1
|
Mane PC, Kadam DD, Khadse AN, Chaudhari AR, Ughade SP, Agawane SB, Chaudhari RD. Green adeptness in synthesis of non-toxic copper and cobalt oxide nanocomposites with multifaceted bioactivities. Cancer Nanotechnol 2023; 14:79. [DOI: 10.1186/s12645-023-00226-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/14/2023] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
In the present era, we are facing different health problems mainly concerning with drug resistance in microorganisms as well as in cancer cells. In addition, we are also facing the problems of controlling oxidative stress and insect originated diseases like dengue, malaria, chikungunya, etc. originated from mosquitoes. In this investigation, we unfurled the potential of Achatina fulica mucus in green synthesis of mucus mediated copper oxide bio-nanocomposites (SM-CuONC) and cobalt oxide bio-nanocomposites (SM-Co3O4NC). Herein we carried out the physico-chemical characterization like UV–Vis spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission electron microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) of as synthesized bio-nanocomposites. Both the bio-nanocomposites were tested for their potential as antimicrobial activity using well diffusion assay, anticancer activity by MTT assay, antioxidant activity by phosphomolybdenum assay and mosquito larvicidal activity.
Results
The results of this study revealed that, SM-CuONC and SM-Co3O4NC were synthesized successfully using A. fulica mucus. The FESEM and TEM data reveal the formation of nanoparticles with quasi-spherical morphology and average particle size of ~ 18 nm for both nanocomposites. The EDAX peak confirms the presence of elemental copper and cobalt in the analyzed samples. The X-ray diffraction analysis confirmed the crystalline nature of the CuO and Co3O4. The result of anti microbial study exhibited that, SM-CuONC showed maximum antimicrobial activity against Escherichia coli NCIM 2065 and Aspergillus fumigatus NCIM 902 which were noted as 2.36 ± 0.31 and 2.36 ± 0.59 cm resp. at 60 µg/well concentration. The result of anticancer activity for SM-CuONC was exhibited as, 68.66 ± 3.72, 62.66 ± 3.61 and 71.00 ± 2.36 percent kill, while SM-Co3O4NC exhibited 61.00 ± 3.57, 72.66 ± 4.50 and 71.66 ± 4.22 percent kill against Human colon cancer (HCT-15), Cervical cancer (HeLa), and Breast cancer (MDA-MB-231) cell lines, respectively, at 20 µg/well concentration. Both the nanocomposites also exhibited better antioxidant activity. Total antioxidant activity for SM-CuONC at 50 µg/ml concentration was found to be highest as 55.33 ± 3.72 while that of SM-Co3O4Ns was 52.00 ± 3.22 mM of ascorbic acid/µg respectively. Both bio-nanocomposites also exhibited 100% mosquito larvicidal activity at concentration ranging from 40 to 50 mg/l. During cytotoxicity study it is noted that at 5 µg/well concentration, SM-CuO and SM-Co3O4NCs suspension showed more than 97% viability of normal (L929) cell lines. We also studied phytotoxicity of both bio-nanocomposites on Triticum aestivum. In this study, 100% seed germination was observed when seeds are treated with SM-CuONC and SM-Co3O4NC at 500 mg/l and 250 mg/l concentration respectively.
Conclusions
This study concludes that in future as synthesized SM-CuONC and SM-Co3O4NC can be used in pharmaceutical, health care system for betterment and welfare of human life as both bio-nanocomposites exhibits better antimicrobial, anticancer, antioxidant and mosquito larvicidal potential.
Collapse
|
2
|
Teke S, Hossain MM, Bhattarai RM, Saud S, Denra A, Hoang Phuong Lan Nguyen MC, Ali A, Nguyen VT, Mok YS. A simple microplasma reactor paired with indirect ultrasonication for aqueous phase synthesis of cobalt oxide nanoparticles. NANOSCALE ADVANCES 2023; 5:3964-3975. [PMID: 37496629 PMCID: PMC10367960 DOI: 10.1039/d3na00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023]
Abstract
Cobalt oxide nanoparticles are widely used owing to their distinct properties such as their larger surface area, enhanced reactivity, and their superior optical, electronic, and magnetic properties when compared to their bulk counterpart. The nanoparticles are preferably synthesized using a bottom-up approach in liquid as it allows the particle size to be more precisely controlled. In this study, we employed microplasma to synthesize Co3O4 nanoparticles because it eliminates harmful reducing agents and is efficient and cost-effective. Microplasma reactors are equipped with copper wire electrodes to generate plasma and are simple to configure. The product was characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The experimental parameters that were varied for the synthesis were: with or without stirring, with or without indirect ultrasonication, and with or without capping agents (urea and sucrose). The results showed that the microplasma enabled Co3O4 nanoparticles to be successfully synthesized, with particle sizes of 10.9-17.7 nm, depending on the synthesis conditions.
Collapse
Affiliation(s)
- Sosiawati Teke
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea +82-64-755-3670 +82-64-754-3682
| | - Md Mokter Hossain
- Department of Chemical and Biological Engineering, University of Idaho Moscow 83844 USA
| | - Roshan Mangal Bhattarai
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea +82-64-755-3670 +82-64-754-3682
| | - Shirjana Saud
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea +82-64-755-3670 +82-64-754-3682
| | - Avik Denra
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea +82-64-755-3670 +82-64-754-3682
| | | | - Adnan Ali
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea +82-64-755-3670 +82-64-754-3682
| | - Van Toan Nguyen
- Faculty of Mechanical Engineering, Le Quy Don Technical University Vietnam
| | - Young Sun Mok
- Department of Chemical Engineering, Jeju National University Jeju 63243 Republic of Korea +82-64-755-3670 +82-64-754-3682
| |
Collapse
|
3
|
Bhatt M, Di Iacovo A, Romanazzi T, Roseti C, Cinquetti R, Bossi E. The "www" of Xenopus laevis Oocytes: The Why, When, What of Xenopus laevis Oocytes in Membrane Transporters Research. MEMBRANES 2022; 12:membranes12100927. [PMID: 36295686 PMCID: PMC9610376 DOI: 10.3390/membranes12100927] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 05/16/2023]
Abstract
After 50 years, the heterologous expression of proteins in Xenopus laevis oocytes is still essential in many research fields. New approaches and revised protocols, but also classical methods, such as the two-electrode voltage clamp, are applied in studying membrane transporters. New and old methods for investigating the activity and the expression of Solute Carriers (SLC) are reviewed, and the kinds of experiment that are still useful to perform with this kind of cell are reported. Xenopus laevis oocytes at the full-grown stage have a highly efficient biosynthetic apparatus that correctly targets functional proteins at the defined compartment. This small protein factory can produce, fold, and localize almost any kind of wild-type or recombinant protein; some tricks are required to obtain high expression and to verify the functionality. The methodologies examined here are mainly related to research in the field of membrane transporters. This work is certainly not exhaustive; it has been carried out to be helpful to researchers who want to quickly find suggestions and detailed indications when investigating the functionality and expression of the different members of the solute carrier families.
