr.8151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Thrombotic disorders, such as myocardial infarction and stroke, are the leading cause of death in the global population and have become a health problem worldwide. Drug therapy is one of the main antithrombotic strategies, but antithrombotic drugs are not completely safe, especially the risk of bleeding at therapeutic doses. Recently, natural products have received widespread interest due to their significant efficacy and high safety, and an increasing number of studies have demonstrated their antithrombotic activity. In this review, articles from databases, such as Web of Science, PubMed, and China National Knowledge Infrastructure, were filtered and the relevant information was extracted according to predefined criteria. As a result, more than 100 natural products with significant antithrombotic activity were identified, including flavonoids, phenylpropanoids, quinones, terpenoids, steroids, and alkaloids. These compounds exert antithrombotic effects by inhibiting platelet activation, suppressing the coagulation cascade, and promoting fibrinolysis. In addition, several natural products also inhibit thrombosis by regulating miRNA expression, anti-inflammatory, and other pathways. This review systematically summarizes the natural products with antithrombotic activity, including their therapeutic effects, mechanisms, and clinical applications, aiming to provide a reference for the development of new antithrombotic drugs.
Collapse
Affiliation(s)
- Ming-Hao Yuan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Xiao Zhong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Lu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Shi Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Wen Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Rou Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi-Ping Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Jang HY, Kim JM, Kim JS, Kim BS, Lee YR, Bae JS. Protaetia brevitarsis Extract Attenuates RANKL-Induced Osteoclastogenesis by Inhibiting the JNK/NF-κB/PLCγ2 Signaling Pathway. Nutrients 2023; 15:3193. [PMID: 37513611 PMCID: PMC10383183 DOI: 10.3390/nu15143193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Protaetia brevitarsis (PB)-derived bioactive substances have been used as food and medicine in many Asian countries because of their antioxidant, antidiabetic, anti-cancer, and hepatoprotective properties. However, the effect of PB extracts (PBE) on osteoclast differentiation is unclear. In this study, we investigated the effect of PBE on RANKL-induced osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs). To investigate the cytotoxicity of PBE, the viability of BMMs was confirmed via MTT assay. Tartrate-resistant acid phosphatase (TRAP) staining and pit assays were performed to confirm the inhibitory effect of PBE on osteoclast differentiation and bone resorption. The expression levels of osteoclast differentiation-related genes and proteins were evaluated using quantitative real-time PCR and Western blotting. PBE attenuated osteoclastogenesis in BMMs in TRAP and pit assays without cytotoxicity. The expression levels of osteoclast marker genes and proteins induced by RANKL were decreased after PBE treatment. PBE suppressed osteoclastogenesis by inhibiting the RANKL-induced activated JNK/NF-κB/PLCγ2 signaling pathway and the expression of NFATc1 and c-Fos. Collectively, these results suggest that PBE could be a potential therapeutic strategy or functional product for osteoclast-related bone disease.
Collapse
Affiliation(s)
- Hye-Yeon Jang
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jeong-Mi Kim
- Department of Biochemistry, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin, Jeonju 54907, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Jeonbuk National University Medical School, 20 Geonji-ro, Deokjin, Jeonju 54907, Republic of Korea
- BK21FOUR 21st Century Medical Science Creative Human Resource Development Center, Jeonbuk National University, 567 Baekje-daero, Deokjin, Jeonju 54896, Republic of Korea
| | - Byeong-Soo Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan 32439, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, Institute of Biomaterials-Implant, School of Dentistry, Wonkwang University, 460, Iksan 54538, Republic of Korea
| | - Jun Sang Bae
- Department of Pathology, College of Korean Medicine, Wonkwang University, 460, Iksan 54538, Republic of Korea
| |
Collapse
|
3
|
Sabry MO, Sabry OM, Caprioli G. Intriguing diverse chemistry and unique molecular mechanisms: new medicines with diverse pharmacological activities from cephalopods ink. Nat Prod Res 2022; 37:1909-1916. [PMID: 36067513 DOI: 10.1080/14786419.2022.2119567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The ink that cephalopods secrete to hide and frighten the enemies contains a treasury rich in bioactive diverse compounds like DOPA, melanin, melanin synthase, tyrosinase, angiotensin converting enzyme, catecholamines, oligopeptides, polyphenols, flavonoids, alkaloids, polysaccharides, fatty acids and minerals. These groups of the aforementioned compounds have promising unique in-vitro and in-vivo biological activities like antioxidant activity, anti-inflammatory, vasopressin, anti-Parkinson, anti-cancer, anti-coagulant, antimicrobial, anti-retroviral, anti-ulcerogenic and immune boosting activities. Cephalopods ink can be offered in its raw state or after separation and purification of its chemical constituents for use as natural medicine to treat many diverse diseases.
