1
|
Maciak K, Dziedzic A, Szymański J, Studzian M, Redlicka J, Miller E, Michlewska S, Jóźwiak P, Saluk J. Human B-cells can form Hetero-aggregates with Blood Platelets: A Novel Insight into Adaptive Immunity Regulation in Multiple Sclerosis. J Mol Biol 2025; 437:168885. [PMID: 39613182 DOI: 10.1016/j.jmb.2024.168885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease characterized by inflammation and neurodegeneration. Our original study analyzes the interactions between blood platelets and leukocytes in MS, focused on their potential role in modulating immune responses. We demonstrated, for the first time, a significant increase in leukocyte migration towards platelets, indicating their higher chemotactic capabilities in MS. This novel finding is supported by microscopic imaging of platelet-leukocyte hetero-aggregates (PLAs). Our study included platelet activation status and platelet-lymphocyte cross-talk analysis distinguishing lymphocytic subpopulation in patients with relapsing-remitting (RRMS) and secondary progressive MS (SPMS) compared to healthy controls (HC). Flow cytometry method revealed an elevated expression of platelet activation typical markers i.e. PAC-1 and CD62P in both phenotypes of MS, especially in RRMS, and higher GPVI level in SPMS. Detailed immunophenotyping and confocal imaging showed an increased pool of platelet-lymphocyte aggregates (PLAs-Ly), particularly involving B-cells over T-cells across both MS phenotypes. The study also explored the involvement of the CD40-CD40L pathway, discovering significant correlations between platelet CD40L expression and lymphocytic antigen CD40, especially on B-cells in SPMS. This novel finding may indicate the special significance of platelet-B-cell cross-talk in progressive disease phenotype. Our research identified potential platelet-leukocyte interaction pathways that may influence the lymphocyte-mediated immune response in MS, highlighting the unexplored formation of platelet-B cell hetero-aggregates (PLAs-LyB).
Collapse
Affiliation(s)
- Karina Maciak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Angela Dziedzic
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland
| | - Jacek Szymański
- Medical University of Lodz, Research Laboratory CoreLab, Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Maciej Studzian
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Oncobiology and Epigenetics, Banacha 12/16, 90-237 Lodz, Poland; Polish Academy of Sciences, Institute of Medical Biology, Laboratory of Transcriptional Regulation, Tylna 3a, 90-364 Lodz, Poland
| | - Justyna Redlicka
- Medical University of Lodz, Department of Neurological Rehabilitation, Milionowa 14, 93-113 Lodz, Poland
| | - Elżbieta Miller
- Medical University of Lodz, Department of Neurological Rehabilitation, Milionowa 14, 93-113 Lodz, Poland
| | - Sylwia Michlewska
- University of Lodz, Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, Banacha 12/16, 90-237 Lodz, Poland
| | - Piotr Jóźwiak
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Invertebrate Zoology and Hydrobiology, Banacha 12/16, 90-232 Lodz, Poland
| | - Joanna Saluk
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biochemistry, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
2
|
Zelená A, Blumberg J, Probst D, Gerasimaitė R, Lukinavičius G, Schwarz US, Köster S. Force generation in human blood platelets by filamentous actomyosin structures. Biophys J 2023; 122:3340-3353. [PMID: 37475214 PMCID: PMC10465724 DOI: 10.1016/j.bpj.2023.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/11/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Blood platelets are central elements of the blood clotting response after wounding. Upon vessel damage, they bind to the surrounding matrix and contract the forming thrombus, thus helping to restore normal blood circulation. The hemostatic function of platelets is directly connected to their mechanics and cytoskeletal organization. The reorganization of the platelet cytoskeleton during spreading occurs within minutes and leads to the formation of contractile actomyosin bundles, but it is not known if there is a direct correlation between the emerging actin structures and the force field that is exerted to the environment. In this study, we combine fluorescence imaging of the actin structures with simultaneous traction force measurements in a time-resolved manner. In addition, we image the final states with superresolution microscopy. We find that both the force fields and the cell shapes have clear geometrical patterns defined by stress fibers. Force generation is localized in a few hotspots, which appear early during spreading, and, in the mature state, anchor stress fibers in focal adhesions. Moreover, we show that, for a gel stiffness in the physiological range, force generation is a very robust mechanism and we observe no systematic dependence on the amount of added thrombin in solution or fibrinogen coverage on the substrate, suggesting that force generation after platelet activation is a threshold phenomenon that ensures reliable thrombus contraction in diverse environments.
Collapse
Affiliation(s)
- Anna Zelená
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany
| | - Johannes Blumberg
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Dimitri Probst
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany
| | - Rūta Gerasimaitė
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Ulrich S Schwarz
- Institute for Theoretical Physics, University of Heidelberg, Heidelberg, Germany; BioQuant-Center for Quantitative Biology, University of Heidelberg, Heidelberg, Germany.
| | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Göttingen, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
3
|
Golla K, Paul M, Lengyell TC, Simpson EM, Falet H, Kim H. A novel association between platelet filamin A and soluble N-ethylmaleimide sensitive factor attachment proteins regulates granule secretion. Res Pract Thromb Haemost 2023; 7:100019. [PMID: 37538498 PMCID: PMC10394388 DOI: 10.1016/j.rpth.2022.100019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 08/05/2023] Open
Abstract
Background and Objective The molecular mechanisms that underpin platelet granule secretion remain poorly defined. Filamin A (FLNA) is an actin-crosslinking and signaling scaffold protein whose role in granule exocytosis has not been explored despite evidence that FLNA gene mutations confer platelet defects in humans. Methods and Results Using platelets from platelet-specific conditional Flna-knockout mice, we showed that the loss of FLNA confers a severe defect in alpha (α)- and dense (δ)-granule exocytosis, as measured based on the release of platelet factor 4 (aka CXCL4) and adenosine triphosphate (ATP), respectively. This defect was observed following activation of both immunoreceptor tyrosine-based activation motif (ITAM) signaling by collagen-related peptide (CRP) and G protein-coupled receptor (GPCR) signaling by thrombin and the thromboxane mimetic U46619. CRP-induced spikes in intracellular calcium [Ca2+]i were impaired in FLNA-null platelets relative to controls, confirming that FLNA regulates ITAM-driven proximal signaling. In contrast, GPCR-mediated spikes in [Ca2+]i in response to thrombin and U46619 were unaffected by FLNA. Normal platelet secretion requires complexing of the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins synaptosomal-associated protein 23 (SNAP23) and syntaxin-11 (STX11). We determined that FLNA coimmunoprecipitates with both SNAP23 and STX11 upon platelet stimulation. Conclusion FLNA regulates GPCR-driven platelet granule secretion and associates with SNAP23 and STX11 in an activation-dependent manner.
Collapse
Affiliation(s)
- Kalyan Golla
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Manoj Paul
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tess C. Lengyell
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elizabeth M. Simpson
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Hervé Falet
- Versiti Blood Research Institute, Milwaukee, Wisconsin, USA
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Hugh Kim
- Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Oral Biological and Medical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Avci-Adali M, Grözinger G, Cabane V, Schreve M, Wendel HP. Improving Bioactive Characteristics of Small Diameter Polytetrafluoroethylene Stent Grafts by Electrospinning: A Comparative Hemocompatibility Study. Bioengineering (Basel) 2023; 10:bioengineering10040411. [PMID: 37106598 PMCID: PMC10135465 DOI: 10.3390/bioengineering10040411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Polytetrafluoroethylene (PTFE) is a commonly used biomaterial for the manufacturing of vascular grafts and several strategies, such as coatings, have been explored to improve the hemocompatibility of small-diameter prostheses. In this study, the hemocompatibility properties of novel stent grafts covered with electrospun PTFE (LimFlow Gen-1 and LimFlow Gen-2) were compared with uncoated and heparin-coated PTFE grafts (Gore Viabahn®) using fresh human blood in a Chandler closed-loop system. After 60 min of incubation, the blood samples were examined hematologically and activation of coagulation, platelets, and the complement system were analyzed. In addition, the adsorbed fibrinogen on the stent grafts was measured and the thrombogenicity was assessed by SEM. Significantly lower adsorption of fibrinogen was measured on the surface of heparin-coated Viabahn than on the surface of the uncoated Viabahn. Furthermore, LimFlow Gen-1 stent grafts showed lower fibrinogen adsorption than the uncoated Viabahn®, and the LimFlow Gen-2 stent grafts showed comparable fibrinogen adsorption as the heparin-coated Viabahn®. SEM analysis revealed no sign of thrombus formation on any of the stent surfaces. LimFlow Gen-2 stent grafts covered with electrospun PTFE exhibited bioactive characteristics and revealed improved hemocompatibility in terms of reduced adhesion of fibrinogen, activation of platelets, and coagulation (assessed by β-TG and TAT levels) similar to heparin-coated ePTFE prostheses. Thus, this study demonstrated improved hemocompatibility of electrospun PTFE. The next step is to conduct in vivo studies to confirm whether electrospinning-induced changes to the PTFE surface can reduce the risk of thrombus formation and provide clinical benefits.
Collapse
Affiliation(s)
- Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-7071-2986605; Fax: +49-7071-295369
| | - Gerd Grözinger
- Department of Diagnostic and Interventional Radiology, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany
| | | | - Michiel Schreve
- LimFlow SA, 15 Rue Traversière, 75012 Paris, France
- Department of Surgery, Northwest Clinics, 1815 JD Alkmaar, The Netherlands
| | - Hans Peter Wendel
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Calwerstraße 7/1, 72076 Tuebingen, Germany
| |
Collapse
|
5
|
Mao BH, Nguyen Thi KM, Tang MJ, Kamm RD, Tu TY. The interface stiffness and topographic feature dictate interfacial invasiveness of cancer spheroids. Biofabrication 2023; 15. [PMID: 36594698 DOI: 10.1088/1758-5090/acaa00] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
During cancer metastasis, tumor cells likely navigate, in a collective manner, discrete tissue spaces comprising inherently heterogeneous extracellular matrix microstructures where interfaces may be frequently encountered. Studies have shown that cell migration modes can be determined by adaptation to mechanical/topographic cues from interfacial microenvironments. However, less attention has been paid to exploring the impact of interfacial mechnochemical attributes on invasive and metastatic behaviors of tumor aggregates. Here, we excogitated a collagen matrix-solid substrate interface platform to investigate the afore-stated interesting issue. Our data revealed that stiffer interfaces stimulated spheroid outgrowth by motivating detachment of single cells and boosting their motility and velocity. However, stronger interfacial adhesive strength between matrix and substrate led to the opposite outcomes. Besides, this interfacial parameter also affected the morphological switch between migration modes of the detached cells and their directionality. Mechanistically, myosin II-mediated cell contraction, compared to matrix metalloproteinases-driven collagen degradation, was shown to play a more crucial role in the invasive outgrowth of tumor spheroids in interfacial microenvironments. Thus, our findings highlight the importance of heterogeneous interfaces in addressing and combating cancer metastasis.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Kim Mai Nguyen Thi
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America.,Department of Mechanical Engineering, Massachusetts institute of Technology, Cambridge, MA 02139, United States of America
| | - Ting-Yuan Tu