Collapse
Affiliation(s)
- Manan Bhatt
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Angela Di Iacovo
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Tiziana Romanazzi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Experimental and Translational Medicine, University of Insubria, Via Ottorino Rossi 9, 21100 Varese, Italy
| | - Cristina Roseti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Centre for Neuroscience—Via Manara 7, University of Insubria, 21052 Busto Arsizio, Italy
| | - Raffaella Cinquetti
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Elena Bossi
- Laboratory of Cellular and Molecular Physiology, Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
- Centre for Neuroscience—Via Manara 7, University of Insubria, 21052 Busto Arsizio, Italy
- Correspondence:
| |
Collapse
|
4
|
Cacciamali A, Pascucci L, Villa R, Dotti S. Engineered nanoparticles toxicity on adipose tissue derived mesenchymal stem cells: A preliminary investigation. Res Vet Sci 2022; 152:134-149. [PMID: 35969916 DOI: 10.1016/j.rvsc.2022.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/12/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022]
Abstract
Nanoscience and nanotechnologies have recently gained importance in several fields, such as industry and medicine. A big issue of the increasing application of nanomaterials is the poor literature regarding their potential toxicity in humans and animals. Recently, adult stem cells have been proposed as putative targets of nanoparticles (NPs). This study aims to investigate the effects of zerovalent-metallic NPs on isolated and amplified equine Adipose tissue derived Mesenchymal Stem Cells (eAdMSCs). Cells were treated with Cobalt (Co-), Iron (Fe-), and Nickel (Ni-) nanoparticles (NPs) at different concentrations and were characterized for the cytotoxic and genotoxic effects of exposure. Treatment with NPs resulted in reduced cell viability and proliferative capability in comparison with untreated cells. However, this did not influence eAdMSCs potency, as treated cells were able to differentiate towards the adipogenic and osteogenic lineages. Ni- and Fe-NPs showed cytoplasmic localization, while Co-NPs entered the nucleus and mitochondria, suggesting a potential genotoxic activity. Regarding p53 expression, it was enhanced in the first 48 h after treatments, with a drastic reduction of expression within 72 h. Higher p53 expression was reported in the case of Co-NP treatment, suggesting the tumorigenic potential of these NPs. Telomerase activity was enhanced by Fe- and Ni-NP treatments in a concentration- and time-dependent way. This was not true for Co-NP treated samples, suggesting a reduced replicative capacity of eAdMSCs upon Co-NP exposure. The present study is a preliminary investigation of the influence exerted by NPs on eAdMSC physiological activity in terms of cytotoxic and genotoxic effects. The present results revealed eAdMSC physiology to be strongly influenced by NPs in a dose-, time- and NP-dependent way.
Collapse
Affiliation(s)
- Andrea Cacciamali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Luisa Pascucci
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy.
| | - Riccardo Villa
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| | - Silvia Dotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna, Laboratorio di Controllo di Prodotti Biologici, Centro di Referenza Nazionale per i Metodi Alternativi, Benessere e Cura degli Animali da Laboratorio, 25124 Brescia, Italy.
| |
Collapse
|
5
|
Exposure to nanoparticles and occupational allergy. Curr Opin Allergy Clin Immunol 2022; 22:55-63. [DOI: 10.1097/aci.0000000000000818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Kong IC, Ko KS, Lee S, Koh DC, Burlage R. Exposure of Metal Oxide Nanoparticles on the Bioluminescence Process of Pu- and Pm-lux Recombinant P. putida mt-2 Strains. NANOMATERIALS 2021; 11:nano11112822. [PMID: 34835588 PMCID: PMC8625787 DOI: 10.3390/nano11112822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Comparison of the effects of metal oxide nanoparticles (NPs; CuO, NiO, ZnO, TiO2, and Al2O3) on different bioluminescence processes was evaluated using two recombinant (Pm-lux and Pu-lux) strains of Pseudomonas putida mt-2 with same inducer exposure. Different sensitivities and responses were observed according to the type of NPs and recombinant strains. EC50 values were determined. The negative effects on the bioluminescence activity of the Pm-lux strain was greater than for the Pu-lux strains for all NPs tested. EC50 values for the Pm-lux strain were 1.7- to 6.2-fold lower (corresponding to high inhibition) than for Pu-lux. ZnO NP caused the greatest inhibition among the tested NPs in both strains, showing approximately 11 times less EC50s of CuO, which appeared as the least inhibited. Although NPs showed different sensitivities depending on the bioluminescence process, similar orders of EC50s for both strains were observed as follows: ZnO > NiO, Al2O3 > TiO2 > CuO. More detailed in-depth systematic approaches, including in the field of molecular mechanisms, is needed to evaluate the accurate effect mechanisms involved in both bioluminescence metabolic processes.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea; (I.C.K.); (S.L.)
| | - Kyung-Seok Ko
- Groundwater Department, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3162
| | - Sohyeon Lee
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea; (I.C.K.); (S.L.)
