1
|
Li SL, Chen Y, Tian G, Kou L, Qiao L, Zhao Y, Gan LY. High catalytic activity and abundant active sites in M 2C 12 monolayer for nitrogen reduction reaction. J Colloid Interface Sci 2024; 675:411-418. [PMID: 38976967 DOI: 10.1016/j.jcis.2024.06.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/06/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024]
Abstract
Developing highly efficient single-atom catalysts (SACs) for the nitrogen reduction reaction (NRR) to ammonia production has garnered significant attention in the scientific community. However, achieving high activity and selectivity remains challenging due to the lack of innate activity in most existing catalysts or insufficient active site density. This study delves into the potential of M2C12 materials (M = Cr, Ir, Mn, Mo, Os, Re, Rh, Ru, W, Fe, Cu, and Ti) with high transition metal coverage as SACs for NRR using first-principles calculations. Among these materials, Os2C12 exhibited superior catalytic activity for NRR, with a low overpotential of 0.39 V and an Os coverage of up to 72.53 wt%. To further boost its catalytic activity, a nonmetal (NM) atom doping (NM = B, N, O, and S) and C vacancy modification were explored in Os2C12. It is found that the introduction of O enables exceptional catalytic activity, selectivity, and stability, with an even lower overpotential of 0.07 V. Incorporating the O atom disrupted the charge balance of its coordinating C atoms, effectively increasing the positive charge density of the Os-d-orbit-related electronic structure. This promoted strong d-π* coupling between Os and N2H, enhancing N2H adsorption and facilitating NRR processes. This comprehensive study provides valuable insights into NRR catalyst design for sustainable ammonia production and offers a reference for exploring alternative materials in other catalytic reactions.
Collapse
Affiliation(s)
- Shu-Long Li
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China; Western Superconducting Technologies Co, Ltd., Xi'an 710018, China
| | - Yutao Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Guo Tian
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Liang Qiao
- School of Physics, University of Electronic Science and Technology of China, Chengdu 611700, China.
| | - Yong Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China.
| | - Li-Yong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
2
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
3
|
Jameel MH, Roslan MSB, Agam MAB. To Investigate the Structural, Electronic, and Optical Characteristics of 2D Hetero-atoms Al, N, B-doped-Graphene Composites For Photocatalytic Applications: A DFT Study.. [DOI: 10.21203/rs.3.rs-3078072/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Two-dimensional (2D) layer structure graphene-doped composites have been confirmed to be an efficient and appropriate material to build effective photo-catalysts with enhanced catalytic efficiency for wastewater and industrial wastage. Graphene exhibits a proficient 2D layer structure, very large conductivity, better-quality electron mobility, and remarkably high surface area with large active sites for the best photocatalytic activity. In the current research structural, electronic, and optical characteristics of 2D Graphene doped-composites are calculated using a first-principles calculation. To use a generalized gradient approximation (GGA) and an ultra-soft pseudopotential (USP), the impact of Aluminium (Al), Nitrogen (N), and Boron (B) on structural, optical, and electronic characteristics of Graphene doped-composites are investigated. By substituting Al, N, and B in Graphene, extra gamma sites are produced into the energy bandgap (Eg). Owing to the difference in ionic radii of Al, N, and B the band gap is found to remarkably increase from 0 to 1.75 eV. The nature of the band gap is found direct. A noteworthy increment is found in Eg as a result of optical conductivity increase of 2.5 to 4.0. Due to the inclusion of Al, N, and B, the energy absorption peaks are increased and shifted to larger energy in the UV-visible spectrum. 2D layer structure doped-Graphene composites have high optical conductivity, refractive index, and energy absorption is an appropriate material for photocatalytic application.
Collapse
|
4
|
Yu C, Chen X, Li N, Zhang Y, Li S, Chen J, Yao L, Lin K, Lai Y, Deng X. Ag 3PO 4-based photocatalysts and their application in organic-polluted wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:18423-18439. [PMID: 35038092 DOI: 10.1007/s11356-022-18591-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Semiconductor photocatalysis technology has shown great potential in the field of organic pollutant removal, as it can use clean and pollution-free solar energy as driving force. The discovery of silver phosphate (Ag3PO4) is a major breakthrough in the field of visible light responsive semiconductor photocatalysis due to its robust capacity to absorb visible light < 520 nm. Furthermore, the holes produced in Ag3PO4 under light excitation possess a strong oxidation ability. However, the strong oxidation activity of Ag3PO4 is only achieved in the presence of electron sacrifice agents. Otherwise, photocorrosion would greatly reduce the reuse efficiency of Ag3PO4. This review thus focuses on the structural characteristics and preparation methods of Ag3PO4. Particularly, the recent advances in noble metal deposition, ion doping, and semiconductor coupling, as well as methods of magnetic composite modification for the improvement of catalytic activity and recycling efficiency of Ag3PO4-based catalysts, were also discussed, and all of these measures could enhance the catalytic performance of Ag3PO4 toward organic pollutants degradation. Additionally, some potential modification methods for Ag3PO4 were also proposed. This review thus provides insights into the advantages and disadvantages of the application of Ag3PO4 in the field of photocatalysis, clarifies the photocorrosion essence of Ag3PO4, and reveals the means to improve photocatalytic activity and stability of Ag3PO4. Furthermore, it provides a theoretical and methodological basis for studying Ag3PO4-based photocatalyst and also compiles valuable information regarding the photocatalytic treatment of organic polluted wastewater.
