1
|
McMillan CLD, Wijesundara DK, Choo JJY, Amarilla AA, Modhiran N, Fernando GJP, Khromykh AA, Watterson D, Young PR, Muller DA. Enhancement of cellular immunity following needle-free vaccination of mice with SARS-CoV-2 spike protein. J Gen Virol 2024; 105. [PMID: 38271027 DOI: 10.1099/jgv.0.001947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024] Open
Abstract
The COVID-19 pandemic has highlighted the need for vaccines capable of providing rapid and robust protection. One way to improve vaccine efficacy is delivery via microarray patches, such as the Vaxxas high-density microarray patch (HD-MAP). We have previously demonstrated that delivery of a SARS-CoV-2 protein vaccine candidate, HexaPro, via the HD-MAP induces potent humoral immune responses. Here, we investigate the cellular responses induced by HexaPro HD-MAP vaccination. We found that delivery via the HD-MAP induces a type one biassed cellular response of much greater magnitude as compared to standard intramuscular immunization.
Collapse
Affiliation(s)
- Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Danushka K Wijesundara
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Biomedical Facility, Hamilton, Queensland 4007, Australia
| | - Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Germain J P Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Biomedical Facility, Hamilton, Queensland 4007, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| |
Collapse
|
2
|
Choo JJY, McMillan CLD, Young PR, Muller DA. Microarray patches: scratching the surface of vaccine delivery. Expert Rev Vaccines 2023; 22:937-955. [PMID: 37846657 DOI: 10.1080/14760584.2023.2270598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION Microneedles are emerging as a promising technology for vaccine delivery, with numerous advantages over traditional needle and syringe methods. Preclinical studies have demonstrated the effectiveness of MAPs in inducing robust immune responses over traditional needle and syringe methods, with extensive studies using vaccines targeted against different pathogens in various animal models. Critically, the clinical trials have demonstrated safety, immunogenicity, and patient acceptance for MAP-based vaccines against influenza, measles, rubella, and SARS-CoV-2. AREAS COVERED This review provides a comprehensive overview of the different types of microarray patches (MAPs) and analyses of their applications in preclinical and clinical vaccine delivery settings. This review also covers additional considerations for microneedle-based vaccination, including adjuvants that are compatible with MAPs, patient safety and factors for global vaccination campaigns. EXPERT OPINION MAP vaccine delivery can potentially be a game-changer for vaccine distribution and coverage in both high-income and low- and middle-income countries. For MAPs to reach this full potential, many critical hurdles must be overcome, such as large-scale production, regulatory compliance, and adoption by global health authorities. However, given the considerable strides made in recent years by MAP developers, it may be possible to see the first MAP-based vaccines in use within the next 5 years.
Collapse
Affiliation(s)
- Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Kumar P, Bird C, Holland D, Joshi SB, Volkin DB. Current and next-generation formulation strategies for inactivated polio vaccines to lower costs, increase coverage, and facilitate polio eradication. Hum Vaccin Immunother 2022; 18:2154100. [PMID: 36576132 PMCID: PMC9891683 DOI: 10.1080/21645515.2022.2154100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/29/2022] Open
Abstract
Implementation of inactivated polio vaccines (IPV) containing Sabin strains (sIPV) will further enable global polio eradication efforts by improving vaccine safety during use and containment during manufacturing. Moreover, sIPV-containing vaccines will lower costs and expand production capacity to facilitate more widespread use in low- and middle-income countries (LMICs). This review focuses on the role of vaccine formulation in these efforts including traditional Salk IPV vaccines and new sIPV-containing dosage forms. The physicochemical properties and stability profiles of poliovirus antigens are described. Formulation approaches to lower costs include developing multidose and combination vaccine formats as well as improving storage stability. Formulation strategies for dose-sparing and enhanced mucosal immunity include employing adjuvants (e.g. aluminum-salt and newer adjuvants) and/or novel delivery systems (e.g. ID administration with microneedle patches). The potential for applying these low-cost formulation development strategies to other vaccines to further improve vaccine access and coverage in LMICs is also discussed.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Christopher Bird
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David Holland
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
4
|
McMillan CLD, Amarilla AA, Modhiran N, Choo JJY, Azuar A, Honeyman KE, Khromykh AA, Young PR, Watterson D, Muller DA. Skin-patch delivered subunit vaccine induces broadly neutralising antibodies against SARS-CoV-2 variants of concern. Vaccine 2022; 40:4929-4932. [PMID: 35871873 PMCID: PMC9291373 DOI: 10.1016/j.vaccine.2022.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
The ongoing SARS-CoV-2 pandemic continues to pose an enormous health challenge globally. The ongoing emergence of variants of concern has resulted in decreased vaccine efficacy necessitating booster immunizations. This was particularly highlighted by the recent emergence of the Omicron variant, which contains over 30 mutations in the spike protein and quickly became the dominant viral strain in global circulation. We previously demonstrated that delivery of a SARS-CoV-2 subunit vaccine via a high-density microarray patch (HD-MAP) induced potent immunity resulting in robust protection from SARS-CoV-2 challenge in mice. Here we show that serum from HD-MAP immunized animals maintained potent neutralisation against all variants tested, including Delta and Omicron. These findings highlight the advantages of HD-MAP vaccine delivery in inducing high levels of neutralising antibodies and demonstrates its potential at providing protection from emerging viral variants.
Collapse
Affiliation(s)
- Christopher L D McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Jovin J Y Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Kate E Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland, Australia.
| |
Collapse
|
5
|
In vivo, in situ and ex vivo comparison of porcine skin for microprojection array penetration depth, delivery efficiency and elastic modulus assessment. J Mech Behav Biomed Mater 2022; 130:105187. [DOI: 10.1016/j.jmbbm.2022.105187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022]
|
6
|
Hassan J, Haigh C, Ahmed T, Uddin MJ, Das DB. Potential of Microneedle Systems for COVID-19 Vaccination: Current Trends and Challenges. Pharmaceutics 2022; 14:1066. [PMID: 35631652 PMCID: PMC9144974 DOI: 10.3390/pharmaceutics14051066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
To prevent the coronavirus disease 2019 (COVID-19) pandemic and aid restoration to prepandemic normality, global mass vaccination is urgently needed. Inducing herd immunity through mass vaccination has proven to be a highly effective strategy for preventing the spread of many infectious diseases, which protects the most vulnerable population groups that are unable to develop immunity, such as people with immunodeficiencies or weakened immune systems due to underlying medical or debilitating conditions. In achieving global outreach, the maintenance of the vaccine potency, transportation, and needle waste generation become major issues. Moreover, needle phobia and vaccine hesitancy act as hurdles to successful mass vaccination. The use of dissolvable microneedles for COVID-19 vaccination could act as a major paradigm shift in attaining the desired goal to vaccinate billions in the shortest time possible. In addressing these points, we discuss the potential of the use of dissolvable microneedles for COVID-19 vaccination based on the current literature.
Collapse
Affiliation(s)
- Jasmin Hassan
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Charlotte Haigh
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| | - Tanvir Ahmed
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
| | - Md Jasim Uddin
- Drug Delivery & Therapeutics Lab, Dhaka 1212, Bangladesh; (J.H.); (T.A.)
- Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Diganta B. Das
- Department of Chemical Engineering, Loughborough University, Epinal Way, Loughborough LE11 3TU, UK;
| |
Collapse
|
7
|
Local Response and Barrier Recovery in Elderly Skin Following the Application of High-Density Microarray Patches. Vaccines (Basel) 2022; 10:vaccines10040583. [PMID: 35455332 PMCID: PMC9031416 DOI: 10.3390/vaccines10040583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
The high-density microneedle array patch (HD-MAP) is a promising alternative vaccine delivery system device with broad application in disease, including SARS-CoV-2. Skin reactivity to HD-MAP applications has been extensively studied in young individuals, but not in the >65 years population, a risk group often requiring higher dose vaccines to produce protective immune responses. The primary aims of the present study were to characterise local inflammatory responses and barrier recovery to HD-MAPs in elderly skin. In twelve volunteers aged 69−84 years, HD-MAPs were applied to the forearm and deltoid regions. Measurements of transepidermal water loss (TEWL), dielectric permittivity and erythema were performed before and after HD-MAP application at t = 10 min, 30 min, 48 h, and 7 days. At all sites, TEWL (barrier damage), dielectric permittivity (superficial water);, and erythema measurements rapidly increased after HD-MAP application. After 7 days, the mean measures had recovered toward pre-application values. The fact that the degree and chronology of skin reactivity and recovery after HD-MAP was similar in elderly skin to that previously reported in younger adults suggests that the reactivity basis for physical immune enhancement observed in younger adults will also be achievable in the older population.
Collapse
|
8
|
McMillan CLD, Azuar A, Choo JJY, Modhiran N, Amarilla AA, Isaacs A, Honeyman KE, Cheung STM, Liang B, Wurm MJ, Pino P, Kint J, Fernando GJP, Landsberg MJ, Khromykh AA, Hobson-Peters J, Watterson D, Young PR, Muller DA. Dermal Delivery of a SARS-CoV-2 Subunit Vaccine Induces Immunogenicity against Variants of Concern. Vaccines (Basel) 2022; 10:578. [PMID: 35455326 PMCID: PMC9030474 DOI: 10.3390/vaccines10040578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/02/2023] Open
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to disrupt essential health services in 90 percent of countries today. The spike (S) protein found on the surface of the causative agent, the SARS-CoV-2 virus, has been the prime target for current vaccine research since antibodies directed against the S protein were found to neutralize the virus. However, as new variants emerge, mutations within the spike protein have given rise to potential immune evasion of the response generated by the current generation of SARS-CoV-2 vaccines. In this study, a modified, HexaPro S protein subunit vaccine, delivered using a needle-free high-density microarray patch (HD-MAP), was investigated for its immunogenicity and virus-neutralizing abilities. Mice given two doses of the vaccine candidate generated potent antibody responses capable of neutralizing the parental SARS-CoV-2 virus as well as the variants of concern, Alpha and Delta. These results demonstrate that this alternative vaccination strategy has the potential to mitigate the effect of emerging viral variants.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Kate E. Honeyman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
| | - Maria J. Wurm
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Paco Pino
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Joeri Kint
- ExcellGene SA, CH1870 Monthey, Switzerland; (M.J.W.); (P.P.); (J.K.)
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Translational Research Institute, Vaxxas Pty Ltd., Brisbane, QLD 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia; (C.L.D.M.); (A.A.); (J.J.Y.C.); (N.M.); (A.A.A.); (A.I.); (K.E.H.); (S.T.M.C.); (B.L.); (G.J.P.F.); (M.J.L.); (A.A.K.); (J.H.-P.); (D.W.); (P.R.Y.)
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072 and 4029, Australia
| |
Collapse
|
9
|
Henricson J, Muller DA, Baker SB, Iredahl F, Togö T, Anderson CD. Micropuncture closure following high density microarray patch application in healthy subjects. Skin Res Technol 2022; 28:305-310. [PMID: 35064694 PMCID: PMC9907643 DOI: 10.1111/srt.13131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/18/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The high-density microarray patch (HD-MAP) promises to be a robust vaccination platform with clear advantages for future global societal demands for health care management. The method of action has its base not only in efficient delivery of vaccine but also in the reliable induction of a local innate physical inflammatory response to adjuvant the vaccination process. The application process needs to induce levels of reactivity, which are acceptable to the vaccine, and from which the skin promptly recovers. MATERIALS AND METHODS 1 × 1 cm HD-MAP patches containing 5000, 250-μm long microprojections were applied to the skin in 12 healthy volunteers. The return of skin barrier function was assessed by transepidermal water loss (TEWL) and reaction to topical histamine challenge. RESULTS Skin barrier recovery by 48 h was confirmed for all HD-MAP sites by recovered resistance to the effects of topical histamine application. CONCLUSIONS Our previous observation, that the barrier disruption indicator TEWL returns to normal by 48 h, is supported by this paper's demonstration of return of skin resistance to topical histamine challenge in twelve healthy subjects.
Collapse
Affiliation(s)
- Joakim Henricson
- Department of Biomedical and Clinical Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden.,Department of Emergency Medicine, Local Health Care Services in Central Östergötland, Linkoping, Sweden
| | - David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - S Ben Baker
- Vaxxas Pty Ltd, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Fredrik Iredahl
- Department of Primary health care, Region Östergötland, Linköping, Sweden.,Department of Medical and Health Sciences, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | - Totte Togö
- Allergy Centre, Region Östergötland, Linkoping, Sweden
| | - Chris D Anderson
- Division of Cell Biology, Faculty of Health Sciences, Linköping University, Linkoping, Sweden
| |
Collapse
|
10
|
Developing a Stabilizing Formulation of a Live Chimeric Dengue Virus Vaccine Dry Coated on a High-Density Microarray Patch. Vaccines (Basel) 2021; 9:vaccines9111301. [PMID: 34835234 PMCID: PMC8625757 DOI: 10.3390/vaccines9111301] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Alternative delivery systems such as the high-density microarray patch (HD-MAP) are being widely explored due to the variety of benefits they offer over traditional vaccine delivery methods. As vaccines are dry coated onto the HD-MAP, there is a need to ensure the stability of the vaccine in a solid state upon dry down. Other challenges faced are the structural stability during storage as a dried vaccine and during reconstitution upon application into the skin. Using a novel live chimeric virus vaccine candidate, BinJ/DENV2-prME, we explored a panel of pharmaceutical excipients to mitigate vaccine loss during the drying and storage process. This screening identified human serum albumin (HSA) as the lead stabilizing excipient. When bDENV2-coated HD-MAPs were stored at 4 °C for a month, we found complete retention of vaccine potency as assessed by the generation of potent virus-neutralizing antibody responses in mice. We also demonstrated that HD-MAP wear time did not influence vaccine deposition into the skin or the corresponding immunological outcomes. The final candidate formulation with HSA maintained ~100% percentage recovery after 6 months of storage at 4 °C.
Collapse
|
11
|
McMillan CLD, Choo JJY, Idris A, Supramaniam A, Modhiran N, Amarilla AA, Isaacs A, Cheung STM, Liang B, Bielefeldt-Ohmann H, Azuar A, Acharya D, Kelly G, Fernando GJP, Landsberg MJ, Khromykh AA, Watterson D, Young PR, McMillan NAJ, Muller DA. Complete protection by a single-dose skin patch-delivered SARS-CoV-2 spike vaccine. SCIENCE ADVANCES 2021; 7:eabj8065. [PMID: 34714668 PMCID: PMC8555896 DOI: 10.1126/sciadv.abj8065] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 160 million people and resulted in more than 3.3 million deaths, and despite the availability of multiple vaccines, the world still faces many challenges with their rollout. Here, we use the high-density microarray patch (HD-MAP) to deliver a SARS-CoV-2 spike subunit vaccine directly to the skin. We show that the vaccine is thermostable on the patches, with patch delivery enhancing both cellular and antibody immune responses. Elicited antibodies potently neutralize clinically relevant isolates including the Alpha and Beta variants. Last, a single dose of HD-MAP–delivered spike provided complete protection from a lethal virus challenge in an ACE2-transgenic mouse model. Collectively, these data show that HD-MAP delivery of a SARS-CoV-2 vaccine was superior to traditional needle-and-syringe vaccination and may be a significant addition to the ongoing COVID-19 (coronavirus disease 2019) pandemic.