| | - Dong-Chan Koh
- Groundwater Department, Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon 34132, Korea;
| | - Robert Burlage
- Department of Pharmaceutical and Administrative Sciences, Concordia University, Mequon, WI 53097, USA;
| |
Collapse
|
7
|
Allemailem KS, Almatroudi A, Alrumaihi F, Almatroodi SA, Alkurbi MO, Basfar GT, Rahmani AH, Khan AA. Novel Approaches of Dysregulating Lysosome Functions in Cancer Cells by Specific Drugs and Its Nanoformulations: A Smart Approach of Modern Therapeutics. Int J Nanomedicine 2021; 16:5065-5098. [PMID: 34345172 PMCID: PMC8324981 DOI: 10.2147/ijn.s321343] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023] Open
Abstract
The smart strategy of cancer cells to bypass the caspase-dependent apoptotic pathway has led to the discovery of novel anti-cancer approaches including the targeting of lysosomes. Recent discoveries observed that lysosomes perform far beyond just recycling of cellular waste, as these organelles are metabolically very active and mediate several signalling pathways to sense the cellular metabolic status. These organelles also play a significant role in mediating the immune system functions. Thus, direct or indirect lysosome-targeting with different drugs can be considered a novel therapeutic approach in different disease including cancer. Recently, some anticancer lysosomotropic drugs (eg, nortriptyline, siramesine, desipramine) and their nanoformulations have been engineered to specifically accumulate within these organelles. These drugs can enhance lysosome membrane permeabilization (LMP) or disrupt the activity of resident enzymes and protein complexes, like v-ATPase and mTORC1. Other anticancer drugs like doxorubicin, quinacrine, chloroquine and DQ661 have also been used which act through multi-target points. In addition, autophagy inhibitors, ferroptosis inducers and fluorescent probes have also been used as novel theranostic agents. Several lysosome-specific drug nanoformulations like mixed charge and peptide conjugated gold nanoparticles (AuNPs), Au-ZnO hybrid NPs, TPP-PEG-biotin NPs, octadecyl-rhodamine-B and cationic liposomes, etc. have been synthesized by diverse methods. These nanoformulations can target cathepsins, glucose-regulated protein 78, or other lysosome specific proteins in different cancers. The specific targeting of cancer cell lysosomes with drug nanoformulations is quite recent and faces tremendous challenges like toxicity concerns to normal tissues, which may be resolved in future research. The anticancer applications of these nanoformulations have led them up to various stages of clinical trials. Here in this review article, we present the recent updates about the lysosome ultrastructure, its cross-talk with other organelles, and the novel strategies of targeting this organelle in tumor cells as a recent innovative approach of cancer management.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammad O Alkurbi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ghaiyda Talal Basfar
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
8
|
Kong IC, Ko KS, Koh DC. Comparisons of the Effect of Different Metal Oxide Nanoparticles on the Root and Shoot Growth under Shaking and Non-Shaking Incubation, Different Plants, and Binary Mixture Conditions. NANOMATERIALS 2021; 11:nano11071653. [PMID: 34201728 PMCID: PMC8305468 DOI: 10.3390/nano11071653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 11/24/2022]
Abstract
We evaluated the toxicity of five metal oxide nanoparticles (NPs) in single or binary mixtures based on root and shoot growth of two plant species under non-shaking and shaking conditions. The effects of NPs on root and shoot growth differed depending on the NP type, incubation condition, and plant type. The half maximal effective concentration (EC50) of NPs based on root growth were significantly lower, by 2.6–9.8 times, under shaking than non-shaking conditions (p = 0.0138). The magnitude of the effects of NPs followed the order CuO > ZnO > NiO >> Al2O3, TiO2. In addition, Lactuca sativa L. was more sensitive to the tested NPs than Raphanus sativus L., with an EC50 0.2–0.7 times lower (p = 0.0267). The observed effects of 12 combinations of binary NP mixtures were slightly, albeit non-significantly, lower than expected, indicative of an additive effect of the individual NPs in the mixtures. The results emphasize the importance of careful plant model selection, appropriate application of incubation conditions, and consideration of chemical mixtures rather than single compounds when evaluating the effects of metal oxide NPs.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3162; Fax: +82-42-868-3414
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| |
Collapse
|
9
|
Lucht N, Hinrichs S, Großmann L, Pelz C, Felgenhauer E, Clasen E, Schwenk M, Hankiewicz B. Synthesis of magnetic ferrogels: a tool-box approach for finely tuned magnetic- and temperature-dependent properties. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2019-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Abstract
Multi responsive hydrogels have many potential applications in the field of medicine as well as technical fields and are of great interest in fundamental research. Here we present the synthesis and characterization of tailored magnetic hydrogels – micro- as well as macrogels – which consist of iron oxide and cobalt ferrite, varying in phase and morphology, embedded in a thermoresponsive polymer. We introduce new ways to synthesize magnetic particles and revisit some common strategies when dealing with particle synthesis. Subsequently we discuss the details of the thermoresponsive matrix and how we can influence and manipulate the thermoresponsive properties, i.e. the lower critical solution temperature. Ultimately, we present the particle-hydrogel composite and show two exemplary applications for particle matrix interactions, i.e. heat transfer and reorientation of the particles in a magnetic field.
Collapse
Affiliation(s)
- Niklas Lucht
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Stephan Hinrichs
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Larissa Großmann
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Catharina Pelz
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Elena Felgenhauer
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Eike Clasen
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Max Schwenk
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Hamburg University , Grindelallee 117, 20146 Hamburg , Germany
| |
Collapse
|
10
|
Cinquetti R, Imperiali FG, Bozzaro S, Zanella D, Vacca F, Roseti C, Peracino B, Castagna M, Bossi E. Characterization of Transport Activity of SLC11 Transporters in Xenopus laevis Oocytes by Fluorophore Quenching. SLAS DISCOVERY 2021; 26:798-810. [PMID: 33825579 DOI: 10.1177/24725552211004123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Membrane proteins are involved in different physiological functions and are the target of pharmaceutical and abuse drugs. Xenopus laevis oocytes provide a powerful heterologous expression system for functional studies of these proteins. Typical experiments investigate transport using electrophysiology and radiolabeled uptake. A two-electrode voltage clamp is suitable only for electrogenic proteins, and uptake measurements require the existence of radiolabeled substrates and adequate laboratory facilities.Recently, Dictyostelium discoideum Nramp1 and NrampB were characterized using multidisciplinary approaches. NrampB showed no measurable electrogenic activity, and it was investigated in Xenopus oocytes by acquiring confocal images of the quenching of injected fluorophore calcein.This method is adequate to measure the variation in emitted fluorescence, and thus transporter activity indirectly, but requires long experimental procedures to collect statistically consistent data. Considering that optimal expression of heterologous proteins lasts for 48-72 h, a slow acquiring process requires the use of more than one batch of oocytes to complete the experiments. Here, a novel approach to measure substrate uptake is reported. Upon injection of a fluorophore, oocytes were incubated with the substrate and the transport activity measured, evaluating fluorescence quenching in a microplate reader. The technique permits the testing of tens of oocytes in different experimental conditions simultaneously, and thus the collection of significant statistical data for each batch, saving time and animals.The method was tested with different metal transporters (SLC11), DMT1, DdNramp1, and DdNrampB, and verified with the peptide transporter PepT1 (SLC15). Comparison with traditional methods (uptake, two-electrode voltage clamp) and with quenching images acquired by fluorescence microscopy confirmed its efficacy.