- Department of Biomedical Engineering, College of Engineering, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, No.1, University Road, Tainan City 701, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan No.1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
6
|
Moxon SR, Richards D, Dobre O, Wong LS, Swift J, Richardson SM. Regulation of Mesenchymal Stem Cell Morphology Using Hydrogel Substrates with Tunable Topography and Photoswitchable Stiffness. Polymers (Basel) 2022; 14:polym14245338. [PMID: 36559706 PMCID: PMC9788018 DOI: 10.3390/polym14245338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cell function can be directly influenced by the mechanical and structural properties of the extracellular environment. In particular, cell morphology and phenotype can be regulated via the modulation of both the stiffness and surface topography of cell culture substrates. Previous studies have highlighted the ability to design cell culture substrates to optimise cell function. Many such examples, however, employ photo-crosslinkable polymers with a terminal stiffness or surface profile. This study presents a system of polyacrylamide hydrogels, where the surface topography can be tailored and the matrix stiffness can be altered in situ with photoirradiation. The process allows for the temporal regulation of the extracellular environment. Specifically, the surface topography can be tailored via reticulation parameters to include creased features with control over the periodicity, length and branching. The matrix stiffness can also be dynamically tuned via exposure to an appropriate dosage and wavelength of light, thus, allowing for the temporal regulation of the extracellular environment. When cultured on the surface of the hydrogels, the morphology and alignment of immortalised human mesenchymal stem cells can be directly influenced through the tailoring of surface creases, while cell size can be altered via changes in matrix stiffness. This system offers a new platform to study cellular mechanosensing and the influence of extracellular cues on cell phenotype and function.
Collapse
Affiliation(s)
- Samuel R. Moxon
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- The Henry Royce Institute, University of Manchester, Manchester M13 9PL, UK
| | - David Richards
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Oana Dobre
- Centre for the Cellular Microenvironment, Advanced Research Centre, University of Glasgow, Glasgow G12 8LT, UK
| | - Lu Shin Wong
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
- Correspondence: (L.S.W.); (J.S.); (S.M.R.)
| | - Joe Swift
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Correspondence: (L.S.W.); (J.S.); (S.M.R.)
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
- Correspondence: (L.S.W.); (J.S.); (S.M.R.)
| |
Collapse
|
7
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
8
|
Kenny M, Stamboroski S, Taher R, Brüggemann D, Schoen I. Nanofiber Topographies Enhance Platelet-Fibrinogen Scaffold Interactions. Adv Healthc Mater 2022; 11:e2200249. [PMID: 35526111 PMCID: PMC11469041 DOI: 10.1002/adhm.202200249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/05/2022] [Indexed: 11/07/2022]
Abstract
The initial contact with blood and its components, including plasma proteins and platelets, directs the body's response to foreign materials. Natural scaffolds of extracellular matrix or fibrin contain fibrils with nanoscale dimensions, but how platelets specifically respond to the topography and architecture of fibrous materials is still incompletely understood. Here, planar and nanofiber scaffolds are fabricated from native fibrinogen to characterize the morphology of adherent platelets and activation markers for phosphatidylserine exposure and α-granule secretion by confocal fluorescence microscopy and scanning electron microscopy. Different fibrinogen topographies equally support the spreading and α-granule secretion of washed platelets. In contrast, preincubation of the scaffolds with plasma diminishes platelet spreading on planar fibrinogen surfaces but not on nanofibers. The data show that the enhanced interactions of platelets with nanofibers result from a higher locally accessible surface area, effectively increasing the ligand density for integrin-mediated responses. Overall, fibrinogen nanofibers direct platelets toward robust adhesion formation and α-granule secretion while minimizing their procoagulant activity. Similar results on fibrinogen-coated polydimethylsiloxane substrates with micrometer-sized 3D features suggest that surface topography could be used more generally to steer blood-materials interactions on different length scales for enhancing the initial wound healing steps.
Collapse
Affiliation(s)
- Martin Kenny
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Stephani Stamboroski
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials (IFAM)Wiener Strasse 12Bremen28359Germany
| | - Reem Taher
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| | - Dorothea Brüggemann
- Institute for BiophysicsUniversity of BremenOtto‐Hahn‐Allee 1Bremen28359Germany
- MAPEX Center for Materials and ProcessesUniversity of BremenBremen28359Germany
| | - Ingmar Schoen
- School of Pharmacy and Biomolecular SciencesRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
- Irish Centre for Vascular BiologyRoyal College of Surgeons in Ireland (RCSI)123 St Stephen's GreenDublinD02 YN77Ireland
| |
Collapse
|
9
|
Raghunath A, Ferguson AC, Shavit JA. Fishing for answers to hemostatic and thrombotic disease: Genome editing in zebrafish. Res Pract Thromb Haemost 2022; 6:e12759. [PMID: 35949884 PMCID: PMC9354590 DOI: 10.1002/rth2.12759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 06/15/2022] [Indexed: 01/22/2023] Open
Abstract
Over the past two decades, the teleost vertebrate Danio rerio (zebrafish) has emerged as a model for hemostasis and thrombosis. At genomic and functional levels, there is a high degree of conservation of the hemostatic system with that of mammals. Numerous features of the fish model offer unique advantages for investigating hemostasis and thrombosis. These include high fecundity, rapid and external development, optical transparency, and extensive functional homology with mammalian hemostasis and thrombosis. Zebrafish are particularly suited to genome-wide mutagenesis experiments for the study of modifier genes. They are also amenable to whole-organism small-molecule screens, a feature that is exceptionally relevant to hemostasis and thrombosis. Zebrafish coagulation factor knockouts that are in utero or neonatal lethal in mammals survive into adulthood before succumbing to hemorrhage or thrombosis, enabling studies not possible in mammals. In this illustrated review, we outline how zebrafish have been employed for the study of hemostasis and thrombosis using modern genome editing techniques, coagulation assays in larvae, and in vivo evaluation of patient-specific variants to infer causality and demonstrate pathogenicity. Zebrafish hemostasis and thrombosis models will continue to serve as a clinically directed basic research tool and powerful alternative to mammals for the development of new diagnostic markers and novel therapeutics for coagulation disorders through high-throughput genetic and small-molecule studies.