Collapse
Affiliation(s)
- Christopher L. D. McMillan
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jovin J. Y. Choo
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Alberto A. Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ariel Isaacs
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Stacey T. M. Cheung
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Helle Bielefeldt-Ohmann
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
- School of Veterinary Science, University of Queensland Gatton Campus, Gatton, Queensland 4343, Australia
| | - Armira Azuar
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Dhruba Acharya
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Gabrielle Kelly
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Germain J. P. Fernando
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Michael J. Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Alexander A. Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Paul R. Young
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland 4072 and 4029, Australia
| | - Nigel A. J. McMillan
- Menzies Health Institute Queensland, School of Pharmacy, Anatomy and Medical Sciences, Griffith University, Gold Coast, Queensland 4222, Australia
| | - David A. Muller
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
12
|
Harrison JJ, Hobson-Peters J, Bielefeldt-Ohmann H, Hall RA. Chimeric Vaccines Based on Novel Insect-Specific Flaviviruses. Vaccines (Basel) 2021; 9:1230. [PMID: 34835160 PMCID: PMC8623431 DOI: 10.3390/vaccines9111230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/30/2022] Open
Abstract
Vector-borne flaviviruses are responsible for nearly half a billion human infections worldwide each year, resulting in millions of cases of debilitating and severe diseases and approximately 115,000 deaths. While approved vaccines are available for some of these viruses, the ongoing efficacy, safety and supply of these vaccines are still a significant problem. New technologies that address these issues and ideally allow for the safe and economical manufacture of vaccines in resource-poor countries where flavivirus vaccines are in most demand are urgently required. Preferably a new vaccine platform would be broadly applicable to all flavivirus diseases and provide new candidate vaccines for those diseases not yet covered, as well as the flexibility to rapidly pivot to respond to newly emerged flavivirus diseases. Here, we review studies conducted on novel chimeric vaccines derived from insect-specific flaviviruses that provide a potentially safe and simple system to produce highly effective vaccines against a broad spectrum of flavivirus diseases.
Collapse
Affiliation(s)
- Jessica J. Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
- School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia
| | - Roy A. Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia; (J.H.-P.); (H.B.-O.); (R.A.H.)
| |
Collapse
|
13
|
Wan Y, Gupta V, Bird C, Pullagurla SR, Fahey P, Forster A, Volkin DB, Joshi SB. Formulation Development and Improved Stability of a Combination Measles and Rubella Live-Viral Vaccine Dried for Use in the Nanopatch TM Microneedle Delivery System. Hum Vaccin Immunother 2021; 17:2501-2516. [PMID: 33957843 PMCID: PMC8475600 DOI: 10.1080/21645515.2021.1887692] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022] Open
Abstract
Measles (Me) and rubella (Ru) viral diseases are targeted for elimination by ensuring a high level of vaccination coverage worldwide. Less costly, more convenient MeRu vaccine delivery systems should improve global vaccine coverage, especially in low - and middle - income countries (LMICs). In this work, we examine formulating a live, attenuated Me and Ru combination viral vaccine with Nanopatch™, a solid polymer micro-projection array for intradermal delivery. First, high throughput, qPCR-based viral infectivity and genome assays were established to enable formulation development to stabilize Me and Ru in a scaled-down, custom-built evaporative drying system to mimic the Nanopatch™ vaccine coating process. Second, excipient screening and optimization studies identified virus stabilizers for use during the drying process and upon storage in the dried state. Finally, a series of real-time and accelerated stability studies identified eight candidate formulations that met a target thermal stability criterion for live vaccines (<1 log10 loss after 1 week storage at 37°C). Compared to -80°C control samples, the top candidate formulations resulted in minimal viral infectivity titer losses after storage at 2-8°C for 6 months (i.e., <0.1 log10 for Me, and ~0.4 log10 for Ru). After storage at 25°C over 6 months, ~0.3-0.5 and ~1.0-1.4 log10 titer losses were observed for Me and Ru, respectively, enabling the rank-ordering of the stability of candidate formulations. These results are discussed in the context of future formulation challenges for developing microneedle-based dosage forms containing stabilized live, attenuated viral vaccines for use in LMICs.
Collapse
Affiliation(s)
- Ying Wan
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Vineet Gupta
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Christopher Bird
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Swathi R. Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Paul Fahey
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - David B. Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| | - Sangeeta B. Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
14
|
Choo JJY, Vet LJ, McMillan CLD, Harrison JJ, Scott CAP, Depelsenaire ACI, Fernando GJP, Watterson D, Hall RA, Young PR, Hobson-Peters J, Muller DA. A chimeric dengue virus vaccine candidate delivered by high density microarray patches protects against infection in mice. NPJ Vaccines 2021; 6:66. [PMID: 33963191 PMCID: PMC8105366 DOI: 10.1038/s41541-021-00328-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Dengue viruses (DENV) cause an estimated 390 million infections globally. With no dengue-specific therapeutic treatment currently available, vaccination is the most promising strategy for its control. A wide range of DENV vaccines are in development, with one having already been licensed, albeit with limited distribution. We investigated the immunogenicity and protective efficacy of a chimeric virus vaccine candidate based on the insect-specific flavivirus, Binjari virus (BinJV), displaying the structural prM/E proteins of DENV (BinJ/DENV2-prME). In this study, we immunized AG129 mice with BinJ/DENV2-prME via a needle-free, high-density microarray patch (HD-MAP) delivery system. Immunization with a single, 1 µg dose of BinJ/DENV2-prME delivered via the HD-MAPs resulted in enhanced kinetics of neutralizing antibody induction when compared to needle delivery and complete protection against mortality upon virus challenge in the AG129 DENV mouse model.
Collapse
Affiliation(s)
- Jovin J Y Choo
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Laura J Vet
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Christopher L D McMillan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica J Harrison
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Connor A P Scott
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | | | - Germain J P Fernando
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, QLD, Australia
| | - Daniel Watterson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Roy A Hall
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Paul R Young
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Jody Hobson-Peters
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| | - David A Muller
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
Korkmaz E, Balmert SC, Sumpter TL, Carey CD, Erdos G, Falo LD. Microarray patches enable the development of skin-targeted vaccines against COVID-19. Adv Drug Deliv Rev 2021; 171:164-186. [PMID: 33539853 PMCID: PMC8060128 DOI: 10.1016/j.addr.2021.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/10/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022]
Abstract
The COVID-19 pandemic is a serious threat to global health and the global economy. The ongoing race to develop a safe and efficacious vaccine to prevent infection by SARS-CoV-2, the causative agent for COVID-19, highlights the importance of vaccination to combat infectious pathogens. The highly accessible cutaneous microenvironment is an ideal target for vaccination since the skin harbors a high density of antigen-presenting cells and immune accessory cells with broad innate immune functions. Microarray patches (MAPs) are an attractive intracutaneous biocargo delivery system that enables safe, reproducible, and controlled administration of vaccine components (antigens, with or without adjuvants) to defined skin microenvironments. This review describes the structure of the SARS-CoV-2 virus and relevant antigenic targets for vaccination, summarizes key concepts of skin immunobiology in the context of prophylactic immunization, and presents an overview of MAP-mediated cutaneous vaccine delivery. Concluding remarks on MAP-based skin immunization are provided to contribute to the rational development of safe and effective MAP-delivered vaccines against emerging infectious diseases, including COVID-19.