Collapse
Affiliation(s)
- Miral O Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Omar M Sabry
- Department of Pharmacognosy, College of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | |
Collapse
|
4
|
Li DX, Cheng X, Ma FP, Chen JY, Chen YP, Zhao XS, Luo Q. Identification of metabolites from edible mushroom Morchella sextelata and their biological evaluation. Nat Prod Res 2022; 37:1774-1781. [PMID: 36054761 DOI: 10.1080/14786419.2022.2119389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
To identify bioactive metabolites from the fruiting body of Morchella sextelata, fourteen metabolites (1-14) including one undescribed morchesexten A (1) were isolated. Their structures including absolute configurations were assigned on the basis of spectroscopic data and quantum chemical computational methods. Furthermore, the anti-inflammatory and antioxidant activities of the isolated compounds were evaluated. Compounds 10-12 showed inhibitory effects on nitric oxide (NO) production with IC50 values of 15.2 ± 2.7, 10.2 ± 1.9 and 35.3 ± 10.5 μM, respectively. Compounds 7 and 9 exhibited strong antioxidant effect with IC50 values of 6.7 ± 0.4 and 7.3 ± 0.8 μM compared with Vit C (IC50 15.4 ± 0.2 μM).
Collapse
Affiliation(s)
- De-Xian Li
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xia Cheng
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Fo-Pei Ma
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Yu Chen
- Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yi-Ping Chen
- School of Pharmaceutical Sciences, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiao-Shan Zhao
- Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Syndrome Laboratory of Integrated Chinese and Western Medicine, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Qi Luo
- Department of Pharmacy, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Department of Nephrology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Karpov AA, Vaulina DD, Smirnov SS, Moiseeva OM, Galagudza MM. Rodent models of pulmonary embolism and chronic thromboembolic pulmonary hypertension. Heliyon 2022; 8:e09014. [PMID: 35295664 PMCID: PMC8919224 DOI: 10.1016/j.heliyon.2022.e09014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/06/2021] [Accepted: 02/21/2022] [Indexed: 11/26/2022] Open
Abstract
Pulmonary embolism (PE) is the third most prevalent cardiovascular disease. It is associated with high in-hospital mortality and the development of acute and chronic complications. New approaches aimed at improving the prognosis of patients with PE are largely dependent on reliable animal models. Mice, rats, hamsters, and rabbits, are currently most commonly used for PE modeling because of their ethical acceptability and economic feasibility. This article provides an overview of the main approaches to PE modeling, and the advantages and disadvantages of each method. Special attention is paid to experimental endpoints, including morphological, functional, and molecular endpoints. All approaches to PE modeling can be broadly divided into three main groups: 1) induction of thromboembolism, either by thrombus formation in vivo or by injection of in vitro prepared blood clots; 2) introduction of particles of non-thrombotic origin; and 3) surgical procedures. The choice of a specific model and animal species is determined based on the objectives of the study. Rodent models of chronic thromboembolic pulmonary hypertension (CTEPH), which is the most devastating complication of PE, are also described. CTEPH models are especially challenging because of insufficient knowledge about the pathogenesis and high fibrinolytic activity of rodent plasma. The CTEPH model should demonstrate a persistent increase in pulmonary artery pressure and stable reduction of the vascular bed due to recurrent embolism. Based on the analysis of available evidence, one might conclude that currently, there is no single optimal method for modeling PE and CTEPH.
Collapse
|
6
|
Shang XF, Morris-Natschke SL, Liu YQ, Li XH, Zhang JY, Lee KH. Biology of quinoline and quinazoline alkaloids. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2022; 88:1-47. [PMID: 35305754 DOI: 10.1016/bs.alkal.2021.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quinoline and quinazoline alkaloids, two important classes of N-based heterocyclic compounds, have attracted scientific and popular interest worldwide since the 19th century. More than 600 compounds have been isolated from nature to date. To build on our two prior reviews, we reexamined the promising molecules described in previous reports and provided updated literature on novel quinoline and quinazoline alkaloids isolated over the past 5 years. This chapter reviews and discusses 205 molecules with a broad range of bioactivities, including antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, and other effects. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China; Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China; School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan.
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China.
| | - Xiu-Hui Li
- Beijing You'an Hospital, Capital Medical University, Beijing, PR China.
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, United States; Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
7
|
Zhang HS, Yan YM, Wang DW, Lv Q, Cheng YX, Wang SM. Small Molecule Constituents of Periplaneta americana and Their IL-6 Inhibitory Activities. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211033180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new glycosides, periplanosides A (1) and B (2), 3 compounds reported from a natural source for the first time (3 − 5), and 6 known compounds 6 − 11 were isolated from the ethanol extract of Periplaneta americana (Linnaeus). Their structures, including absolute configurations, were unambiguously identified by comprehensive spectroscopic and chemical methods. Compound 3 is a racemate whose enantiomers were purified by chiral high-performance liquid chromatography . The biological evaluation results showed that compound 7 (0 − 20 μM) did not affect the viability of RAW264.7 cells and could effectively inhibit the production of interleukin-6 stimulated by lipopolysaccharide in a concentration-dependent manner, indicating the potential to develop novel agents against inflammation-related diseases.