Collapse
Affiliation(s)
| | | | | | - Daniele Zanella
- University of Insubria, Varese, Lombardia, Italy.,The University of Alabama, Birmingham, AL, USA
| | - Francesca Vacca
- University of Insubria, Varese, Lombardia, Italy.,Italian Institute of Technology (IIT), Genova, Italy
| | | | | | | | - Elena Bossi
- University of Insubria, Varese, Lombardia, Italy
| |
Collapse
|
11
|
Savi M, Bocchi L, Cacciani F, Vilella R, Buschini A, Perotti A, Galati S, Montalbano S, Pinelli S, Frati C, Corradini E, Quaini F, Ruotolo R, Stilli D, Zaniboni M. Cobalt oxide nanoparticles induce oxidative stress and alter electromechanical function in rat ventricular myocytes. Part Fibre Toxicol 2021; 18:1. [PMID: 33407654 PMCID: PMC7788732 DOI: 10.1186/s12989-020-00396-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Background Nanotoxicology is an increasingly relevant field and sound paradigms on how inhaled nanoparticles (NPs) interact with organs at the cellular level, causing harmful conditions, have yet to be established. This is particularly true in the case of the cardiovascular system, where experimental and clinical evidence shows morphological and functional damage associated with NP exposure. Giving the increasing interest on cobalt oxide (Co3O4) NPs applications in industrial and bio-medical fields, a detailed knowledge of the involved toxicological effects is required, in view of assessing health risk for subjects/workers daily exposed to nanomaterials. Specifically, it is of interest to evaluate whether NPs enter cardiac cells and interact with cell function. We addressed this issue by investigating the effect of acute exposure to Co3O4-NPs on excitation-contraction coupling in freshly isolated rat ventricular myocytes. Results Patch clamp analysis showed instability of resting membrane potential, decrease in membrane electrical capacitance, and dose-dependent decrease in action potential duration in cardiomyocytes acutely exposed to Co3O4-NPs. Motion detection and intracellular calcium fluorescence highlighted a parallel impairment of cell contractility in comparison with controls. Specifically, NP-treated cardiomyocytes exhibited a dose-dependent decrease in the fraction of shortening and in the maximal rate of shortening and re-lengthening, as well as a less efficient cytosolic calcium clearing and an increased tendency to develop spontaneous twitches. In addition, treatment with Co3O4-NPs strongly increased ROS accumulation and induced nuclear DNA damage in a dose dependent manner. Finally, transmission electron microscopy analysis demonstrated that acute exposure did lead to cellular internalization of NPs. Conclusions Taken together, our observations indicate that Co3O4-NPs alter cardiomyocyte electromechanical efficiency and intracellular calcium handling, and induce ROS production resulting in oxidative stress that can be related to DNA damage and adverse effects on cardiomyocyte functionality. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-020-00396-6.
Collapse
Affiliation(s)
- Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy.
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Francesca Cacciani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Alessio Perotti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Serena Galati
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Serena Montalbano
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parma, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Emilia Corradini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Roberta Ruotolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy
| | - Massimiliano Zaniboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/a, 43124, Parma, Italy.
| |
Collapse
|
12
|
Kong IC, Ko KS, Koh DC. Evaluation of the Effects of Particle Sizes of Silver Nanoparticles on Various Biological Systems. Int J Mol Sci 2020; 21:E8465. [PMID: 33187117 PMCID: PMC7696109 DOI: 10.3390/ijms21228465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Seven biological methods were adopted (three bacterial activities of bioluminescence, enzyme, enzyme biosynthetic, algal growth, seed germination, and root and shoot growth) to compare the toxic effects of two different sizes of silver nanoparticles (AgNPs). AgNPs showed a different sensitivity in each bioassay. Overall, the order of inhibitory effects was roughly observed as follows; bacterial bioluminescence activity ≈ root growth > biosynthetic activity of enzymes ≈ algal growth > seed germination ≈ enzymatic activity > shoot growth. For all bacterial activities (bioluminescence, enzyme, and enzyme biosynthesis), the small AgNPs showed statistically significantly higher toxicity than the large ones (p < 0.0036), while no significant differences were observed among other biological activities. The overall effects on the biological activities (except shoot growth) of the small AgNPs were shown to have about 4.3 times lower EC50 (high toxicity) value than the large AgNPs. These results also indicated that the bacterial bioluminescence activity appeared to be an appropriate method among the tested ones in terms of both sensitivity and the discernment of particle sizes of AgNPs.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea;
| |
Collapse
|
13
|
Kong IC, Ko KS, Koh DC, Chon CM. Comparative Effects of Particle Sizes of Cobalt Nanoparticles to Nine Biological Activities. Int J Mol Sci 2020; 21:E6767. [PMID: 32942696 PMCID: PMC7555351 DOI: 10.3390/ijms21186767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/08/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
The differences in the toxicity of cobalt oxide nanoparticles (Co-NPs) of two different sizes were evaluated in the contexts of the activities of bacterial bioluminescence, xyl-lux gene, enzyme function and biosynthesis of β-galactosidase, bacterial gene mutation, algal growth, and plant seed germination and root/shoot growth. Each size of Co-NP exhibited a different level of toxicity (sensitivity) in each biological activity. No revertant mutagenic ratio (greater than 2.0) of Salmonella typhimurium TA 98 was observed under the test conditions in the case of gene-mutation experiments. Overall, the inhibitory effects on all five bacterial bioassays were greater than those on algal growth, seed germination, and root growth. However, in all cases, the small Co-NPs showed statistically greater (total average about two times) toxicity than the large Co-NPs, except in shoot growth, which showed no observable inhibition. These findings demonstrate that particle size may be an important physical factor determining the fate of Co-NPs in the environment. Moreover, combinations of results based on various biological activities and physicochemical properties, rather than only a single activity and property, would better facilitate accurate assessment of NPs' toxicity in ecosystems.
Collapse
Affiliation(s)
- In Chul Kong
- Department of Environmental Engineering, Yeungnam University, Gyungsan 38541, Korea;
| | - Kyung-Seok Ko
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| | - Dong-Chan Koh
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| | - Chul-Min Chon
- Geologic Environment Division, Korea Institute of Geoscience & Mineral Resources (KIGAM), Daejeon 34132, Korea; (D.-C.K.); (C.-M.C.)
| |
Collapse
|
14
|
Rasool A, Zulfajri M, Gulzar A, Hanafiah MM, Unnisa SA, Mahboob M. In vitro effects of cobalt nanoparticles on aspartate aminotransferase and alanine aminotransferase activities of wistar rats. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00453. [PMID: 32368512 PMCID: PMC7184135 DOI: 10.1016/j.btre.2020.e00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022]
Abstract
Cobalt nanoparticles (Co-NPs) have been extensively used in clinical practices and medical diagnosis. In this study, the potential toxicity effects of Co-NPs with special emphasis over the biochemical enzyme activities, such as aspartate aminotransferase (ASAT) and alanine aminotransferase (ALAT) in serum, liver, and kidney of Wistar rats were investigated. This toxicity measurement of nanomaterials can support the toxicological data. The biochemical enzymatic variations are powerful tools for the assessment of toxicity. ASAT and ALAT enzymes have been widely used to predict tissue-specific toxicities associated with xenobiotic. The biochemical changes induced by Co-NPs have significance in their toxicological studies because the alterations in biochemical parameters before clinical symptoms indicate either their toxicant safety or detrimental effect. Herein, Co-NPs with particle size <50 nm significantly activated ASAT and ALAT enzymes in the serum, liver, and kidney of rats at concentration-dependent order.