Collapse
Affiliation(s)
- Emrullah Korkmaz
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Stephen C Balmert
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tina L Sumpter
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cara Donahue Carey
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Geza Erdos
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Louis D Falo
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; The McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
16
|
Thompson KM, Kalkowska DA. Potential Future Use, Costs, and Value of Poliovirus Vaccines. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:349-363. [PMID: 32645244 PMCID: PMC7984393 DOI: 10.1111/risa.13557] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/22/2020] [Indexed: 05/06/2023]
Abstract
Countries face different poliovirus risks, which imply different benefits associated with continued and future use of oral poliovirus vaccine (OPV) and/or inactivated poliovirus vaccine (IPV). With the Global Polio Eradication Initiative (GPEI) continuing to extend its timeline for ending the transmission of all wild polioviruses and to introduce new poliovirus vaccines, the polio vaccine supply chain continues to expand in complexity. The increased complexity leads to significant uncertainty about supply and costs. Notably, the strategy of phased OPV cessation of all three serotypes to stop all future incidence of poliomyelitis depends on successfully stopping the transmission of all wild polioviruses. Countries also face challenges associated with responding to any outbreaks that occur after OPV cessation, because stopping transmission of such outbreaks requires reintroducing the use of the stopped OPV in most countries. National immunization program leaders will likely consider differences in their risks and willingness-to-pay for risk reduction as they evaluate their investments in current and future polio vaccination. Information about the costs and benefits of future poliovirus vaccines, and discussion of the complex situation that currently exists, should prove useful to national, regional, and global decisionmakers and support health economic modeling. Delays in achieving polio eradication combined with increasing costs of poliovirus vaccines continue to increase financial risks for the GPEI.
Collapse
|
17
|
Muller DA, Henricson J, Baker SB, Togö T, Jayashi Flores CM, Lemaire PA, Forster A, Anderson CD. Innate local response and tissue recovery following application of high density microarray patches to human skin. Sci Rep 2020; 10:18468. [PMID: 33116241 PMCID: PMC7595201 DOI: 10.1038/s41598-020-75169-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/09/2020] [Indexed: 12/15/2022] Open
Abstract
The development of microarray patches for vaccine application has the potential to revolutionise vaccine delivery. Microarray patches (MAP) reduce risks of needle stick injury, do not require reconstitution and have the potential to enhance immune responses using a fractional vaccine dose. To date, the majority of research has focused on vaccine delivery with little characterisation of local skin response and recovery. Here we study in detail the immediate local skin response and recovery of the skin post high density MAP application in 12 individuals receiving 3 MAPs randomly assigned to the forearm and upper arm. Responses were characterised by clinical scoring, dermatoscopy, evaporimetry and tissue viability imaging (TiVi). MAP application resulted in punctures in the epidermis, a significant transepidermal water loss (TEWL), the peak TEWL being concomitant with peak erythema responses visualised by TiVi. TEWL and TiVi responses reduced over time, with TEWL returning to baseline by 48 h and erythema fading over the course of a 7 day period. As MAPs for vaccination move into larger clinical studies more variation of individual subject phenotypic or disease propensity will be encountered which will require consideration both in regard to reliability of dose delivery and degree of inherent skin response.
Collapse
Affiliation(s)
- David A Muller
- School of Chemistry and Molecular Biosciences, The University of Queensland, Building 76 Cooper road, St. Lucia, QLD, 4072, Australia.
| | - Joakim Henricson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.,Department of Emergency Medicine, Local Health Care Services in Central Östergötland, Linköping, Sweden
| | - S Ben Baker
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Totte Togö
- Allergy Center Linköping, Region Östergötland, Sweden
| | - Cesar M Jayashi Flores
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Pierre A Lemaire
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | - Chris D Anderson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden. .,Division of Cell Biology, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
18
|
Nguyen TT, Oh Y, Kim Y, Shin Y, Baek SK, Park JH. Progress in microneedle array patch (MAP) for vaccine delivery. Hum Vaccin Immunother 2020; 17:316-327. [PMID: 32667239 PMCID: PMC7872046 DOI: 10.1080/21645515.2020.1767997] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A microneedle array patch (MAP) has been developed as a new delivery system for vaccines. Preclinical and clinical trials with a vaccine MAP showed improved stability, safety, and immunological efficacy compared to conventional vaccine administration. Various vaccines can be delivered with a MAP. Currently, microneedle manufacturers can mass-produce pharmaceutical MAP and cosmetic MAP and this mass-production system can be adapted to produce a vaccine MAP. Clinical trials with a vaccine MAP have shown comparable efficacy with conventional administration, and discussions about regulations for a vaccine MAP are underway. However, there are concerns of reasonable cost, mass production, efficacy, and safety standards that meet FDA approval, as well as the need for feedback regarding the best method of administration. Currently, microneedles have been studied for the delivery of many kinds of vaccines, and preclinical and clinical studies of vaccine microneedles are in progress. For the foreseeable future, some vaccines will continue to be administered with syringes and needles while the use of a vaccine MAP continues to be improved because of the advantages of less pain, self-administration, improved stability, convenience, and safety.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- Faculty of Pharmacy, Ho Chi Minh City University of Technology-HUTECH , Ho Chi Minh, Vietnam
| | - Yujeong Oh
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yunseo Kim
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Yura Shin
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Seung-Ki Baek
- QuadMedicine R&D Centre, QuadMedicine Inc , Seongnam, Republic of Korea
| | - Jung-Hwan Park
- Department of BioNano Technology, Gachon BioNano Research Institute, Gachon University , Seongnam, Republic of Korea
| |
Collapse
|
19
|
Thompson KM, Kalkowska DA. Review of poliovirus modeling performed from 2000 to 2019 to support global polio eradication. Expert Rev Vaccines 2020; 19:661-686. [PMID: 32741232 PMCID: PMC7497282 DOI: 10.1080/14760584.2020.1791093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/22/2020] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Over the last 20 years (2000-2019) the partners of the Global Polio Eradication Initiative (GPEI) invested in the development and application of mathematical models of poliovirus transmission as well as economics, policy, and risk analyses of polio endgame risk management options, including policies related to poliovirus vaccine use during the polio endgame. AREAS COVERED This review provides a historical record of the polio studies published by the three modeling groups that primarily performed the bulk of this work. This review also systematically evaluates the polio transmission and health economic modeling papers published in English in peer-reviewed journals from 2000 to 2019, highlights differences in approaches and methods, shows the geographic coverage of the transmission modeling performed, identified common themes, and discusses instances of similar or conflicting insights or recommendations. EXPERT OPINION Polio modeling performed during the last 20 years substantially impacted polio vaccine choices, immunization policies, and the polio eradication pathway. As the polio endgame continues, national preferences for polio vaccine formulations and immunization strategies will likely continue to change. Future modeling will likely provide important insights about their cost-effectiveness and their relative benefits with respect to controlling polio and potentially achieving and maintaining eradication.