Collapse
Affiliation(s)
- Hua-Sheng Zhang
- Guangdong Pharmaceutical University, Guangzhou, PR China
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, PR China
| | - Yong-Ming Yan
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, PR China
| | - Dai-Wei Wang
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, PR China
| | - Qing Lv
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, PR China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineer, Hanshan Normal University, Chaozhou, PR China
| | - Yong-Xian Cheng
- Institute for Inheritance-Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, PR China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineer, Hanshan Normal University, Chaozhou, PR China
| | - Shu-Mei Wang
- Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
8
|
Gong PY, Guo YJ, Tian YS, Gu LF, Qi J, Yu BY. Reverse tracing anti-thrombotic active ingredients from dried Rehmannia Radix based on multidimensional spectrum-effect relationship analysis of steaming and drying for nine cycles. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114177. [PMID: 33945856 DOI: 10.1016/j.jep.2021.114177] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine (TCM) and modern pharmacodynamics, dried Rehmannia Radix (DRR) possesses prominent anti-thrombotic activity that decreases after processing by nine steaming and drying cycles to develop processed Rehmannia Radix (PRR). Due to the complexity of the DRR components, the chemical mechanism leading to efficacy changes of DRR caused by processing is still unclear. AIM OF STUDY This study aimed to trace the anti-thrombotic active compounds of DRR and different degrees of processed RR (PRR) and to evaluate the synergistic effects among different active components. MATERIALS AND METHODS The anti-thrombotic active chemical fraction of DRR extracts was evaluated. Targeted fractions of the processed products of RR were prepared at different processing stages. The changes in monosaccharides, oligosaccharides and secondary metabolites during processing were characterized by multidimensional high-performance liquid chromatography (HPLC). The anti-thrombotic effects of targeted fractions of different RR samples were evaluated by analyzing the length of tail thrombus (LT) and serum biochemical indicators in carrageenan-induced tail-thrombus mice. The spectrum-effect relationships were investigated by partial least squares regression (PLSR) analysis and gray correlation analysis (GRA). Finally, the active compounds were screened by spectrum-effect relationship analysis and validated in vivo, and their synergistic effects were determined by Webb's fraction multiplication method. RESULTS Six ingredients highly associated with anti-thrombotic activities were screened out by the spectrum-effect relationship analysis, of which oligosaccharides (stachyose, sucrose and raffinose) and iridoid glycosides (catalpol, leonuride and melitoside) possessed a synergistic effect on tumor necrosis factors (TNF-α), interleukin 1β (IL-1β) and plasminogen activator inhibitor 1 (PAI-1)/tissue-type plasminogen activator (t-PA) ratio in vivo with synergistic coefficient (SC) > 1. CONCLUSION The main material basis of the anti-thrombotic activities of DRR is oligosaccharide components of stachyose, raffinose and sucrose, iridoid glycosides components of catalpol, leonuride and melittoside. The two kinds of components exert synergistic anti-thrombotic effects by inhibiting the expression of inflammatory factors and regulating the balance of the fibrinolysis system.
Collapse
Affiliation(s)
- Pu-Yang Gong
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; College of Pharmacy, Southwest Minzu University, Chengdu, 610041, China.
| | - Yu-Jie Guo
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Yu-Shan Tian
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Li-Fei Gu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Jin Qi
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Bo-Yang Yu
- Research Center for Traceability and Standardization of TCMs, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
9
|
Zheng X, Liu H, Ma M, Ji J, Zhu F, Sun L. Anti-thrombotic activity of phenolic acids obtained from Salvia miltiorrhiza f. alba in TNF-α-stimulated endothelial cells via the NF-κB/JNK/p38 MAPK signaling pathway. Arch Pharm Res 2021; 44:427-438. [PMID: 33847919 DOI: 10.1007/s12272-021-01325-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/25/2021] [Indexed: 11/24/2022]
Abstract
Over the past 100 years, Salvia miltiorrhiza f. alba (Lamiaceae) (RSMA) roots have been used to cure thromboangiitis obliterans (TAO) in local clinics. This study aimed to confirm the anti-thrombotic efficacy of 12 phenolic acids obtained from RSMA and to clarify the possible underlying mechanisms. The results of quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) experiments demonstrated that most of the phenolic acids markedly inhibited PAI-1 protein and mRNA levels but increased t-PA protein and mRNA levels in TNF-α-induced EA.hy926 cells (P < 0.05 or 0.001), with lithospermic acid displaying the strongest effect. In vitro anticoagulation and antiplatelet aggregation assays showed that lithospermic acid and salvianolic acid B significantly prolonged prothrombin time (PT), activated partial thromboplastin time (APTT), decreased fibrinogen concentration (FIB), and inhibited platelet aggregation induced by adenosine diphosphate (ADP) in rat blood. Both lithospermic acid and salvianolic acid B markedly down-regulated the expression of factor Xa and factor IIa on the external surface of EA.hy926 cells and demonstrated significant anti-factor IIa and anti-factor Xa activity using chromogenic substrates in vitro. Western blot results revealed that both lithospermic acid and salvianolic acid B also significantly inhibited the expression of TF, p-p65, p-p38, and pJNK proteins induced by TNF-α. These results indicated that all of the phenolic acids appeared to have some anti-thrombotic activity, with salvianolic acid B and lithospermic acid markedly decreasing the chance of thrombosis by regulating the NF-κB/JNK/p38 MAPK signaling pathway in response to TNF-α.