Collapse
Affiliation(s)
- Akhtar Rasool
- Toxicology Unit, Applied Biology Division, CSIR‐Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana India
- Department of Environmental Sciences, UCS, Osmania University, Hyderabad, 500007, Telangana, India
| | - Muhammad Zulfajri
- Department of Chemistry Education, Universitas Serambi Mekkah, Banda Aceh 23245, Aceh, Indonesia
| | - Arif Gulzar
- Key Laboratory of Material Science and Chemical Engineering, Harbin Engineering University, Heilongjiang 150001, Harbin, China
| | - Marlia Mohd Hanafiah
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
- Centre for Tropical Climate Change System, Institute of Climate Change, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor, Malaysia
| | - Syeda Azeem Unnisa
- Department of Environmental Sciences, UCS, Osmania University, Hyderabad, 500007, Telangana, India
| | - Mohammed Mahboob
- Toxicology Unit, Applied Biology Division, CSIR‐Indian Institute of Chemical Technology, Hyderabad, 500007, Telangana India
| |
Collapse
|
15
|
Di Gioacchino M, Petrarca C, Gatta A, Scarano G, Farinelli A, Della Valle L, Lumaca A, Del Biondo P, Paganelli R, Di Giampaolo L. Nanoparticle-based immunotherapy: state of the art and future perspectives. Expert Rev Clin Immunol 2020; 16:513-525. [PMID: 32343153 DOI: 10.1080/1744666x.2020.1762572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION For several years now, medicine has been benefiting from the contribution of nanoparticles (NPs) technology for both diagnosis and therapy. They can be used as adjuvants, being capable per se of immune-modulating activity, or as carriers for molecules to be transported to a specific target, eventually loaded with specific ligands favoring specific uptake. AREAS COVERED The review focuses on experimental use of NPs as adjuvants/carriers for allergen immunotherapy (AIT). Human clinical trials conducted so far are discussed. EXPERT OPINION Results of experimental studies and recent clinical trials support the use of NPs as carrier/adjuvant in AIT. Comparisons between NP-based and classical AIT are needed, to show the usefulness of the NP-based approach. However, there are still unsolved problems: the persistence of non-degradable NPs with possible toxicological consequences, and the formation of the protein corona around the NPs, which could alter their activity and fate. Virus-like particles seem the most promising NPs for allergy treatment, as for other vaccines. Over the next decade, NP-based AIT will be largely used to treat allergic disorders.
Collapse
Affiliation(s)
- Mario Di Gioacchino
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Leonardo Da Vinci, University , Chieti, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Claudia Petrarca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Alessia Gatta
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy
| | - Gilda Scarano
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Anila Farinelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Loredana Della Valle
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Arianna Lumaca
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Pietro Del Biondo
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Roberto Paganelli
- Department of Medicine and Science of Ageing, G. d'Annunzio University , Chieti, Pescara, Italy.,Department of Medicine and Science of Ageing, Specialization School of Allergy and Clinical Immunology, G. d'Annunzio University Chieti-Pescara , Italy
| | - Luca Di Giampaolo
- Department of Medical Oral and Biotechnological Sciences, G. d'Annunzio University , Chieti, Pescara, Italy
| |
Collapse
|
16
|
Safaei M, Taran M, Jamshidy L, Imani MM, Mozaffari HR, Sharifi R, Golshah A, Moradpoor H. Optimum synthesis of polyhydroxybutyrate-Co 3O 4 bionanocomposite with the highest antibacterial activity against multidrug resistant bacteria. Int J Biol Macromol 2020; 158:477-485. [PMID: 32278598 DOI: 10.1016/j.ijbiomac.2020.04.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 11/29/2022]
Abstract
Increased multidrug resistant (MDR) bacteria are considered one of the most challenging problems of the present century. The present study aimed to identify the optimum conditions for synthesis of Polyhydroxybutyrate-Co3O4 bionanocomposite with the highest antibacterial activity via in situ synthesis. Nine experiments with different amounts of polyhydroxybutyrate (PHB) biopolymer and Co3O4 nanoparticles and different stirring times were designed using Taguchi method. The antibacterial activity of synthesized nanocomposites against Staphylococcus aureus and Escherichia coli was evaluated using colony forming units (CFU) and disc diffusion methods. The characterizations of products were studied by Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy (UV-vis), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The synthesized bionanocomposites completely prevented the growth of bacteria under the conditions of experiments 5 (Co3O4 4 mg/ml, PHB 1 mg/ml and stirring time: 90 min) and 9 (Co3O4 8 mg/ml, PHB 2 mg/ml and stirring time: 60 min). The results showed that nanocomposite formation improved structural properties, thermal stability and antibacterial activity. PHB-Co3O4 bionanocomposite can be used in various fields of pharmacy, medicine and dentistry due to its desirable antibacterial properties.
Collapse
Affiliation(s)
- Mohsen Safaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Mojtaba Taran
- Department of Nanobiotechnology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Ladan Jamshidy
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Moslem Imani
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Hamid Reza Mozaffari
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
17
|
Borgese M, Rossi F, Bonfanti P, Colombo A, Mantecca P, Valdatta L, Bernardini G, Gornati R. Recovery ability of human adipose stem cells exposed to cobalt nanoparticles: outcome of dissolution. Nanomedicine (Lond) 2020; 15:453-465. [PMID: 32031036 DOI: 10.2217/nnm-2019-0195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To demonstrate that cobalt nanoparticles doses are safe for use in humans and to understand the consequences of the particulate effects, which may persist inside the cells. Materials & methods: Human adipose stem cells were used. We evaluated cell recovery by viability test, morphology and ultrastructure using electronic and optical microscopy, while gene expression was assessed utilizing real-time PCR. Results: After exposure, most stem cells recovered their normal function. Co3O4-nanoparticles remained inside the cell for the entirety of the considered time. A slight modification of gene expression was observed in the exposed cells. Conclusion: After exposure to 100 M cobalt nanoparticles, most cells returned to normal function. Nanoparticle toxicity was due to ions released by dissolution as well as from the nanoparticles themselves.