Collapse
Affiliation(s)
- Azhwar Raghunath
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Allison C. Ferguson
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| | - Jordan A. Shavit
- Department of PediatricsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
- Department of Human GeneticsUniversity of Michigan School of MedicineAnn ArborMichiganUSA
| |
Collapse
|
10
|
Palankar R, Sachs L, Wesche J, Greinacher A. Cytoskeleton Dependent Mobility Dynamics of FcγRIIA Facilitates Platelet Haptotaxis and Capture of Opsonized Bacteria. Cells 2022; 11:cells11101615. [PMID: 35626650 PMCID: PMC9139458 DOI: 10.3390/cells11101615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Platelet adhesion and spreading at the sites of vascular injury is vital to hemostasis. As an integral part of the innate immune system, platelets interact with opsonized bacterial pathogens through FcγRIIA and contribute to host defense. As mechanoscavangers, platelets actively migrate and capture bacteria via cytoskeleton-rich, dynamic structures, such as filopodia and lamellipodia. However, the role of human platelet FcγRIIA in cytoskeleton-dependent interaction with opsonized bacteria is not well understood. To decipher this, we used a reductionist approach with well-defined micropatterns functionalized with immunoglobulins mimicking immune complexes at planar interfaces and bacteriamimetic microbeads. By specifically blocking of FcγRIIA and selective disruption of the platelet cytoskeleton, we show that both functional FcγRIIA and cytoskeleton are necessary for human platelet adhesion and haptotaxis. The direct link between FcγRIIA and the cytoskeleton is further explored by single-particle tracking. We then demonstrate the relevance of cytoskeleton-dependent differential mobilities of FcγRIIA on bacteria opsonized with the chemokine platelet factor 4 (PF4) and patient-derived anti-PF4/polyanion IgG. Our data suggest that efficient capture of opsonized bacteria during host-defense is governed by mobility dynamics of FcγRIIA on filopodia and lamellipodia, and the cytoskeleton plays an essential role in platelet morphodynamics at biological interfaces that display immune complexes.
Collapse
|
11
|
Seifert J, von Eysmondt H, Chatterjee M, Gawaz M, Schäffer TE. Effect of Oxidized LDL on Platelet Shape, Spreading, and Migration Investigated with Deep Learning Platelet Morphometry. Cells 2021; 10:2932. [PMID: 34831155 PMCID: PMC8616354 DOI: 10.3390/cells10112932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Platelets are functionally versatile blood cells involved in thrombosis, hemostasis, atherosclerosis, and immune response. Platelet interaction with the immediate microenvironment in blood, vasculature, and tissues alters platelet morphology. The quantification of platelet morphodynamics by geometrical parameters (morphometry) can provide important insights into how platelets sense and respond to stimulatory cues in their vicinity. However, the extraction of platelet shapes from phase contrast microscopy images by conventional image processing is difficult. Here, we used a convolutional neural network (CNN) to develop a deep-learning-based approach for the unbiased extraction of information on platelet morphodynamics by phase contrast microscopy. We then investigated the effect of normal and oxidized low-density lipoproteins (LDL, oxLDL) on platelet morphodynamics, spreading, and haptotactic migration. Exposure of platelets to oxLDL led to a decreased spreading area and rate on fibrinogen, accompanied by increased formation of filopodia and impaired formation of lamellipodia. Haptotactic platelet migration was affected by both LDL and oxLDL in terms of decreased migration velocity and reduced directional persistence. Our results demonstrate the use of deep learning in investigating platelet morphodynamics and reveal differential effects of LDL and oxLDL on platelet morphology and platelet-matrix interaction.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| | - Madhumita Chatterjee
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University of Tübingen, 72076 Tübingen, Germany; (M.C.); (M.G.)
| | - Tilman E. Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Germany; (J.S.); (H.v.E.)
| |
Collapse
|
12
|
A biomimetic basement membrane consisted of hybrid aligned nanofibers and microfibers with immobilized collagen IV and laminin for rapid endothelialization. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00111-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Zelená A, Isbaner S, Ruhlandt D, Chizhik A, Cassini C, Klymchenko AS, Enderlein J, Chizhik A, Köster S. Time-resolved MIET measurements of blood platelet spreading and adhesion. NANOSCALE 2020; 12:21306-21315. [PMID: 33073832 DOI: 10.1039/d0nr05611a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Human blood platelets are non-nucleated fragments of megakaryocytes and of high importance for early hemostasis. To form a blood clot, platelets adhere to the blood vessel wall, spread and attract other platelets. Despite the importance for biomedicine, the exact mechanism of platelet spreading and adhesion to surfaces remains elusive. Here, we employ metal-induced energy transfer (MIET) imaging with a leaflet-specific fluorescent membrane probe to quantitatively determine, with nanometer resolution and in a time-resolved manner, the height profile of the basal and the apical platelet membrane above a rigid substrate during platelet spreading. We observe areas, where the platelet membrane approaches the substrate particularly closely and these areas are stable on a time scale of minutes. Time-resolved MIET measurements reveal distinct behaviors of the outermost rim and the central part of the platelets, respectively. Our findings quantify platelet adhesion and spreading and improve our understanding of early steps in blood clotting. Furthermore, the results of this study demonstrate the potential of MIET for simultaneous imaging of two close-by membranes and thus three-dimensional reconstruction of the cell shape.