Collapse
|
20
|
Badizadegan K, Goodson JL, Rota PA, Thompson KM. The potential role of using vaccine patches to induce immunity: platform and pathways to innovation and commercialization. Expert Rev Vaccines 2020; 19:175-194. [PMID: 32182145 PMCID: PMC7814398 DOI: 10.1080/14760584.2020.1732215] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Introduction: In the last two decades, the evidence related to using vaccine patches with multiple short projections (≤1 mm) to deliver vaccines through the skin increased significantly and demonstrated their potential as an innovative delivery platform.Areas covered: We review the vaccine patch literature published in English as of 1 March 2019, as well as available information from key stakeholders related to vaccine patches as a platform. We identify key research topics related to basic and translational science on skin physical properties and immunobiology, patch development, and vaccine manufacturing.Expert opinion: Currently, vaccine patch developers continue to address some basic science and other platform issues in the context of developing a potential vaccine patch presentation for an existing or new vaccine. Additional clinical data and manufacturing experience could shift the balance toward incentivizing existing vaccine manufactures to further explore the use of vaccine patches to deliver their products. Incentives for innovation of vaccine patches differ for developed and developing countries, which will necessitate different strategies (e.g. public-private partnerships, push, or pull mechanisms) to support the basic and applied research needed to ensure a strong evidence base and to overcome translational barriers for vaccine patches as a delivery platform.
Collapse
Affiliation(s)
| | - James L Goodson
- Global Immunization Division, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Paul A Rota
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
21
|
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019; 16:444-460. [PMID: 30714524 PMCID: PMC6637104 DOI: 10.2174/1567201816666190201143457] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
Abstract
This overview on skin delivery considers the evolution of the principles of percutaneous ab-sorption and skin products from ancient times to today. Over the ages, it has been recognised that products may be applied to the skin for either local or systemic effects. As our understanding of the anatomy and physiology of the skin has improved, this has facilitated the development of technologies to effectively and quantitatively deliver solutes across this barrier to specific target sites in the skin and beyond. We focus on these technologies and their role in skin delivery today and in the future.
Collapse
Affiliation(s)
- Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia
| | - Jeffrey E Grice
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Yousuf Mohammed
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Sarika Namjoshi
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Michael S Roberts
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
22
|
Efficient Delivery of Dengue Virus Subunit Vaccines to the Skin by Microprojection Arrays. Vaccines (Basel) 2019; 7:vaccines7040189. [PMID: 31756967 PMCID: PMC6963636 DOI: 10.3390/vaccines7040189] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022] Open
Abstract
Dengue virus is the most important arbovirus impacting global human health, with an estimated 390 million infections annually, and over half the world’s population at risk of infection. While significant efforts have been made to develop effective vaccines to mitigate this threat, the task has proven extremely challenging, with new approaches continually being sought. The majority of protective, neutralizing antibodies induced during infection are targeted by the envelope (E) protein, making it an ideal candidate for a subunit vaccine approach. Using truncated, recombinant, secreted E proteins (sE) of all 4 dengue virus serotypes, we have assessed their immunogenicity and protective efficacy in mice, with or without Quil-A as an adjuvant, and delivered via micropatch array (MPA) to the skin in comparison with more traditional routes of immunization. The micropatch contains an ultra-high density array (21,000/cm2) of 110 μm microprojections. Mice received 3 doses of 1 μg (nanopatch, intradermal, subcutaneous, or intra muscular injection) or 10 μg (intradermal, subcutaneous, or intra muscular injection) of tetravalent sE spaced 4 weeks apart. When adjuvanted with Quil-A, tetravalent sE vaccination delivered via MPA resulted in earlier induction of virus-neutralizing IgG antibodies for all four serotypes when compared with all of the other vaccination routes. Using the infectious dengue virus AG129 mouse infectious dengue model, these neutralizing antibodies protected all mice from lethal dengue virus type 2 D220 challenge, with protected animals showing no signs of disease or circulating virus. If these results can be translated to humans, MPA-delivered sE represents a promising approach to dengue virus vaccination.
Collapse
|
23
|
Donadei A, Kraan H, Ophorst O, Flynn O, O'Mahony C, Soema PC, Moore AC. Skin delivery of trivalent Sabin inactivated poliovirus vaccine using dissolvable microneedle patches induces neutralizing antibodies. J Control Release 2019; 311-312:96-103. [PMID: 31484041 DOI: 10.1016/j.jconrel.2019.08.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/30/2022]
Abstract
The cessation of the oral poliovirus vaccine (OPV) and the inclusion of inactivated poliovirus (IPV) into all routine immunization programmes, strengthens the need for new IPV options. Several novel delivery technologies are being assessed that permit simple yet efficacious and potentially dose-sparing administration of IPV. Current disadvantages of conventional liquid IPV include the dependence on cold chain and the need for injection, resulting in high costs, production of hazardous sharps waste and requiring sufficiently trained personnel. In the current study, a dissolvable microneedle (DMN) patch for skin administration that incorporates trivalent inactivated Sabin poliovirus vaccine (sIPV) was developed. Microneedles were physically stable in the ambient environment for at least 30 min and efficiently penetrated skin. Polio-specific IgG antibodies that were able to neutralize the virus were induced in rats upon administration using trivalent sIPV-containing microneedle patches. These sIPV-patch-induced neutralizing antibody responses were comparable to higher vaccine doses delivered intramuscularly for type 1 and type 3 poliovirus serotypes. Moreover, applying the patches to the flank elicited a significantly higher antibody response compared to their administration to the ear. This study progresses the development of a skin patch-based technology that would simplify vaccine administration of Sabin IPV and thereby overcome logistic issues currently constraining poliovirus eradication campaigns.
Collapse
Affiliation(s)
- Agnese Donadei
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
| | - Heleen Kraan
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | - Olga Ophorst
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Olivia Flynn
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Anne C Moore
- School of Pharmacy, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
24
|
Meyer BK, Kendall MAF, Williams DM, Bett AJ, Dubey S, Gentzel RC, Casimiro D, Forster A, Corbett H, Crichton M, Baker SB, Evans RK, Bhambhani A. Immune response and reactogenicity of an unadjuvanted intradermally delivered human papillomavirus vaccine using a first generation Nanopatch™ in rhesus macaques: An exploratory, pre-clinical feasibility assessment. Vaccine X 2019; 2:100030. [PMID: 31384745 PMCID: PMC6668242 DOI: 10.1016/j.jvacx.2019.100030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/21/2019] [Accepted: 06/07/2019] [Indexed: 12/26/2022] Open
Abstract
The human papillomavirus (HPV) 9-valent, recombinant vaccine (Gardasil™9) helps protect young adults (males and females) against anogenital cancers and genital warts caused by certain HPV genotypes (ref. Gardasil™9 insert). This vaccine is administered intramuscularly (IM). The aim of this study was to determine preclinically whether intradermal (ID) vaccination with an unadjuvanted 9-valent recombinant HPV vaccine using a first-generation ID delivery device, the Nanopatch™, could enhance vaccine immunogenicity compared with the traditional ID route (Mantoux technique). IM injection of HPV VLPs formulated with Merck & Co., Inc., Kenilworth, NJ, USA Alum Adjuvant (MAA) were included in the rhesus study for comparison. The Nanopatch™ prototype contains a high-density array comprised of 10,000 microprojections/cm2, each 250 µm long. It was hypothesized the higher density array with shallower ID delivery may be superior to the Mantoux technique. To test this hypothesis, HPV VLPs without adjuvant were coated on the Nanopatch™, stability of the Nanopatch™ with unadjuvanted HPV VLPs were evaluated under accelerated conditions, skin delivery was verified using radiolabelled VLPs or FluoSpheres®, and the immune response and skin site reaction with the Nanopatch™ was evaluated in rhesus macaques. The immune response induced by Nanopatch™ administration, measured as HPV-specific binding antibodies, was similar to that induced using the Mantoux technique. It was also observed that a lower dose of unadjuvanted HPV VLPs delivered with the first-generation Nanopatch™ and applicator or Mantoux technique resulted in an immune response that was significantly lower compared to a higher-dose of alum adjuvanted HPV VLPs delivered IM in rhesus macaques. The study also indicated unadjuvanted HPV VLPs could be delivered with the first-generation Nanopatch™ and applicator to the skin in 15 s with a transfer efficiency of approximately 20%. This study is the first demonstration of patch administration in non-human primates with a vaccine composed of HPV VLPs.