Collapse
Affiliation(s)
- Chunmu Yu
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Xiaojuan Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China.
- CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Guangzhou, 510640, China.
| | - Ning Li
- CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Guangzhou, 510650, China.
| | - Yue Zhang
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Sailin Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Jieming Chen
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Liang Yao
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Kaichun Lin
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Yiqi Lai
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Xinru Deng
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| |
Collapse
|
5
|
A diagnosis approach for semiconductor properties evaluation from ab initio calculations: Ag-based materials investigation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Hu C, Paul R, Dai Q, Dai L. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis. Chem Soc Rev 2021; 50:11785-11843. [PMID: 34559871 DOI: 10.1039/d1cs00219h] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the discovery of N-doped carbon nanotubes as the first carbon-based metal-free electrocatalyst (C-MFEC) for oxygen reduction reaction (ORR) in 2009, C-MFECs have shown multifunctional electrocatalytic activities for many reactions beyond ORR, such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and hydrogen peroxide production reaction (H2O2PR). Consequently, C-MFECs have attracted a great deal of interest for various applications, including metal-air batteries, water splitting devices, regenerative fuel cells, solar cells, fuel and chemical production, water purification, to mention a few. By altering the electronic configuration and/or modulating their spin angular momentum, both heteroatom(s) doping and structural defects (e.g., atomic vacancy, edge) have been demonstrated to create catalytic active sites in the skeleton of graphitic carbon materials. Although certain C-MFECs have been made to be comparable to or even better than their counterparts based on noble metals, transition metals and/or their hybrids, further research and development are necessary in order to translate C-MFECs for practical applications. In this article, we present a timely and comprehensive, but critical, review on recent advancements in the field of C-MFECs within the past five years or so by discussing various types of electrocatalytic reactions catalyzed by C-MFECs. An emphasis is given to potential applications of C-MFECs for energy conversion and storage. The structure-property relationship for and mechanistic understanding of C-MFECs will also be discussed, along with the current challenges and future perspectives.
Collapse
Affiliation(s)
- Chuangang Hu
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Rajib Paul
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Quanbin Dai
- Department of Macromolecular Science and Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Liming Dai
- Australian Carbon Materials Centre (A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Zhao K, Quan X. Carbon-Based Materials for Electrochemical Reduction of CO2 to C2+ Oxygenates: Recent Progress and Remaining Challenges. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04714] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kun Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
8
|
Lipsky F, Lacerda LHDS, de Lazaro SR, Longo E, Andrés J, San-Miguel MA. Unraveling the relationship between exposed surfaces and the photocatalytic activity of Ag 3PO 4: an in-depth theoretical investigation. RSC Adv 2020; 10:30640-30649. [PMID: 35516045 PMCID: PMC9056335 DOI: 10.1039/d0ra06045c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/11/2020] [Indexed: 12/17/2022] Open
Abstract
Over the years, the possibility of using solar radiation in photocatalysis or photodegradation processes has attracted remarkable interest from scientists around the world. In such processes, due to its electronic properties, Ag3PO4 is one of the most important semiconductors. This work delves into the photocatalytic activity, stability, and reactivity of Ag3PO4 surfaces by comparing plane waves with projector augmented wave and localized Gaussian basis set simulations, at the atomic level. The results indicate that the (110) surface, in agreement with previous experimental reports, displays the most suitable characteristics for photocatalytic activity due to its high reactivity, i.e. the presence of a large amount of undercoordinated Ag cations and a high value work function. Beyond the innovative results, this work shows a good synergy between both kinds of DFT approaches.