Collapse
Affiliation(s)
- Anna Zelená
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xu T, Lim YJ, Zheng Y, Jung M, Gaus K, Gardiner EE, Lee WM. Modified inverted selective plane illumination microscopy for sub-micrometer imaging resolution in polydimethylsiloxane soft lithography devices. LAB ON A CHIP 2020; 20:3960-3969. [PMID: 32940306 DOI: 10.1039/d0lc00598c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Moldable, transparent polydimethylsiloxane (PDMS) elastomer microdevices enable a broad range of complex studies of three-dimensional cellular networks in their microenvironment in vitro. However, the uneven distribution of refractive index change, external to PDMS devices and internally in the sample chamber, creates a significant optical path difference (OPD) that distorts the light sheet beam and so restricts diffraction limited performance. We experimentally showed that an OPD of 120 μm results in the broadening of the lateral point spread function by over 4-fold. In this paper, we demonstrate steps to adapt a commercial inverted selective plane illumination microscope (iSPIM) and remove the OPD so as to achieve sub-micrometer imaging ranging from 0.6 ± 0.04 μm to 0.91 ± 0.03 μm of a fluorescence biological sample suspended in regular saline (RI ≈1.34) enclosed in 1.2 to 2 mm thick micromolded PDMS microdevices. We have proven that the removal of the OPD from the external PDMS layer by refractive index (RI) matching with a readily accessible, inexpensive sucrose solution is critical to achieve a >3-fold imaging resolution improvement. To monitor the RI matching process, a single-mode fiber (SMF) illuminator was integrated into the iSPIM. To remove the OPD inside the PDMS channel, we used an electrically tunable lens (ETL) that par-focuses the light sheet beam with the detection objective lens and so minimised axial distortions to attain sub-micrometer imaging resolution. We termed this new light sheet imaging protocol as modified inverted selective plane illumination microscopy (m-iSPIM). Using the high spatial-temporal 3D imaging of m-iSPIM, we experimentally captured single platelet (≈2 μm) recruitment to a platelet aggregate (22.5 μm × 22.5 μm × 6 μm) under flow at a 150 μm depth within a microfluidic channel. m-iSPIM paves the way for the application of light sheet imaging to a wide range of 3D biological models in microfluidic devices which recapitulate features of the physiological microenvironment and elucidate subcellular responses.
Collapse
Affiliation(s)
- Tienan Xu
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - Yean Jin Lim
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia. and ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Yujie Zheng
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia.
| | - MoonSun Jung
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
| | - Woei Ming Lee
- Research School of Electrical, Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, ACT 2601, Australia. and ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia and ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
15
|
Apte G, Börke J, Rothe H, Liefeith K, Nguyen TH. Modulation of Platelet-Surface Activation: Current State and Future Perspectives. ACS APPLIED BIO MATERIALS 2020; 3:5574-5589. [PMID: 35021790 DOI: 10.1021/acsabm.0c00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Modulation of platelet-surface activation is important for many biomedical applications such as in vivo performance, platelet storage, and acceptance of an implant. Reducing platelet-surface activation is challenging because they become activated immediately after short contact with nonphysiological surfaces. To date, controversies and open questions in the field of platelet-surface activation still remain. Here, we review state-of-the-art approaches in inhibiting platelet-surface activation, mainly focusing on modification, patterning, and methodologies for characterization of the surfaces. As a future perspective, we discuss how the combination of biochemical and physiochemical strategies together with the topographical modulations would assist in the search for an ideal nonthrombogenic surface.
Collapse
|
16
|
Mitoquinone (MitoQ) Inhibits Platelet Activation Steps by Reducing ROS Levels. Int J Mol Sci 2020; 21:ijms21176192. [PMID: 32867213 PMCID: PMC7503844 DOI: 10.3390/ijms21176192] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their mechanisms of action. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces mitochondrial overproduction of ROS. In this work, the antiplatelet effect of MitoQ through platelet adhesion and spreading, secretion, and aggregation was evaluated. Thus MitoQ, in a non-toxic effect, decreased platelet adhesion and spreading on collagen surface, and expression of P-selectin and CD63, and inhibited platelet aggregation induced by collagen, convulxin, thrombin receptor activator peptide-6 (TRAP-6), and phorbol 12-myristate 13-acetate (PMA). As an antiplatelet mechanism, we showed that MitoQ produced mitochondrial depolarization and decreased ATP secretion. Additionally, in platelets stimulated with antimycin A and collagen MitoQ significantly decreased ROS production. Our findings showed, for the first time, an antiplatelet effect of MitoQ that is probably associated with its mitochondrial antioxidant effect.