Collapse
Affiliation(s)
- Xianjing Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, People's Republic of China
| | - Haimei Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, People's Republic of China
| | - Maoqiang Ma
- Pathology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Jianbo Ji
- Institute of Pharmacology, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, People's Republic of China
| | - Faliang Zhu
- Department of Immunology, School of Medicine, Shandong University, Jinan, 250012, People's Republic of China
| | - Longru Sun
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, 250012, People's Republic of China.
| |
Collapse
|
10
|
Toxic Animal-Based Medicinal Materials Can Be Effective in Treating Endometriosis: A Scoping Review. Toxins (Basel) 2021; 13:toxins13020145. [PMID: 33673020 PMCID: PMC7917649 DOI: 10.3390/toxins13020145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Animal toxins and venoms have recently been developed as cancer treatments possessing tumor cell growth-inhibitory, antiangiogenesis, and proapoptotic effects. Endometriosis is a common benign gynecological disorder in reproductive-age women, and no definite treatment for this disorder is without severe side effects. As endometriosis and malignant tumors share similar characteristics (progressive, invasive, estrogen-dependent growth, and recurrence), animal toxins and venoms are thought to be effective against endometriosis. The objective of this study was to outline studies using toxic animal-based medicinal materials (TMM) as endometriosis treatment and to explore its clinical applicability. Preclinical and clinical studies using TMM were searched for in four databases from inception to October 2020. A total of 20 studies of TMM on endometriosis were included. In eight clinical studies, herbal medicines containing TMM were effective in relieving symptoms of endometriosis, with no side effects. In twelve experimental studies, the main therapeutic mechanisms of TMM against endometriosis were proapoptotic, antiangiogenesis, estrogen level-reducing, and possible anti-inflammatory effects. TMM are thus considered promising sources for the development of an effective treatment method for endometriosis. Further studies are needed to clarify the therapeutic mechanism of TMM against endometriosis and to provide sufficient grounds for clinical application.
Collapse
|
11
|
Kumar D, Sharma S, Kalra S, Singh G, Monga V, Kumar B. Medicinal Perspective of Indole Derivatives: Recent Developments and Structure-Activity Relationship Studies. Curr Drug Targets 2020; 21:864-891. [DOI: 10.2174/1389450121666200310115327] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/22/2022]
Abstract
Heterocyclic compounds play a significant role in various biological processes of the human
body and many of them are in clinical use due to their diverse, chemical and biological properties.
Among these, indole is one of the most promising pharmacologically active molecules. Due to its
chemical reactivity, indole has been willingly modified to obtain a variety of new lead molecules,
which has been successfully utilized to obtained novel drug candidates for the treatment of different
pharmacological diseases. Indole-based compounds such as vincristine (anticancer), reserpine (antihypertensive),
amedalin (antidepressant) and many more describe the medicinal and pharmacological
importance of the indole in uplifting human life. In this review, we compiled various reports on indole
derivatives and their biological significance, including antifungal, antiprotozoal, antiplatelet, anti-
Alzheimer’s, anti-Parkinson’s, antioxidant and anticancer potential from 2015 onwards. In addition,
structure-activity relationship studies of the different derivatives have been included. We have also
discussed novel synthetic strategies developed during this period for the synthesis of different indole
derivatives. We believe that this review article will provide comprehensive knowledge about the medicinal
importance of indoles and will help in the design and synthesis of novel indole-based molecules
with high potency and efficacy.
Collapse
Affiliation(s)
- Devendra Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sahil Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Sourav Kalra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India
| |
Collapse
|
12
|
Duceac IA, Verestiuc L, Dimitriu CD, Maier V, Coseri S. Design and Preparation of New Multifunctional Hydrogels Based on Chitosan/Acrylic Polymers for Drug Delivery and Wound Dressing Applications. Polymers (Basel) 2020; 12:E1473. [PMID: 32630040 PMCID: PMC7407571 DOI: 10.3390/polym12071473] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
The dynamic evolution of materials with medical applications, particularly for drug delivery and wound dressing applications, gives impetus to design new proposed materials, among which, hydrogels represent a promising, powerful tool. In this context, multifunctional hydrogels have been obtained from chemically modified chitosan and acrylic polymers as cross-linkers, followed by subsequent conjugation with arginine. The hydrogels were finely tuned considering the variation of the synthetic monomer and the preparation conditions. The advantage of using both natural and synthetic polymers allowed porous networks with superabsorbent behavior, associated with a non-Fickian swelling mechanism. The in vitro release profiles for ibuprofen and the corresponding kinetics were studied, and the results revealed a swelling-controlled release. The biodegradability studies in the presence of lysozyme, along with the hemostatic evaluation and the induced fibroblast and stem cell proliferation, have shown that the prepared hydrogels exhibit characteristics that make them suitable for local drug delivery and wound dressing.