Collapse
Affiliation(s)
- Brian K Meyer
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Donna M Williams
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Andrew J Bett
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Sheri Dubey
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Renee C Gentzel
- Movement Disorders and Translation, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Danilo Casimiro
- Infectious Disease and Vaccines, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Holly Corbett
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia
| | - Michael Crichton
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - S Ben Baker
- Delivery of Drugs and Genes Group (DG), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland QLD 4072, Australia.,Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Robert K Evans
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Akhilesh Bhambhani
- New Technologies, Vaccine Drug Product Development, Vaccine Process Research and Development, MRL, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA 19486, USA
| |
Collapse
|
25
|
Kolluru C, Gomaa Y, Prausnitz MR. Development of a thermostable microneedle patch for polio vaccination. Drug Deliv Transl Res 2019; 9:192-203. [PMID: 30542944 PMCID: PMC6328527 DOI: 10.1007/s13346-018-00608-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of this study was to develop a dissolving microneedle (MN) patch for administration of inactivated polio vaccine (IPV) with improved thermal stability when compared with conventional liquid IPV. Excipient screening showed that a combination of maltodextrin and D-sorbitol in histidine buffer best preserved IPV activity during MN patch fabrication and storage. As determined by D-antigen ELISA, all three IPV serotypes maintained > 70% activity after 2 months and > 50% activity after 1-year storage at 5 °C or 25 °C with desiccant. Storage at 40 °C yielded > 40% activity after 2 months and > 20% activity after 1 year. In contrast, commercial liquid IPV types 1 and 2 lost essentially all activity within 1 month at 40 °C and IPV type 3 had < 40% activity. Residual moisture content in MN patches measured by thermogravimetric analysis was 1.2–6.5%, depending on storage conditions. Glass transition temperature measured by differential scanning calorimetry, structural changes measured by X-ray diffraction, and molecular interactions measured by Fourier transform infrared spectroscopy showed changes in MN matrix properties, but they did not correlate with IPV activity changes during storage. We conclude that appropriately formulated MN patches can exhibit thermostability that could enable distribution of IPV with less reliance on cold chain storage.
Collapse
Affiliation(s)
- Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, 771 Ferst Drive, Atlanta, GA, 30332, USA
| | - Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, El-Khartoum Square, Alexandria, 21521, Egypt
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA, 30332, USA.
| |
Collapse
|
26
|
Ingrole RSJ, Gill HS. Microneedle Coating Methods: A Review with a Perspective. J Pharmacol Exp Ther 2019; 370:555-569. [PMID: 31175217 DOI: 10.1124/jpet.119.258707] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023] Open
Abstract
A coated microneedle array comprises sharp micrometer-sized needle shafts attached to a base substrate and coated with a drug on their surfaces. Coated microneedles are under investigation for drug delivery into the skin and other tissues, and a broad assortment of active materials, including small molecules, peptides, proteins, deoxyribonucleic acids, and viruses, have been coated onto microneedles. To coat the microneedles, different methods have been developed. Some coating methods achieve selective coating of just the microneedle shafts, whereas other methods coat not only microneedle shafts but also the array base substrate. Selective coating of just the microneedle shafts is more desirable since it provides control over drug dosage, prevents drug waste, and offers high delivery efficiency. Different excipients are added to the coating liquid to modulate its viscosity and surface tension in order to achieve uniform coatings on microneedles. Coated microneedles have been used in a broad range of biomedical applications. To highlight these different applications, a table summarizing the different active materials and the amounts coated on microneedles is provided. We also discuss factors that should be considered when deciding suitability of coated microneedles for new-drug delivery applications. In recent years, many coated microneedles have been investigated in human clinical trials, and there is now a strong effort to bring the first coated microneedle-based product to market.
Collapse
Affiliation(s)
- Rohan S J Ingrole
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas
| | | |
Collapse
|
27
|
Zheng Z, Diaz-Arévalo D, Guan H, Zeng M. Noninvasive vaccination against infectious diseases. Hum Vaccin Immunother 2018; 14:1717-1733. [PMID: 29624470 PMCID: PMC6067898 DOI: 10.1080/21645515.2018.1461296] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The development of a successful vaccine, which should elicit a combination of humoral and cellular responses to control or prevent infections, is the first step in protecting against infectious diseases. A vaccine may protect against bacterial, fungal, parasitic, or viral infections in animal models, but to be effective in humans there are some issues that should be considered, such as the adjuvant, the route of vaccination, and the antigen-carrier system. While almost all licensed vaccines are injected such that inoculation is by far the most commonly used method, injection has several potential disadvantages, including pain, cross contamination, needlestick injury, under- or overdosing, and increased cost. It is also problematic for patients from rural areas of developing countries, who must travel to a hospital for vaccine administration. Noninvasive immunizations, including oral, intranasal, and transcutaneous administration of vaccines, can reduce or eliminate pain, reduce the cost of vaccinations, and increase their safety. Several preclinical and clinical studies as well as experience with licensed vaccines have demonstrated that noninvasive vaccine immunization activates cellular and humoral immunity, which protect against pathogen infections. Here we review the development of noninvasive immunization with vaccines based on live attenuated virus, recombinant adenovirus, inactivated virus, viral subunits, virus-like particles, DNA, RNA, and antigen expression in rice in preclinical and clinical studies. We predict that noninvasive vaccine administration will be more widely applied in the clinic in the near future.
Collapse
Affiliation(s)
- Zhichao Zheng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| | - Diana Diaz-Arévalo
- c Grupo Funcional de Inmunología , Fundación Instituto de Inmunología de Colombia-FIDIC, Faculty of Agricultural Sciences, Universidad de Ciencias Aplicadas y Ambientales U.D.C.A, School of Medicine and Health Sciences, Universidad del Rosario , Bogotá , DC . Colombia
| | - Hongbing Guan
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China
| | - Mingtao Zeng
- a Key Laboratory of Oral Medicine , Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University , Guangzhou , Guangdong , China.,b Center of Emphasis in Infectious Diseases , Department of Biomedical Sciences , Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso , El Paso , Texas , USA
| |
Collapse
|
28
|
Fernando GJP, Hickling J, Jayashi Flores CM, Griffin P, Anderson CD, Skinner SR, Davies C, Witham K, Pryor M, Bodle J, Rockman S, Frazer IH, Forster AH. Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™). Vaccine 2018; 36:3779-3788. [PMID: 29779922 DOI: 10.1016/j.vaccine.2018.05.053] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. METHODS Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. FINDINGS NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p < 0.0001), with no statistical differences between the treatment groups (p > 0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189-593 95% CI), 160 (74-345 95% CI), and 221 (129-380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. INTERPRETATION Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection.