Collapse
|
17
|
Sadoul K, Lafanechère L, Grichine A. Live imaging of single platelets at work. Platelets 2020; 31:551-558. [PMID: 31880193 DOI: 10.1080/09537104.2019.1708886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Although live imaging of dynamic processes in platelets is a challenging task, several important observations have been published during the last 20 years. We will discuss the amazing insights that have been achieved, the difficulties that can be encountered as well as some questions still open and the future technical perspectives.
Collapse
Affiliation(s)
- Karin Sadoul
- Institute for Advanced Biosciences, University Grenoble Alpes , Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, University Grenoble Alpes , Grenoble, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, University Grenoble Alpes , Grenoble, France
| |
Collapse
|
18
|
Horev MB, Zabary Y, Zarka R, Sorrentino S, Medalia O, Zaritsky A, Geiger B. Differential dynamics of early stages of platelet adhesion and spreading on collagen IV- and fibrinogen-coated surfaces. F1000Res 2020; 9. [PMID: 32566134 PMCID: PMC7281675 DOI: 10.12688/f1000research.23598.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2020] [Indexed: 12/29/2022] Open
Abstract
Background: Upon wound formation, platelets adhere to the neighboring extracellular matrix and spread on it, a process which is critical for physiological wound healing. Multiple external factors, such as the molecular composition of the environment and its mechanical properties, play a key role in this process and direct its speed and outcome. Methods: We combined live cell imaging, quantitative interference reflection microscopy and cryo-electron tomography to characterize, at a single platelet level, the differential spatiotemporal dynamics of the adhesion process to fibrinogen- and collagen IV-functionalized surfaces. Results: Initially, platelets sense both substrates by transient rapid extensions of filopodia. On collagen IV, a short-term phase of filopodial extension is followed by lamellipodia-based spreading. This transition is preceded by the extension of a single or couple of microtubules into the platelet's periphery and their apparent insertion into the core of the filopodia. On fibrinogen surfaces, the filopodia-to-lamellipodia transition was partial and microtubule extension was not observed leading to limited spreading, which could be restored by manganese or thrombin. Conclusions: Based on these results, we propose that interaction with collagen IV stimulate platelets to extend microtubules to peripheral filopodia, which in turn, enhances filopodial-to-lamellipodial transition and overall lamellipodia-based spreading. Fibrinogen, on the other hand, fails to induce these early microtubule extensions, leading to full lamellipodia spreading in only a fraction of the seeded platelets. We further suggest that activation of integrin αIIbβ3 is essential for filopodial-to-lamellipodial transition, based on the capacity of integrin activators to enhance lamellipodia spreading on fibrinogen.
Collapse
Affiliation(s)
- Melanie B Horev
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| | - Yishaia Zabary
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Revital Zarka
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| | - Simona Sorrentino
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Assaf Zaritsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Rehovot, 76100, Israel
| |
Collapse
|
19
|
Refined fabrication of mechano-stimulating micro-platform for on-chip analyses of complex platelet behavior. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Margraf A, Zarbock A. Platelets in Inflammation and Resolution. THE JOURNAL OF IMMUNOLOGY 2019; 203:2357-2367. [DOI: 10.4049/jimmunol.1900899] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 08/30/2019] [Indexed: 12/22/2022]
|
21
|
Zarka R, Horev MB, Volberg T, Neubauer S, Kessler H, Spatz JP, Geiger B. Differential Modulation of Platelet Adhesion and Spreading by Adhesive Ligand Density. NANO LETTERS 2019; 19:1418-1427. [PMID: 30649888 PMCID: PMC6437653 DOI: 10.1021/acs.nanolett.8b03513] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Indexed: 05/25/2023]
Abstract
Platelets play a major role in hemostasis and thrombosis, by binding to the underlying extracellular matrix around injured blood vessels, via integrin receptors. In this study, we investigated the effects of adhesive ligand spacing on the stability of platelets' adhesion and the mode of their spreading on extracellular surfaces. Toward this end, we have examined the differential adhesion and spreading of human platelets onto nanogold-patterned surfaces, functionalized with the αIIbβ3 integrin ligand, SN528. Combining light- and scanning electron-microscopy, we found that interaction of platelets with surfaces coated with SN528 at spacing of 30-60 nm induces the extension of filopodia through which the platelets stably attach to the nanopatterned surface and spread on it. Increasing the nanopattern-gold spacing to 80-100 nm resulted in a dramatic reduction (>95%) in the number of adhering platelets. Surprisingly, a further increase in ligand spacing to 120 nm resulted in platelet binding to the surface at substantially larger numbers, yet these platelets remained discoid and were essentially devoid of filopodia and lamellipodia. These results indicate that the stimulation of filopodia extension by adhering platelets, and the consequent spreading on these surfaces depend on different ligand densities. Thus, the extension of filopodia occurs on surfaces with a ligand spacing of 100 nm or less, while the sustainability and growth of these initial adhesions and induction of extensive platelet adhesion and spreading requires lower ligand-to-ligand spacing (≤60 nm). The mechanisms underlying this differential ligand-density sensing by platelets, as well as the unexpected retention of discoid platelets on surfaces with even larger spacing (120 nm) are discussed.