Collapse
Affiliation(s)
- Ioana A. Duceac
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania;
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 M. Kogalniceanu Street, 700454 Iasi, Romania
| | - Liliana Verestiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy, 9-13 M. Kogalniceanu Street, 700454 Iasi, Romania
| | - Cristina D. Dimitriu
- Department of Morpho-Functional Sciences, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Vasilica Maier
- Department of Textiles and Leather Chemical Engineering, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Sergiu Coseri
- “Petru Poni” Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, 700487 Iasi, Romania;
| |
Collapse
|
13
|
Anti-Thrombotic, Anti-Oxidant and Haemolysis Activities of Six Edible Insect Species. Foods 2020; 9:foods9040401. [PMID: 32244589 PMCID: PMC7231258 DOI: 10.3390/foods9040401] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/29/2022] Open
Abstract
In Korea, various insect species such as crickets and grasshoppers, as well as honey bee and silkworm pupae, have been consumed as food and used in oriental medicine. In this study to evaluate useful the bioactivities and potentially adverse effects of edible insects, ethanol extracts of Allomyrina dichotoma (AD), Tenebrio molitor (TM), Protaetia brevitarsis (PB), Gryllus bimaculatus (GB), Teleogryllusemma (TE), and Apis mellifera (AM) were prepared and evaluated with regard to their anti-thrombosis, anti-oxidant and haemolysis activities against human red blood cells. AD and TE extracts showed strong anti-oxidant activities, which were not related to polyphenol content. All ethanol extracts, except AM extract, showed strong platelet aggregation activities. The platelet aggregation ratios of the extracts were 194%–246% of those of the solvent controls. The effects of the AD, TM, PB, GM, and AM extracts on thrombin, prothrombin and various coagulation factors were negligible. Only the extract of TM showed concentration-dependent anti-coagulation activities, with a 1.75-fold aPTT (activated Partial Thromboplastin Time) extension at 5 mg/mL. Of the six insect extracts, TM and AM extracts exhibited potent haemolytic activity. Our results on the insect extracts’ functional properties suggest that edible insects have considerable potential not just as a food source but as a novel bio-resource as well.
Collapse
|
14
|
Hahn D, Bae JS. Recent Progress in the Discovery of Bioactive Components from Edible Natural Sources with Antithrombotic Activity. J Med Food 2019; 22:109-120. [DOI: 10.1089/jmf.2018.4268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Dongyup Hahn
- School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, Kyungpook National University, Daegu, Korea
| |
Collapse
|
15
|
A Review of Antiplatelet Activity of Traditional Medicinal Herbs on Integrative Medicine Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:7125162. [PMID: 30719065 PMCID: PMC6335729 DOI: 10.1155/2019/7125162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/13/2022]
Abstract
Thrombotic events mainly occurred by platelet activation and aggregation. The vascular occlusion causes serious disease states such as unstable angina, ischemic stroke, and heart attack. Due to the pervading of thrombotic diseases, new antiplatelet drugs are necessary for preventing and treating arterial thrombosis without adverse side effects. Traditional medicinal herbs have been used for the treatment of human ailments for a long time. The clinically useful and safe products from traditional medicinal herbs were identified and developed in numerous pharmacological approaches. A complementary system of traditional medicinal herbs is a good candidate for pharmacotherapy. However, it still has a limitation in its function and efficacy. Thus, it is necessary to study the mode of action of traditional medicinal herbs as alternative therapeutic agents. In this review, we focused on our current understanding of the regulatory mechanisms of traditional medicinal herbs in antiplatelet activity and antithrombotic effect of traditional medicinal herbs on platelet function.
Collapse
|
16
|
Memariani Z, Moeini R, Hamedi SS, Gorji N, Mozaffarpur SA. Medicinal plants with antithrombotic property in Persian medicine: a mechanistic review. J Thromb Thrombolysis 2018; 45:158-179. [PMID: 29124622 DOI: 10.1007/s11239-017-1580-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessels diseases. Due to the high prevalence of thromboembolic disorders investigations are being carried out on new antithrombotic agents with limited adverse side effects in which herbal medicines are considered as alternative remedies. Persian medicine (PM) as a traditional medicine has a good potential for pharmacotherapy based on its own principles and development of drugs via investigating PM literature. In PM manuscripts there are some concepts that express the management of blood clots and antithrombotic properties. This study reviewed the pharmacological effects of medicinal plants mentioned in PM literature for blood clot management in light of current knowledge. Plants mentioned in PM for management of blood clot belong to 12 families in which Apiaceae, Lamiaceae and Compositae were the most repeated ones. Among the proposed plants Allium sativum, Rosmarinus officinalis, Boswellia serrata, Sesamum indicum, Matricaria chamomilla and Carthamus tinctorius have been the most researched plants in modern antithrombotic studies while for some plants such as Helichrysum stoechas, Dracocephalum kotschi, Carum carvi, Bunium persicum and Lagoecia cuminoides no evidence could be found. One of the interesting notes in clot management in PM texts was introducing the target organ for some of the recommended herbs like Carum carvi and Bunium persicum for dissolving blood clot in stomach and Commiphora mukul for thrombosed hemorrhoid. It seems review of PM recommendations can help to design future researches for antithrombotic drugs discovering with more effectiveness and safety.