Collapse
Affiliation(s)
- Germain J P Fernando
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | | | - Cesar M Jayashi Flores
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Paul Griffin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Q-Pharm Pty Ltd, Brisbane, QLD, Australia; Department of Medicine and Infectious Dieases, Mater Hospital and Mater Research Institute, Brisbane, QLD, Australia; The University of Queensland, Brisbane, QLD, Australia
| | - Christopher D Anderson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linkӧping University, Linkӧping, Sweden; Department of Dermatology and Venereology, Heart and Medicine Centre, Region Ӧstergötland, Sweden
| | - S Rachel Skinner
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Cristyn Davies
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; The Children's Hospital at Westmead, Sydney, NSW, Australia
| | - Katey Witham
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia
| | - Melinda Pryor
- 360biolabs Pty Ltd, Burnet Institute, Melbourne, VIC, Australia
| | | | - Steve Rockman
- Seqirus Pty Ltd, Melbourne, VIC, Australia; University of Melbourne, Melbourne, VIC, Australia
| | - Ian H Frazer
- The University of Queensland, Brisbane, QLD, Australia
| | - Angus H Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, QLD 4102, Australia.
| |
Collapse
|
29
|
Booy R, Tashani M. Edging ever closer to polio eradication. LANCET GLOBAL HEALTH 2018; 4:e592-3. [PMID: 27539797 DOI: 10.1016/s2214-109x(16)30172-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Robert Booy
- National Centre for Immunisation Research and Surveillance, Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, Australia; WHO Collaborating Centre for Mass Gatherings and High Consequence/High Visibility Events, Flinders University, Adelaide, SA, Australia.
| | - Mohamed Tashani
- Discipline of Child and Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia; Marie Bashir Institute for Infectious Diseases and Biosecurity, School of Biological Sciences and Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
30
|
Wan Y, Hickey JM, Bird C, Witham K, Fahey P, Forster A, Joshi SB, Volkin DB. Development of Stabilizing Formulations of a Trivalent Inactivated Poliovirus Vaccine in a Dried State for Delivery in the Nanopatch™ Microprojection Array. J Pharm Sci 2018; 107:1540-1551. [PMID: 29421219 PMCID: PMC5959271 DOI: 10.1016/j.xphs.2018.01.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 12/20/2022]
Abstract
The worldwide switch to inactivated polio vaccines (IPVs) is a key component of the overall strategy to achieve and maintain global polio eradication. To this end, new IPV vaccine delivery systems may enhance patient convenience and compliance. In this work, we examine Nanopatch™ (a solid, polymer microprojection array) which offers potential advantages over standard needle/syringe administration including intradermal delivery and reduced antigen doses. Using trivalent IPV (tIPV) and a purpose-built evaporative dry-down system, candidate tIPV formulations were developed to stabilize tIPV during the drying process and on storage. Identifying conditions to minimize tIPV potency losses during rehydration and potency testing was a critical first step. Various classes and types of pharmaceutical excipients (∼50 total) were then evaluated to mitigate potency losses (measured through D-antigen ELISAs for IPV1, IPV2, and IPV3) during drying and storage. Various concentrations and combinations of stabilizing additives were optimized in terms of tIPV potency retention, and 2 candidate tIPV formulations containing cyclodextrin and a reducing agent (e.g., glutathione), maintained ≥80% D-antigen potency during drying and subsequent storage for 4 weeks at 4°C, and ≥60% potency for 3 weeks at room temperature with the majority of losses occurring within the first day of storage.
Collapse
Affiliation(s)
- Ying Wan
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - John M Hickey
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Christopher Bird
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - Katey Witham
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Paul Fahey
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, 37 Kent Street, Brisbane, Queensland 4102, Australia
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Macromolecule and Vaccine Stabilization Center, University of Kansas, Lawrence, Kansas 66047.
| |
Collapse
|
31
|
Griffin P, Elliott S, Krauer K, Davies C, Rachel Skinner S, Anderson CD, Forster A. Safety, acceptability and tolerability of uncoated and excipient-coated high density silicon micro-projection array patches in human subjects. Vaccine 2017; 35:6676-6684. [DOI: 10.1016/j.vaccine.2017.10.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/09/2017] [Accepted: 10/11/2017] [Indexed: 11/16/2022]
|
32
|
Nguyen TT, Park JH. Human studies with microneedles for evaluation of their efficacy and safety. Expert Opin Drug Deliv 2017; 15:235-245. [PMID: 29169288 DOI: 10.1080/17425247.2018.1410138] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION During the past two decades, many studies have documented the development of microneedles (MNs) as a feasible technique for the effective administration of drugs. More and more human studies have been done with MNs to bridge the gap between research and market applications that provide efficacious techniques for clinical implementation. AREAS COVERED The aim of this review is provide a brief description of the status of human study with MNs and to demonstrate progress for the right use of microneedle arrays in clinical settings. It also describes the considerations for clinical application with each type of MNs. EXPERT OPINION Microneedle systems were introduced to overcome the limitations of conventional methods of drug administration. Lots of microneedle systems have undergone clinical evaluation to determine their efficacy and safety, and many studies have demonstrated positive results. The successful clinical use of the microneedle in vaccine therapy is remarkable and supports the importance of conducting further tests in a wide range of medical applications. Self-administered MNs appeared to be an attractive alternative method that needs further research to become a reality in the near future.
Collapse
Affiliation(s)
- Thuy Trang Nguyen
- a Department of BioNano Technology , Gachon University , Gyeonggi-Do , South of Korea
| | - Jung Hwan Park
- a Department of BioNano Technology , Gachon University , Gyeonggi-Do , South of Korea
| |
Collapse
|
33
|
Wei JCJ, Edwards GA, Martin DJ, Huang H, Crichton ML, Kendall MAF. Allometric scaling of skin thickness, elasticity, viscoelasticity to mass for micro-medical device translation: from mice, rats, rabbits, pigs to humans. Sci Rep 2017; 7:15885. [PMID: 29162871 PMCID: PMC5698453 DOI: 10.1038/s41598-017-15830-7] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/02/2017] [Indexed: 12/23/2022] Open
Abstract
Emerging micro-scale medical devices are showing promise, whether in delivering drugs or extracting diagnostic biomarkers from skin. In progressing these devices through animal models towards clinical products, understanding the mechanical properties and skin tissue structure with which they interact will be important. Here, through measurement and analytical modelling, we advanced knowledge of these properties for commonly used laboratory animals and humans (~30 g to ~150 kg). We hypothesised that skin's stiffness is a function of the thickness of its layers through allometric scaling, which could be estimated from knowing a species' body mass. Results suggest that skin layer thicknesses are proportional to body mass with similar composition ratios, inter- and intra-species. Experimental trends showed elastic moduli increased with body mass, except for human skin. To interpret the relationship between species, we developed a simple analytical model for the bulk elastic moduli of skin, which correlated well with experimental data. Our model suggest that layer thicknesses may be a key driver of structural stiffness, as the skin layer constituents are physically and therefore mechanically similar between species. Our findings help advance the knowledge of mammalian skin mechanical properties, providing a route towards streamlined micro-device research and development onto clinical use.
Collapse
Affiliation(s)
- Jonathan C J Wei
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Grant A Edwards
- Martin group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Darren J Martin
- Martin group, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Han Huang
- Nanomechanics and Nanomanufacturing Group, School of Mechanical and Mining Engineering, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, St Lucia QLD, 4072, Australia
| | - Michael L Crichton
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia.
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom.
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (D2G2), Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia QLD, 4072, Australia.
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, St Lucia QLD, 4072, Australia.