Collapse
Affiliation(s)
- Revital Zarka
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Melanie B. Horev
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Tova Volberg
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Stefanie Neubauer
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Horst Kessler
- Institute
for Advanced Study (IAS) and Center of Integrated Protein Science,
Department of Chemistry, Technical University
of Munich, 85747 Garching, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - Benjamin Geiger
- Department
of Molecular Cell Biology, The Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
22
|
Hanke J, Ranke C, Perego E, Köster S. Human blood platelets contract in perpendicular direction to shear flow. SOFT MATTER 2019; 15:2009-2019. [PMID: 30724316 DOI: 10.1039/c8sm02136h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In their physiological environment, blood platelets are permanently exposed to shear forces caused by blood flow. Within this surrounding, they generate contractile forces that eventually lead to a compaction of the blood clot. Here, we present a microfluidic chamber that combines hydrogel-based traction force microscopy with a controlled shear environment, and investigate the force fields platelets generate when exposed to shear flow in a spatio-temporally resolved manner. We find that for shear rates between 14 s-1 to 33 s-1, the general contraction behavior in terms of force distribution and magnitude does not differ from no-flow conditions. The main direction of contraction, however, does respond to the externally applied stress. At high shear stress, we observe an angle of about 90° between flow direction and main contraction axis. We explain this observation by the distribution of the stress acting on the adherent cell: the observed angle provides the most stable situation for the cell experiencing the shear flow, as supported by a finite element method simulation of the stresses along the platelet boundary.
Collapse
Affiliation(s)
- Jana Hanke
- Institute for X-Ray Physics, University of Goettingen, 37077 Göttingen, Germany.
| | | | | | | |
Collapse
|
23
|
Kim OV, Nevzorova TA, Mordakhanova ER, Ponomareva AA, Andrianova IA, Le Minh G, Daminova AG, Peshkova AD, Alber MS, Vagin O, Litvinov RI, Weisel JW. Fatal dysfunction and disintegration of thrombin-stimulated platelets. Haematologica 2019; 104:1866-1878. [PMID: 30792211 PMCID: PMC6717590 DOI: 10.3324/haematol.2018.202309] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Platelets play a key role in the formation of hemostatic clots and obstructive thrombi as well as in other biological processes. In response to physiological stimulants, including thrombin, platelets change shape, express adhesive molecules, aggregate, and secrete bioactive substances, but their subsequent fate is largely unknown. Here we examined late-stage structural, metabolic, and functional consequences of thrombin-induced platelet activation. Using a combination of confocal microscopy, scanning and transmission electron microscopy, flow cytometry, biochemical and biomechanical measurements, we showed that thrombin-induced activation is followed by time-dependent platelet dysfunction and disintegration. After ~30 minutes of incubation with thrombin, unlike with collagen or ADP, human platelets disintegrated into cellular fragments containing organelles, such as mitochondria, glycogen granules, and vacuoles. This platelet fragmentation was preceded by Ca2+ influx, integrin αIIbβ3 activation and phosphatidylserine exposure (activation phase), followed by mitochondrial depolarization, generation of reactive oxygen species, metabolic ATP depletion and impairment of platelet contractility along with dramatic cytoskeletal rearrangements, concomitant with platelet disintegration (death phase). Coincidentally with the platelet fragmentation, thrombin caused calpain activation but not activation of caspases 3 and 7. Our findings indicate that the late functional and structural damage of thrombin-activated platelets comprise a calpain-dependent platelet death pathway that shares some similarities with the programmed death of nucleated cells, but is unique to platelets, therefore representing a special form of cellular destruction. Fragmentation of activated platelets suggests that there is an underappreciated pathway of enhanced elimination of platelets from the circulation in (pro)thrombotic conditions once these cells have performed their functions.
Collapse
Affiliation(s)
- Oleg V Kim
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, USA.,University of California Riverside, Department of Mathematics, Riverside, CA, USA
| | - Tatiana A Nevzorova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation
| | - Elmira R Mordakhanova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation
| | - Anastasia A Ponomareva
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation.,Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Izabella A Andrianova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation
| | - Giang Le Minh
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation
| | - Amina G Daminova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation.,Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russian Federation
| | - Alina D Peshkova
- Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation
| | - Mark S Alber
- University of California Riverside, Department of Mathematics, Riverside, CA, USA
| | - Olga Vagin
- Geffen School of Medicine at UCLA, Department of Physiology, Los Angeles, CA, USA.,VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Rustem I Litvinov
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, USA.,Kazan Federal University, Institute of Fundamental Medicine and Biology, Kazan, Russian Federation
| | - John W Weisel
- University of Pennsylvania Perelman School of Medicine, Department of Cell and Developmental Biology, Philadelphia, PA, USA
| |
Collapse
|
24
|
Hanke J, Probst D, Zemel A, Schwarz US, Köster S. Dynamics of force generation by spreading platelets. SOFT MATTER 2018; 14:6571-6581. [PMID: 30052252 DOI: 10.1039/c8sm00895g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In order to gain more insight into the role of human platelets for blood clot formation, here we investigate the dynamics of force generation by platelet spreading onto elastic substrates of variable stiffness. Despite their small size, platelets generate high and rapidly varying traction forces on their extracellular environment, which we reconstruct with adapted implementations of Fourier transform traction cytometry. We find that while the final spread area is reached within a few minutes, the build-up of forces typically takes 10-30 minutes. In addition, we identify two distinct behaviors of individual cells, namely oscillating and non-oscillating platelets. An eigenvalue analysis of the platelet dipole tensor reveals a small anisotropy of the exerted force, which is compatible with a random distribution of a few force transmitting centers, in agreement with the observed shapes and traction patterns. We find a correlation between the maximum force level a platelet reaches and its spread area, which we explain by a thin film model for the actively contracting cell. The model reveals a large internal stress of hundreds of kPa. Experimentally we do not find any statistically relevant relation between the force level reached and the substrate stiffness within the stiffness range from 19 to 83 kPa, which might be related to the high platelet activation level used in our study. In addition, our model suggests that due to the uniquely small thickness of platelets, their mechanosensitivity might be limited to a lower stiffness range.