Collapse
Affiliation(s)
- Felipe Lipsky
- State University of Campinas Campinas São Paulo Brazil
| | | | | | - Elson Longo
- CDMF-UFSCAR, Federal University of São Carlos São Carlos São Paulo Brazil
| | | | | |
Collapse
|
9
|
Xie J, Cao Y, Jia D, Li Y, Wang K, Xu H. In situ solid-state fabrication of hybrid AgCl/AgI/AgIO 3 with improved UV-to-visible photocatalytic performance. Sci Rep 2017; 7:12365. [PMID: 28959028 PMCID: PMC5620062 DOI: 10.1038/s41598-017-12625-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/13/2017] [Indexed: 11/09/2022] Open
Abstract
The AgCl/AgI/AgIO3 composites were synthesized through a one-pot room-temperature in situ solid-state approach with the feature of convenient and eco-friendly. The as-prepared composites exhibit superior photocatalytic performance than pure AgIO3 for the degradation of methyl orange (MO) under both UV and visible light irradiation. The photodegradation rate toward MO of the AgCl/AgI/AgIO3 photocatalyst can reach 100% after 12 min irradiation under UV light, or 85.4% after 50 min irradiation under visible light, being significantly higher than AgCl, AgI, AgIO3 and AgI/AgIO3. In addition, the AgCl/AgI/AgIO3 photocatalyst possesses strong photooxidation ability for the degradation of rhodamine B (RhB), methylene blue (MB), phenol, bisphenol A (BPA) and tetracycline hydrochloride under visible light irradiation. The reactive species capture experiments confirmed that the h+ and •O2− play an essential role during the photocatalytic process under UV light or visible light irradiation. The enhanced effect may be beneficial from the enhanced light adsorption in full spectrum and increased separation efficiency of photogenerated hole-electron pairs, which can be ascribed to the synergistic effect among AgCl, AgI and AgIO3 nanoplates in AgCl/AgI/AgIO3 composites.
Collapse
Affiliation(s)
- Jing Xie
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| | - Yali Cao
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China.
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China.
| | - Yizhao Li
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| | - Kun Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| | - Hui Xu
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China
| |
Collapse
|
10
|
Well-defined linear Au n (n = 2-4) chains encapsulated in SWCNTs: a DFT study. J Mol Model 2017; 23:19. [PMID: 28050722 DOI: 10.1007/s00894-016-3200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 10/20/2022]
Abstract
One-dimensional (1D) gold nanostructures have been extensively studied due to their potential applications in nanoelectronic devices. Using first-principles calculations, composites consisting of a well-defined linear Au n (n = 2-4) chain encapsulated in a (9,0) single-walled carbon nanotube (SWCNT) were studied. The translational energy barrier of a single Au atom in a (9,0) SWCNT was found to be 0.03 eV. This low barrier guaranteed the formation of Au n @ (9,0) SWCNT (n = 1-4) composites. Bond lengths, differential charge densities, and electronic band structures of the composites were studied. The average Au-Au bond lengths in the composites were found to be almost the same as those in the corresponding free-standing linear Au n . The average bond length increased as the number of Au atoms increased. Charge transfer in all of these composites was slight, although a few valence electrons were transferred from the (9,0) SWCNT and the Au chains to intercalations. The conductivities of the encapsulated linear Au n (n = 2-4) chains were enhanced to some extent by encapsulating them in the SWCNT.
Collapse
|
11
|
Si Y, Wu HY, Yang HM, Huang WQ, Yang K, Peng P, Huang GF. Dramatically Enhanced Visible Light Response of Monolayer ZrS 2 via Non-covalent Modification by Double-Ring Tubular B 20 Cluster. NANOSCALE RESEARCH LETTERS 2016; 11:495. [PMID: 27832524 PMCID: PMC5104703 DOI: 10.1186/s11671-016-1719-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 11/04/2016] [Indexed: 06/01/2023]
Abstract
The ability to strongly absorb light is central to solar energy conversion. We demonstrate here that the hybrid of monolayer ZrS2 and double-ring tubular B20 cluster exhibits dramatically enhanced light absorption in the entire visible spectrum. The unique near-gap electronic structure and large built-in potential at the interface will lead to the robust separation of photoexcited charge carriers in the hybrid. Interestingly, some Zr and S atoms, which are catalytically inert in isolated monolayer ZrS2, turn into catalytic active sites. The dramatically enhanced absorption in the entire visible light makes the ZrS2/B20 hybrid having great applications in photocatalysis or photodetection.
Collapse
Affiliation(s)
- Yuan Si
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hong-Yu Wu
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Hao-Ming Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Wei-Qing Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Ke Yang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping Peng
- School of Materials Science and Engineering, Hunan University, Changsha, 410082, China
| | - Gui-Fang Huang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| |
Collapse
|
12
|
Luo CY, Huang WQ, Hu W, Peng P, Huang GF. Non-covalent functionalization of WS2 monolayer with small fullerenes: tuning electronic properties and photoactivity. Dalton Trans 2016; 45:13383-91. [DOI: 10.1039/c6dt02074g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically thin 2-D transition metal dichalcogenide (TMDCs) heterostructures have attracted growing interest due to their massive potential in solar energy applications due to their visible band gap and very strong light–matter interactions.
Collapse
Affiliation(s)
- Cai-Yun Luo
- Department of Applied Physics
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| | - Wei-Qing Huang
- Department of Applied Physics
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| | - Wangyu Hu
- School of Materials Science and Engineering
- Hunan University
- Changsha 410082
- China
| | - P. Peng
- School of Materials Science and Engineering
- Hunan University
- Changsha 410082
- China
| | - Gui-Fang Huang
- Department of Applied Physics
- School of Physics and Electronics
- Hunan University
- Changsha 410082
- China
| |
Collapse
|