- Faculty of Medicine, The University of Queensland, Royal Brisbane and Women's Hospital, Herston QLD, 4006, Australia.
| |
Collapse
|
34
|
Muller DA, Fernando GJP, Owens NS, Agyei-Yeboah C, Wei JCJ, Depelsenaire ACI, Forster A, Fahey P, Weldon WC, Oberste MS, Young PR, Kendall MAF. High-density microprojection array delivery to rat skin of low doses of trivalent inactivated poliovirus vaccine elicits potent neutralising antibody responses. Sci Rep 2017; 7:12644. [PMID: 28974777 PMCID: PMC5626768 DOI: 10.1038/s41598-017-13011-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/12/2017] [Indexed: 01/09/2023] Open
Abstract
To secure a polio-free world, the live attenuated oral poliovirus vaccine (OPV) will eventually need to be replaced with inactivated poliovirus vaccines (IPV). However, current IPV delivery is less suitable for campaign use than OPV, and more expensive. We are progressing a microarray patch delivery platform, the Nanopatch, as an easy-to-use device to administer vaccines, including IPV. The Nanopatch contains an ultra-high density array (10,000/cm2) of short (~230 μm) microprojections that delivers dry coated vaccine into the skin. Here, we compare the relative immunogenicity of Nanopatch immunisation versus intramuscular injection in rats, using monovalent and trivalent formulations of IPV. Nanopatch delivery elicits faster antibody response kinetics, with high titres of neutralising antibody after just one (IPV2) or two (IPV1 and IPV3) immunisations, while IM injection requires two (IPV2) or three (IPV1 and IPV3) immunisations to induce similar responses. Seroconversion to each poliovirus type was seen in 100% of rats that received ~1/40th of a human dose of IPV delivered by Nanopatch, but not in rats given ~1/8th or ~1/40th dose by IM injection. Ease of administration coupled with dose reduction observed in this study suggests the Nanopatch could facilitate inexpensive IPV vaccination in campaign settings.
Collapse
Affiliation(s)
- David A Muller
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia. .,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Germain J P Fernando
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland, Australia
| | - Nick S Owens
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Christiana Agyei-Yeboah
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Jonathan C J Wei
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Alexandra C I Depelsenaire
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia
| | - Angus Forster
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - Paul Fahey
- Vaxxas Pty Ltd, Translational Research Institute, Brisbane, Queensland, 4102, Australia
| | - William C Weldon
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M Steven Oberste
- Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Paul R Young
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A F Kendall
- Delivery of Drugs and Genes Group (D2G2) Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, QLD 4072, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Queensland, Australia.
| |
Collapse
|
35
|
Exploring new packaging and delivery options for the immunization supply chain. Vaccine 2017; 35:2265-2271. [DOI: 10.1016/j.vaccine.2016.11.095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/11/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
|
36
|
Jarrahian C, Rein-Weston A, Saxon G, Creelman B, Kachmarik G, Anand A, Zehrung D. Vial usage, device dead space, vaccine wastage, and dose accuracy of intradermal delivery devices for inactivated poliovirus vaccine (IPV). Vaccine 2017; 35:1789-1796. [PMID: 28189403 PMCID: PMC6381447 DOI: 10.1016/j.vaccine.2016.11.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/15/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Intradermal delivery of a fractional dose of inactivated poliovirus vaccine (IPV) offers potential benefits compared to intramuscular (IM) delivery, including possible cost reductions and easing of IPV supply shortages. Objectives of this study were to assess intradermal delivery devices for dead space, wastage generated by the filling process, dose accuracy, and total number of doses that can be delivered per vial. METHODS Devices tested included syringes with staked (fixed) needles (autodisable syringes and syringes used with intradermal adapters), a luer-slip needle and syringe, a mini-needle syringe, a hollow microneedle device, and disposable-syringe jet injectors with their associated filling adapters. Each device was used to withdraw 0.1-mL fractional doses from single-dose IM glass vials which were then ejected into a beaker. Both vial and device were weighed before and after filling and again after expulsion of liquid to record change in volume at each stage of the process. Data were used to calculate the number of doses that could potentially be obtained from multidose vials. RESULTS Results show wide variability in dead space, dose accuracy, overall wastage, and total number of doses that can be obtained per vial among intradermal delivery devices. Syringes with staked needles had relatively low dead space and low overall wastage, and could achieve a greater number of doses per vial compared to syringes with a detachable luer-slip needle. Of the disposable-syringe jet injectors tested, one was comparable to syringes with staked needles. DISCUSSION If intradermal delivery of IPV is introduced, selection of an intradermal delivery device can have a substantial impact on vaccine wasted during administration, and thus on the required quantity of vaccine that needs to be purchased. An ideal intradermal delivery device should be not only safe, reliable, accurate, and acceptable to users and vaccine recipients, but should also have low dead space, high dose accuracy, and low overall wastage to maximize the potential number of doses that can be withdrawn and delivered.
Collapse
Affiliation(s)
| | | | - Gene Saxon
- PATH, PO Box 900922, Seattle, WA 98109, USA
| | | | | | - Abhijeet Anand
- Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA 30333, USA
| | | |
Collapse
|
37
|
Ma L, Cai W, Sun M, Cun Y, Zhou J, Liu J, Hu W, Zhang X, Song S, Jiang S, Liao G. Analyzed immunogenicity of fractional doses of Sabin-inactivated poliovirus vaccine (sIPV) with intradermal delivery in rats. Hum Vaccin Immunother 2016; 12:3125-3131. [PMID: 27558963 DOI: 10.1080/21645515.2016.1214347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE The live-attenuated oral polio vaccine (OPV) will be no longer used when wild poliovirus (WPV) eliminating in worldwide, according to GPEI (the Global Polio Eradication Initiative) Reports. It is planning to replace OPV by Sabin-based inactivated poliovirus vaccine (sIPV) in developing countries, with purpose of reducing of the economic burden and maintaining of the appropriate antibody levels in population. It studied serial fractional doses immunized by intradermal injection (ID) in rats, to reduce consume of antigen and financial burden, maintaining sufficient immunogenicity; Methods: Study groups were divided in 4 groups of dose gradient, which were one-tenth (1/10), one-fifth (1/5), one-third (1/3) and one-full dose (1/1), according to the volume of distribution taken from the same batch of vaccine (sIPV). Wistar rats were injected intradermally with the needle and syringe sing the mantoux technique taken once month for 3 times. It was used as positive control that intramuscular inoculation (IM) was injected with one-full dose (1/1) with same batch of sIPV. PBS was used as negative control. Blood samples were collected via tail vein. After 30 d with 3 round of immunization, it analyzed the changes of neutralization antibody titers in the each group by each immunization program end; Results: The results of seroconversion had positive correlation with different doses in ID groups. The higher concentration of D-antigen (D-Ag) could conduct higher seroconversion. Furthermore, different types of viruses had different seroconversion trend. It showed that the geometric mean titers (GMTs) of each fractional-dose ID groups increased by higher concentration of D-Ag, and it got significant lower than the full-dose IM group. At 90th days of immunization, the GMTs for each poliovirus subtypes of fractional doses were almost higher than 1:8, implied that it could be meaning positive seroprotection titer for polio vaccine types, according to WHO suggestion; Conclusions: The fractional dose with one-fifth (1/5) could be used by intradermal injection to prevent poliovirus infection, if there were more human clinical detail research consistent with this findings in rats.
Collapse
Affiliation(s)
- Lei Ma
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Wei Cai
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Mingbo Sun
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Yina Cun
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Jian Zhou
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Jing Liu
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Wenzhu Hu
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Xinwen Zhang
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Shaohui Song
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Shude Jiang
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| | - Guoyang Liao
- a The Fifth Department of Biological Products , Institute of Medical Biology, Chinese Academy of Medical Science, Peking Union Medical College , Kunming , Yunnan Province , People's Republic of China
| |
Collapse
|