Collapse
Affiliation(s)
- Marina Borgese
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, V. J. H. Dunant 3, 21100, Varese, Italy
| | - Federica Rossi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, V. J. H. Dunant 3, 21100, Varese, Italy
| | - Patrizia Bonfanti
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Anita Colombo
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Paride Mantecca
- Dipartimento di Scienze dell'Ambiente e della Terra, Università degli Studi di Milano Bicocca, P.zza della Scienza 1, 20126, Milano, Italy
| | - Luigi Valdatta
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, V. J. H. Dunant 3, 21100, Varese, Italy
| | - Giovanni Bernardini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, V. J. H. Dunant 3, 21100, Varese, Italy
| | - Rosalba Gornati
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, V. J. H. Dunant 3, 21100, Varese, Italy
| |
Collapse
|
18
|
Lucht N, Friedrich RP, Draack S, Alexiou C, Viereck T, Ludwig F, Hankiewicz B. Biophysical Characterization of (Silica-coated) Cobalt Ferrite Nanoparticles for Hyperthermia Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1713. [PMID: 31805707 PMCID: PMC6956109 DOI: 10.3390/nano9121713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022]
Abstract
Magnetic hyperthermia is a technique that describes the heating of material through an external magnetic field. Classic hyperthermia is a medical condition where the human body overheats, being usually triggered by a heat stroke, which can lead to severe damage to organs and tissue due to the denaturation of cells. In modern medicine, hyperthermia can be deliberately induced to specified parts of the body to destroy malignant cells. Magnetic hyperthermia describes the way that this overheating is induced and it has the inherent advantage of being a minimal invasive method when compared to traditional surgery methods. This work presents a particle system that offers huge potential for hyperthermia treatments, given its good loss value, i.e., the particles dissipate a lot of heat to their surroundings when treated with an ac magnetic field. The measurements were performed in a low-cost custom hyperthermia setup. Additional toxicity assessments on Jurkat cells show a very low short-term toxicity on the particles and a moderate low toxicity after two days due to the prevalent health concerns towards nanoparticles in organisms.
Collapse
Affiliation(s)
- Niklas Lucht
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Ralf P. Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Sebastian Draack
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technical University of Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Glückstraße 10a, 91054 Erlangen, Germany
| | - Thilo Viereck
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technical University of Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Frank Ludwig
- Institute for Electrical Measurement Science and Fundamental Electrical Engineering, Technical University of Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
19
|
Xiong R, Zhang W, Zhang Y, Zhang Y, Chen Y, He Y, Fan H. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation. NANOSCALE 2019; 11:18081-18089. [PMID: 31343649 DOI: 10.1039/c9nr04289j] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remote modulation of nanoscale biochemical processes in a living system using magnetic stimulation is appealing but is restricted by the lack of a highly efficient nanomediator which can deliver timely and effective response to biological molecules under an external magnetic field. Herein, we report the development of a novel nanocatalyst based on a ferrimagnetic vortex-domain nanoring (FVIO)-enzyme hybrid that enables real-time modulation of enzymatic catalysis under an alternating magnetic field (AMF). The role of the FVIO is to provide localized heating immediately upon exposure to an AMF, which efficiently and selectively promotes the activity of conjugated enzymes on the surface. The reaction rate of the as-fabricated FVIO-β-Gal hybrid was shown to be boosted up to 180% of its initial value by localized heat generated under an AMF of 550 Oe in less than 2 s and without heating up the bulk solution. Moreover, the degree of activity acceleration was shown to be tunable by increasing the strength of the AMF. The concept of remote magnetic stimulation of enzymatic reactions has been further applied to other enzymes (e.g. FVIO-KPC and FVIO-GOx), demonstrating the general applicability of this strategy. Since almost all metabolic processes in cells rely on enzymatic catalysis to sustain life, the FVIO-enzyme system developed in this work provides a valuable nanoplatform for spatiotemporally manipulating biochemical reactions, which might pave the way for future remote manipulation of living organisms.
Collapse
Affiliation(s)
- Ran Xiong
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, 1 Xue Fu Avenue, Xi'an, 710127, Shaanxi, China.
| | | | | | | | | | | | | |
Collapse
|
20
|
Snyder RJ, Verhein KC, Vellers HL, Burkholder AB, Garantziotis S, Kleeberger SR. Multi-walled carbon nanotubes upregulate mitochondrial gene expression and trigger mitochondrial dysfunction in primary human bronchial epithelial cells. Nanotoxicology 2019; 13:1344-1361. [PMID: 31478767 DOI: 10.1080/17435390.2019.1655107] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nanomaterials are a relatively new class of materials that acquire novel properties based on their reduced size. While these materials have widespread use in consumer products and industrial applications, the potential health risks associated with exposure to them remain to be fully characterized. Carbon nanotubes are among the most widely used nanomaterials and have high potential for human exposure by inhalation. These nanomaterials are known to penetrate the cell membrane and interact with intracellular molecules, resulting in a multitude of documented effects, including oxidative stress, genotoxicity, impaired metabolism, and apoptosis. While the capacity for carbon nanotubes to damage nuclear DNA has been established, the effect of exposure on mitochondrial DNA (mtDNA) is relatively unexplored. In this study, we investigated the potential of multi-walled carbon nanotubes (MWCNTs) to impair mitochondrial gene expression and function in human bronchial epithelial cells (BECs). Primary BECs were exposed to sub-cytotoxic doses (up to 3 μg/ml) of MWCNTs for 5 d and assessed for changes in expression of all mitochondrial protein-coding genes, heteroplasmies, and insertion/deletion mutations (indels). Exposed cells were also measured for cytotoxicity, metabolic function, mitochondrial abundance, and mitophagy. We found that MWCNTs upregulated mitochondrial gene expression, while significantly decreasing oxygen consumption rate and mitochondrial abundance. Confocal microscopy revealed induction of mitophagy by 2 hours of exposure. Mitochondrial DNA heteroplasmy and insertion/deletion mutations were not significantly affected by any treatment. We conclude that carbon nanotubes cause mitochondrial dysfunction that leads to mitophagy in exposed BECs via a mechanism unrelated to its reported genotoxicity.