Collapse
Affiliation(s)
- Zahra Memariani
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Reihaneh Moeini
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| | - Shokooh Sadat Hamedi
- School of Traditional Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Narjes Gorji
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran. .,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.
| | - Seyyed Ali Mozaffarpur
- Traditional Medicine and History of Medical Sciences Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Islamic Republic of Iran.,School of Traditional Medicine, Babol University of Medical Sciences, Babol, Islamic Republic of Iran
| |
Collapse
|
17
|
Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Zhang JY, Lee KH. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38:1614-1660. [PMID: 29485730 DOI: 10.1002/med.21492] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/16/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
To follow-up on our prior Part I review, this Part II review summarizes and provides updated literature on novel quinoline and quinazoline alkaloids isolated during the period of 2009-2016, together with the biological activity and the mechanisms of action of these classes of natural products. Over 200 molecules with a broad range of biological activities, including antitumor, antiparasitic and insecticidal, antibacterial and antifungal, cardioprotective, antiviral, anti-inflammatory, hepatoprotective, antioxidant, anti-asthma, antitussive, and other activities, are discussed. This survey should provide new clues or possibilities for the discovery of new and better drugs from the original naturally occurring quinoline and quinazoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China.,School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Susan L Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Guan-Zhou Yang
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, Xining, P.R. China
| | - Xiao-Shan Xu
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou, P.R. China
| | - Ji-Yu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Key Laboratory of New Animal Drug Project, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, P.R. China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina.,Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Rauzi F, Smyth E, Emerson M. Refinement of Mouse Protocols for the Study of Platelet Thromboembolic Responses In Vivo. Thromb Haemost 2017; 117:2283-2290. [PMID: 29212116 PMCID: PMC6193277 DOI: 10.1160/th17-04-0250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mouse models of thromboembolism are frequently used to investigate platelet function in vivo and, according to European Union (EU) legislation, must be conducted in the context of replacement, refinement and reduction. We have previously developed a refined real-time mouse model of thromboembolism as an alternative to models of thromboembolic mortality which inflict considerable pain and suffering. Real-time monitoring involves infusion of radiolabelled platelets into the circulation of anaesthetized mice, and platelet aggregation is measured as increases in platelet-associated counts in the pulmonary vasculature following injection of platelet agonists. This gives a definitive data set on the tissue localization and extent of platelet activation. We developed an additional, more simplistic alternative to mortality models based on blood microsampling which entails the measurement of circulating platelet counts following agonist stimulation. Blood microsamples were collected from the tail vein of anaesthetized mice at three different time points leading to a reduction in animal numbers. Platelet counts significantly dropped 1 minute after stimulation with collagen or thrombin and were restored over 10 minutes. These results correlate with those obtained via real-time monitoring and were confirmed by immunohistochemistry. Pre-treatment of mice with aspirin significantly inhibited the decrease in platelet counts following collagen. These data suggest that blood microsampling may be implemented as a simplistic refined alternative to mortality models of thromboembolism when specialized monitoring equipment, or use of radioactive isotopes for real-time monitoring, which remains the ‘gold standard’, is not feasible. Microsampling refines and reduces animal procedures in compliance with current EU legislation.
Collapse
Affiliation(s)
- Francesca Rauzi
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Erica Smyth
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Michael Emerson
- Section of Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
19
|
Lee W, Kim MA, Park I, Hwang JS, Na M, Bae JS. Novel direct factor Xa inhibitory compounds from Tenebrio molitor with anti-platelet aggregation activity. Food Chem Toxicol 2017; 109:19-27. [PMID: 28844963 DOI: 10.1016/j.fct.2017.08.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/07/2017] [Accepted: 08/21/2017] [Indexed: 11/24/2022]
Abstract
Tenebrio molitor is an edible insect that has antimicrobial, anticancer, and antihypertensive effects. The aim of this study was to identify the unreported bioactive compounds from T. molitor larvae with inhibitory activities against factor Xa (FXa) and platelet aggregation. Isolated compounds were evaluated for their anti-FXa and anti-platelet aggregation properties by monitoring clotting time, platelet aggregation, FXa activity, and thrombus formation. A diketopiperazine (1, cyclo(L-Pro-L-Tyr)) and a phenylethanoid (2, N-acetyltyramine) were isolated and inhibited the catalytic activity of FXa in a mixed inhibition model and inhibited platelet aggregation induced by adenosine diphosphate (ADP) and U46619. They inhibited ADP- and U46619-induced phosphorylation of myristoylated alanine-rich C kinase substrate (MARCKS) and the expression of P-selectin and PAC-1 in platelets. They also improved the production of nitric oxide and inhibited the oversecretion of endothelin-1 compared to that of the ADP- or U46619-treated group. In an animal model of arterial and pulmonary thrombosis, the isolated compounds showed enhanced antithrombotic effects. They also elicited anticoagulant effects in mice. Compounds 1-2 inhibited ADP-, collagen-, or U46619-induced platelet aggregation and showed similar anti-thrombotic efficacy to rivaroxaban, a positive control. Therefore, 1-2 could serve as candidates and provide scaffolds for the development of new anti-FXa and anti-platelet drugs.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Ae Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea; Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - InWha Park
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun 55365, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
20
|
Lee J, Hwang IH, Kim JH, Kim MA, Hwang JS, Kim YH, Na M. Quinoxaline-, dopamine-, and amino acid-derived metabolites from the edible insect Protaetia brevitarsis seulensis. Arch Pharm Res 2017; 40:1064-1070. [PMID: 28780757 DOI: 10.1007/s12272-017-0942-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
Edible insects have been reported to produce metabolites showing various pharmacological activities, recently emerging as rich sources of health functional food. In particular, the larvae of Protaetia brevitarsis seulensis (Kolbe) have been used as traditional Korean medicines for treating diverse diseases, such as breast cancer, inflammatory disease, hepatic cancer, liver cirrhosis, and hepatitis. However, only few chemical investigations were reported on the insect larvae. Therefore, the aim of this study was to discover and identify biologically active chemical components of the larvae of P. brevitarsis seulensis. As a result, a quinoxaline-derived alkaloid (1) was isolated, which was not reported previously from natural sources. In addition, other related compounds (2, 4-10, 15, 16) were also encountered for the first time from the larvae. The structures of all the isolated compounds were established mainly by analysis of HRESIMS, NMR, and electronic circular dichroism data. Compound 5 exhibited inhibition of tyrosinase with IC50 value of 44.8 µM.