Collapse
Affiliation(s)
- Ryan J Snyder
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | | | - Heather L Vellers
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA
| | - Adam B Burkholder
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | - Stavros Garantziotis
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| | - Steven R Kleeberger
- Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, NIH, Durham, NC, USA
| |
Collapse
|
21
|
Rathore B, Sunwoo K, Jangili P, Kim J, Kim JH, Huang M, Xiong J, Sharma A, Yang Z, Qu J, Kim JS. Nanomaterial designing strategies related to cell lysosome and their biomedical applications: A review. Biomaterials 2019; 211:25-47. [DOI: 10.1016/j.biomaterials.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 01/04/2023]
|
22
|
Shimokawa N, Ito H, Higuchi Y. Coarse-grained molecular dynamics simulation for uptake of nanoparticles into a charged lipid vesicle dominated by electrostatic interactions. Phys Rev E 2019; 100:012407. [PMID: 31499808 DOI: 10.1103/physreve.100.012407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Indexed: 06/10/2023]
Abstract
We use a coarse-grained molecular dynamics simulation to investigate the interaction between neutral or charged nanoparticles (NPs) and a vesicle consisting of neutral and negatively charged lipids. We focus on the interaction strengths of hydrophilic and hydrophobic attraction and electrostatic interactions between a lipid molecule and an NP. A neutral NP passes through the lipid membrane when the hydrophobic interaction is sufficiently strong. As the valence of the positively charged NP increases, the membrane permeation speed of the NP is increased compared with the neutral NP and charged lipids are accumulated around the charged NP. A charged NP with a high valence passes through the lipid membrane via a transient channel formed by charged lipids or transportlike endocytosis. These permeation processes can be classified based on analyses of the density correlation function. When the nonelectrostatic interaction parameters are large enough, a negatively charged NP can be adsorbed on the membrane and a neutral lipid-rich region is formed directly below the NP. The NP is spontaneously incorporated into the vesicle under various conditions and the incorporation is mediated by the membrane curvature. We reveal how the NP's behavior depends on the NP valence, size, and the nonelectrostatic interaction parameters.
Collapse
Affiliation(s)
- Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Ishikawa 923-1292, Japan
| | - Hiroaki Ito
- Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, University of Tokyo, Chiba 227-8581, Japan
| |
Collapse
|
23
|
Zanella D, Bossi E, Gornati R, Faria N, Powell J, Bernardini G. The direct permeation of nanoparticles through the plasma membrane transiently modifies its properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:182997. [PMID: 31150635 DOI: 10.1016/j.bbamem.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 12/20/2022]
Abstract
The exposure to metal nanoparticles (NPs) has increased with their widespread use in industry, research and medicine. It is well known that NPs may enter cells and that this mechanism is crucial to exert both the therapeutic and toxicity effects. The main cellular entrance route is endocytosis-based, however, recent experimental studies, have reported that NPs can also enter the cell crossing directly the plasma membrane, it is thus important to investigate this alternative internalization mechanism. Size, surface chemistry, solubility and shape play a role in NP ability of entering the cell, but it is still to be elucidated how these properties act on cell membrane. We have demonstrated that a direct permeation of metal oxide NPs through the lipid bilayer of the cell membrane can occur, giving direct access to the cytoplasm. In this paper, using the powerful tool of Xenopus laevis oocytes and two electrode Voltage Clamp, we have investigated several parameters that can influence the direct crossing. The most significant of them is the NP hydrodynamic size as clearly shown by the comparison of the behaviour between Co3O4 and NiO NPs. By collecting biophysical membrane parameters in different conditions, we have shown that NPs that are able to cross the membrane share the ability to maintain a hydrodynamic size lower than 200 nm. The presence of this route of entrance must be considered for a better comprehension of the effect at intracellular level considering possible mechanism in order to a safer design of engineered NPs.
Collapse
Affiliation(s)
- Daniele Zanella
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy
| | - Nuno Faria
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Jonathan Powell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, I-21100 Varese, Italy.
| |
Collapse
|
24
|
Armenia I, Grazú Bonavia MV, De Matteis L, Ivanchenko P, Martra G, Gornati R, de la Fuente JM, Bernardini G. Enzyme activation by alternating magnetic field: Importance of the bioconjugation methodology. J Colloid Interface Sci 2019; 537:615-628. [DOI: 10.1016/j.jcis.2018.11.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/12/2018] [Accepted: 11/13/2018] [Indexed: 12/14/2022]
|
25
|
Terova G, Rimoldi S, Izquierdo M, Pirrone C, Ghrab W, Bernardini G. Nano-delivery of trace minerals for marine fish larvae: influence on skeletal ossification, and the expression of genes involved in intestinal transport of minerals, osteoblast differentiation, and oxidative stress response. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1375-1391. [PMID: 29911270 DOI: 10.1007/s10695-018-0528-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
Currently, the larviculture of many marine fish species with small-sized larvae depends for a short time after hatching, on the supply of high-quality live zooplankton to ensure high survival and growth rates. During the last few decades, the research community has made great efforts to develop artificial diets, which can completely substitute live prey. However, studies aimed at determining optimal levels of minerals in marine larvae compound feeds and the potential of novel delivery vectors for mineral acquisition has only very recently begun. Recently, the agro-food industry has developed several nano-delivery systems, which could be used for animal feed, too. Delivery through nano-encapsulation of minerals and feed additives would protect the bioactive molecules during feed manufacturing and fish feeding and allow an efficient acquisition of active substances into biological system. The idea is that dietary minerals in the form of nanoparticles may enter cells more easily than their larger counterparts enter and thus speed up their assimilation in fish. Accordingly, we evaluated the efficacy of early weaning diets fortified with organic, inorganic, or nanoparticle forms of trace minerals (Se, Zn, and Mn) in gilthead seabream (Sparus aurata) larvae. We tested four experimental diets: a trace mineral-deficient control diet, and three diets supplemented with different forms of trace minerals. At the end of the feeding trial, larvae growth performance and ossification, and the level of expression of six target genes (SLC11A2β, dmt1, BMP2, OC, SOD, GPX), were evaluated. Our data demonstrated that weaning diets supplemented with Mn, Se, and Zn in amino acid-chelated (organic) or nanoparticle form were more effective than diets supplemented with inorganic form of minerals to promote bone mineralization, and prevent skeletal anomalies in seabream larvae. Furthermore, nanometals markedly improved larval stress resistance in comparison to inorganic minerals and upregulated mRNA copy number of OC gene. The expression of this gene was strongly correlated with mineralization degree, thus confirming its potency as a good marker of bone mineralization in gilthead seabream larvae.