Collapse
Affiliation(s)
- JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - In Hyun Hwang
- College of Pharmacy, Woosuk University, Wanju-gun, Jeonbuk, 55338, Republic of Korea
| | - Jang Hoon Kim
- Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Mi-Ae Kim
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Jeonbuk, 55365, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Jeonbuk, 55365, Republic of Korea
| | - Young Ho Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
21
|
Alam MB, Bajpai VK, Lee J, Zhao P, Byeon JH, Ra JS, Majumder R, Lee JS, Yoon JI, Rather IA, Park YH, Kim K, Na M, Lee SH. Inhibition of melanogenesis by jineol from Scolopendra subspinipes mutilans via MAP-Kinase mediated MITF downregulation and the proteasomal degradation of tyrosinase. Sci Rep 2017; 7:45858. [PMID: 28393917 PMCID: PMC5385534 DOI: 10.1038/srep45858] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 12/26/2022] Open
Abstract
In this study, the authors investigated the anti-melanogenic effects of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans, the mechanisms responsible for its inhibition of melanogenesis in melan-a cells, and its antioxidant efficacy. Mushroom tyrosinase activities and melanin contents were determined in melan-a cells, and the protein and mRNA levels of MITF, tyrosinase, TYRP-1, and TYRP-2 were assessed. Jineol exhibited significant, concentration-dependent antioxidant effects as determined by DPPH, ABTS, CUPRAC, and FRAP assays. Jineol significantly inhibited mushroom tyrosinase activity by functioning as an uncompetitive inhibitor, and markedly inhibited melanin production and intracellular tyrosinase activity in melan-a cells. In addition, jineol abolished the expressions of tyrosinase, TYRP-1, TYRP-2, and MITF, thereby blocking melanin production and interfering with the phosphorylations of ERK1/2 and p38. Furthermore, specific inhibitors of ERK1/2 and p38 prevented melanogenesis inhibition by jineol, and the proteasome inhibitor (MG-132) prevented jineol-induced reductions in cellular tyrosinase levels. Taken together, jineol was found to stimulate MAP-kinase (ERK1/2 and p38) phosphorylation and the proteolytic degradation pathway, which led to the degradations of MITF and tyrosinase, and to suppress the productions of melanin.
Collapse
Affiliation(s)
- Md Badrul Alam
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Jung-Hee Byeon
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Jeong-Sic Ra
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| | - Rajib Majumder
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Bio-security and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, NSW 2567, Australia
| | - Jong Sung Lee
- Kcellbio, Seoulsoop Kolon Digital Tower, Seongsuil-ro-4-gil, Seongdong-gu 04713, Seoul, Korea
| | - Jung-In Yoon
- Kcellbio, Seoulsoop Kolon Digital Tower, Seongsuil-ro-4-gil, Seongdong-gu 04713, Seoul, Korea
| | - Irfan A Rather
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Yong-Ha Park
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Kangmin Kim
- Division of Biotechnology, College of Environmental and Bioresource Sciences, Chonbuk National University, 79 Gobong-ro, Iksan-si 570-752, Jeonbuk, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
22
|
Dutra LA, Guanaes JFO, Johmann N, Lopes Pires ME, Chin CM, Marcondes S, Dos Santos JL. Synthesis, antiplatelet and antithrombotic activities of resveratrol derivatives with NO-donor properties. Bioorg Med Chem Lett 2017; 27:2450-2453. [PMID: 28400236 DOI: 10.1016/j.bmcl.2017.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 11/26/2022]
Abstract
Resveratrol (RVT) is a stilbene with a protective effect on the cardiovascular system; however, drawbacks including low bioavailability and fast metabolism limit its efficacy. In this work we described new resveratrol derivatives with nitric oxide (NO) release properties, ability to inhibit platelet aggregation and in vivo antithrombotic effect. Compounds (4a-f) were able to release NO in vitro, at levels ranging from 24.1% to 27.4%. All compounds (2a-f and 4a-f) have exhibited platelet aggregation inhibition using as agonists ADP, collagen and arachidonic acid. The most active compound (4f) showed reduced bleeding time compared to acetylsalicylic acid (ASA) and protected up to 80% against in vivo thromboembolic events. These findings suggest that hybrid resveratrol-furoxan (4f) is a novel lead compound able to prevent platelet aggregation and thromboembolic events.
Collapse
Affiliation(s)
- Luiz Antonio Dutra
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| | | | - Nadine Johmann
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | | | - Chung Man Chin
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Sisi Marcondes
- University of Campinas (Unicamp), Faculty of Medical Science, Campinas, SP, Brazil
| | - Jean Leandro Dos Santos
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
23
|
Bajpai VK, Shukla S, Paek WK, Lim J, Kumar P, Na M. Antibacterial Action of Jineol Isolated from Scolopendra subspinipes mutilans against Selected Foodborne Pathogens. Front Microbiol 2017; 8:552. [PMID: 28400770 PMCID: PMC5368267 DOI: 10.3389/fmicb.2017.00552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 03/16/2017] [Indexed: 11/25/2022] Open
Abstract
This study was undertaken to assess the antibacterial potential of 3,8-dihydroxyquinoline (jineol) isolated from Scolopendra subspinipes mutilans against selected foodborne pathogens Escherichia coli O157:H7 and Staphylococcus aureus KCTC-1621. Jineol at the tested concentration (50 μL; corresponding to 250 μg/disk) exhibited significant antibacterial effects as a diameter of inhibition zones (11.6-13.6 mm), along with minimum inhibitory concentration (MIC) and minimum bactericidal concentration values found in the range of (62.5-125 μg/mL) and (125-250 μg/mL), respectively. Jineol also exhibited significant antibacterial effects as confirmed by the reduction in bacterial cell viabilities, increasing release of potassium (K+) ions (650 and 700 mmole/L) and 260 nm materials (optical density: 2.98-3.12) against both the tested pathogens, E. coli O157:H7 and S. aureus KCTC-1621, respectively. Moreover, changes in the cell wall morphology of E. coli O157:H7 and S. aureus KCTC-1621 cells treated with jineol at MIC further confirmed its inhibitory potential against the tested pathogens, suggesting its role as an effective antimicrobial to control foodborne pathogens.
Collapse
Affiliation(s)
- Vivek K. Bajpai
- Microbiome Laboratory, Department of Applied Microbiology and Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk UniversitySeoul, South Korea
| | - Woon K. Paek
- National Science Museum, Ministry of Science, ICT and Future PlanningDaejeon, South Korea
| | - Jeongheui Lim
- National Science Museum, Ministry of Science, ICT and Future PlanningDaejeon, South Korea
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University)Nirjuli, India
| | - MinKyun Na
- College of Pharmacy, Chungnam National UniversityDaejeon, South Korea
| |
Collapse
|
24
|
Lee J, Lee W, Kim MA, Hwang JS, Na M, Bae JS. Inhibition of platelet aggregation and thrombosis by indole alkaloids isolated from the edible insect Protaetia brevitarsis seulensis (Kolbe). J Cell Mol Med 2016; 21:1217-1227. [PMID: 27997749 PMCID: PMC5431138 DOI: 10.1111/jcmm.13055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
Protaetia brevitarsis seulensis (Kolbe) has been temporarily registered as a food material by the Ministry of Food and Drug Safety of Korea (MFDS). The current study aimed to discover small antithrombotic molecules from this edible insect. Five indole alkaloids, 5‐hydroxyindolin‐2‐one (1), (1R,3S)‐1‐methyl‐1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid (2), (1S,3S)‐1‐methyl‐1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid (3), (3S)‐1,2,3,4‐tetrahydro‐β‐carboline‐3‐carboxylic acid (4) and L‐tryptophan (5), were isolated from the insect. Among them, compounds 1 and 2 prolonged aPTT and PT and impaired thrombin and FXa generation on HUVEC surface. Moreover, these compounds inhibited platelet aggregation. Antithrombotic effects of compounds 1 and 2 were further confirmed in pre‐clinical models of pulmonary embolism and arterial thrombosis. Collectively, these results demonstrated that compounds 1 and 2 could be effective antithrombotic agents and serve as new scaffolds for the development of antithrombotic drug.
Collapse
Affiliation(s)
- JungIn Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Ae Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea.,Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Republic of Korea
| | - Jae Sam Hwang
- Department of Agricultural Biology, The National Academy of Agricultural Science, RDA, Wanju-gun, Republic of Korea
| | - MinKyun Na
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
25
|
Ain QU, Khan H, Mubarak MS, Pervaiz A. Plant Alkaloids as Antiplatelet Agent: Drugs of the Future in the Light of Recent Developments. Front Pharmacol 2016; 7:292. [PMID: 27713699 PMCID: PMC5032615 DOI: 10.3389/fphar.2016.00292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/22/2016] [Indexed: 11/13/2022] Open
Abstract
An alkaloid is a class of naturally occurring organic nitrogen-containing compounds that are frequently found in the plant kingdom. Many alkaloids are valuable medicinal agents that can be utilized to treat various diseases including malaria, diabetics, cancer, cardiac dysfunction etc. Similarly, platelet aggregation beyond the purpose of homeostasis is the underlying cause of blood clotting related diseases. This review presents a thorough understanding of alkaloids as antiplatelet agents with a possible mechanism of action based on the literature of the last decade. In addition, this review will address the antiplatelet activity of alkaloids and their medicinal usage as potent antiplatelet agents with a description of structural relationship activity and possible lead compounds for future drug discovery.
Collapse
Affiliation(s)
- Qurrat-Ul- Ain
- Department of Pharmacy, Abdul Wali Khan University Mardan Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan Mardan, Pakistan
| | | | - Aini Pervaiz
- Department of Pharmacy, Abdul Wali Khan University Mardan Mardan, Pakistan
| |
Collapse
|