Collapse
Affiliation(s)
- Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy.
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Marisol Izquierdo
- Grupo de Investigación en Acuicultura (GIA), University Institute Ecoaqua, University of Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Wafa Ghrab
- Grupo de Investigación en Acuicultura (GIA), University Institute Ecoaqua, University of Las Palmas de Gran Canaria, Telde, Las Palmas, Canary Islands, Spain
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
- Inter-University Centre for Research in Protein Biotechnologies, "The Protein Factory", Polytechnic University of Milan and University of Insubria, Varese, Italy
| |
Collapse
|
26
|
Abstract
While nanoparticles exert bactericidal effects through the generation of reactive oxygen species (ROS), the processes of the internalization of and the direct physical damage caused by iron oxide nanoparticles are not completely clear. We hypothesize that direct physical or mechanical damage of the cell membrane and cytoplasmic integrity by nanoparticles is another major cause of bacterial death besides ROS. The aim of this study is to investigate the process of the internalization of iron oxide nanoparticles, and to evaluate the effect of direct physical or mechanical damage on bacterial cell growth and death. The results demonstrate that iron oxide nanoparticles not only inhibited E. coli cell growth, but also caused bacterial cell death. Iron oxide nanoparticles produced significantly elevated ROS levels in bacteria. Transmission electronic microscopy demonstrated that iron oxide nanoparticles were internalized into and condensed the cytoplasm. Strikingly, we observed that the internalized nanoparticles caused intracellular vacuole formation, instead of simply adsorbing thereon; and formed clusters on the bacterial surface and tore up the outer cell membrane to release cytoplasm. This is the first time that the exact process of the internalization of iron oxide nanoparticles has been observed. We speculate that the intracellular vacuole formation and direct physical or mechanical damage caused by the iron oxide nanoparticles caused the bactericidal effect, along with the effects of ROS.
Collapse
|
27
|
Yan X, Liu Y, Xie T, Liu F. α-Tocopherol protected against cobalt nanoparticles and cocl2 induced cytotoxicity and inflammation in Balb/3T3 cells. Immunopharmacol Immunotoxicol 2018; 40:179-185. [PMID: 29350096 DOI: 10.1080/08923973.2018.1424901] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xin Yan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Tian Xie
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
28
|
Amde M, Liu JF, Tan ZQ, Bekana D. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:250-267. [PMID: 28662490 DOI: 10.1016/j.envpol.2017.06.064] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 06/09/2017] [Accepted: 06/19/2017] [Indexed: 05/24/2023]
Abstract
Metal oxide nanoparticles (MeO-NPs) are among the most consumed NPs and also have wide applications in various areas which increased their release into the environmental system. Aquatic (water and sediments) and terrestrial compartments are predicted to be the destination of the released MeO-NPs. In these compartments, the particles are subjected to various dynamic processes such as physical, chemical and biological processes, and undergo transformations which drive them away from their pristine state. These transformation pathways can have strong implications for the fate, transport, persistence, bioavailability and toxic-effects of the NPs. In this critical review, we provide the state-of-the-knowledge on the transformation processes and bioavailability of MeO-NPs in the environment, which is the topic of interest to researchers. We also recommend future research directions in the area which will support future risk assessments by enhancing our knowledge of the transformation and bioavailability of MeO-NPs.
Collapse
Affiliation(s)
- Meseret Amde
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing-Fu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Qiang Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Deribachew Bekana
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Li Z, Zhang Y, Zhu D, Li S, Yu X, Zhao Y, Ouyang X, Xie Z, Li L. Transporting carriers for intracellular targeting delivery via non-endocytic uptake pathways. Drug Deliv 2017; 24:45-55. [PMID: 29069996 PMCID: PMC8812582 DOI: 10.1080/10717544.2017.1391889] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To develop novel therapies for clinical treatments, it increasingly depends on sophisticated delivery systems that facilitate the drugs entry into targeting cells. Profound understanding of cellular uptake routes for transporting carriers promotes the optimization of performance in drug delivery systems. Although endocytic pathway is the most important part of cellular uptake routes for many delivery systems, it suffers the trouble of enzymatic degradation of transporting carriers trapped in endosomes/lysosomes. Therefore, it is desirable to develop alternative transporting methods for delivery systems via non-endocytic pathways to achieve more effective intracellular delivery. In this review, we summarize the literature exploring transporting carriers that mediate intracellular delivery via non-endocytic pathways to present the current research status in this field. Cell-penetrating peptides, pH (low) insertion peptides, and nanoparticles are categorized to exhibit their ability to directly transport various cargos into cytoplasm via non-endocytic uptake in different cell lines. It is hoped that this review can spur the interesting on development of drug delivery systems via non-endocytic uptake pathway.
Collapse
Affiliation(s)
- Zuhong Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yanhong Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Shuiqing Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yalei Zhao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xiaoxi Ouyang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhongyang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
30
|
Palombella S, Pirrone C, Rossi F, Armenia I, Cherubino M, Valdatta L, Raspanti M, Bernardini G, Gornati R. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model. NANOMATERIALS 2017; 7:nano7080212. [PMID: 28771169 PMCID: PMC5575694 DOI: 10.3390/nano7080212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/15/2023]
Abstract
As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly, the iron microparticles (FeMPs) resulted in being toxic. These data were supported by modifications in mRNA expression of some genes implicated in the inflammatory response. Microscopic analysis confirmed that NPs, mainly internalized by endocytosis, persist in the vesicles without any apparent cell damage. Conversely, MPs are not internalized, and the effects on hASCs have to be ascribed to the release of ions in the culture medium, or to the reduced oxygen and nutrient exchange efficiency due to the presence of MP agglomerating around the cells. Notwithstanding the results depicting a heterogeneous scene that does not allow drawing a general conclusion, this work reiterates the importance of comparative investigations on MPs, NPs, and corresponding ions, and the need to continue the thorough verification of NP and MP innocuousness to ensure unaffected stem cell physiology and differentiation.
Collapse
Affiliation(s)
- Silvia Palombella
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Mario Cherubino
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Luigi Valdatta
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico of Milano, ICRM-CNR Milano and University of Insubria, Via Mancinelli 7, 20131 Milano, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico of Milano, ICRM-CNR Milano and University of Insubria, Via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
31
|
Protective effects of Zn 2+ against cobalt nanoparticles and cobalt chloride-induced cytotoxicity of RAW 264.7cells via ROS pathway. Biochem Biophys Res Commun 2017; 486:357-363. [DOI: 10.1016/j.bbrc.2017.03.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 03/12/2017] [Indexed: 01/05/2023]
|