Collapse
Affiliation(s)
- Jana Hanke
- Institute for X-Ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| | - Dimitri Probst
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany. and BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Assaf Zemel
- Institute of Dental Sciences and Fritz Haber Center for Molecular Dynamics, Hebrew University of Jerusalem, 91120, Israel
| | - Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany. and BioQuant-Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany. and German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Germany
| |
Collapse
|
25
|
Wdr-1 is essential for F-actin interaction with focal adhesions in platelets. Blood Coagul Fibrinolysis 2018; 29:540-545. [PMID: 29995657 DOI: 10.1097/mbc.0000000000000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
: Wdr-1, an actin interacting protein, enhances cofilin's capacity to accelerate depolymerization of F-actin filaments. Wdr-1-deficient mice have impaired hemostasis due to defective inside-out integrin signaling in platelets. Here, we studied the role of Wdr-1 on outside-in signaling necessary for retraction of the clot and platelet spreading. Outside-in signaling was assessed by fibrin clot retraction assay and by adhesion and spreading of unstimulated platelets on fibrinogen substrate. The spatial distribution of actin, cofilin-1 and Wdr-1 were determined by immunofluorescence microscopy. Interaction of F-actin with focal adhesion kinase was assessed in dual-color confocal images and by immunoblotting of F-actin filaments. Clot retraction is markedly impaired in Wdr-1-deficient platelets. Wdr-1-deficient platelets adhere and spread poorly on fibrinogen substrate compared with wild-type controls. In resting platelets, Wdr-1 is colocalized with cofilin-1 in cortical actin. Following platelets spreading on fibrinogen substrate, Wdr-1 translocates to the cytoskeleton in association with cofilin-1. In Wdr-1-deficient platelets, cofilin-1 is aberrantly localized throughout the cytoplasm and there is no significant change following adhesion to fibrinogen substrate. The actin filaments formed upon spreading on fibrinogen are mostly in the periphery of the platelets and does not traverse the cytoplasm. Furthermore, there is diminished colocalization of actin filaments with focal adhesion kinase. These studies show that Wdr-1 is essential for the localization of cofilin-1 to the platelet membrane skeleton. F-actin fails to attach to focal adhesions resulting in defective reorganization of actin filaments necessary for platelet spreading and clot retraction.
Collapse
|
26
|
Paknikar AK, Eltzner B, Köster S. Direct characterization of cytoskeletal reorganization during blood platelet spreading. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:166-176. [PMID: 29843920 DOI: 10.1016/j.pbiomolbio.2018.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/15/2018] [Accepted: 05/04/2018] [Indexed: 11/18/2022]
Abstract
Blood platelets are the key cellular players in blood clotting and thus of great biomedical importance. While spreading at the site of injury, they reorganize their cytoskeleton within minutes and assume a flat appearance. As platelets possess no nucleus, many standard methods for visualizing cytoskeletal components by means of fluorescence tags fail. Here we employ silicon-rhodamine actin and tubulin probes for imaging these important proteins in a time-resolved manner. We find two distinct timescales for platelet spread area development and for cytoskeletal reorganization, indicating that although cell spreading is most likely associated with actin polymerization at the cell edges, distinct, stress-fiber-like actin structures within the cell, which may be involved in the generation of contractile forces, form on their own timescale. Following microtubule dynamics allows us to distinguish the role of myosin, microtubules and actin during early spreading.
Collapse
Affiliation(s)
- Aishwarya K Paknikar
- Institute for X-Ray Physics, University of Goettingen, Göttingen, 37077, Germany
| | - Benjamin Eltzner
- Institute for Mathematical Stochastics, University of Goettingen, Göttingen, 37077, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen, Göttingen, 37077, Germany; DZHK (German Center for Cardiovascular Research), partner site Göttingen, Germany.
| |
Collapse
|
27
|
Morphometric analysis of spread platelets identifies integrin α IIbβ 3-specific contractile phenotype. Sci Rep 2018; 8:5428. [PMID: 29615672 PMCID: PMC5882949 DOI: 10.1038/s41598-018-23684-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/13/2018] [Indexed: 11/17/2022] Open
Abstract
Haemostatic platelet function is intimately linked to cellular mechanics and cytoskeletal morphology. How cytoskeletal reorganizations give rise to a highly contractile phenotype that is necessary for clot contraction remains poorly understood. To elucidate this process in vitro, we developed a morphometric screen to quantify the spatial organization of actin fibres and vinculin adhesion sites in single spread platelets. Platelets from healthy donors predominantly adopted a bipolar morphology on fibrinogen and fibronectin, whereas distinguishable, more isotropic phenotypes on collagen type I or laminin. Specific integrin αIIbβ3 inhibitors induced an isotropic cytoskeletal organization in a dose-dependent manner. The same trend was observed with decreasing matrix stiffness. Circular F-actin arrangements in platelets from a patient with type II Glanzmann thrombasthenia (GT) were consistent with the residual activity of a small number of αIIbβ3 integrins. Cytoskeletal morphologies in vitro thus inform about platelet adhesion receptor identity and functionality, and integrin αIIbβ3 mechanotransduction fundamentally determines the adoption of a bipolar phenotype associated with contraction. Super-resolution microscopy and electron microscopies further confirmed the stress fibre-like contractile actin architecture. For the first time, our assay allows the unbiased and quantitative assessment of platelet morphologies and could help to identify defective platelet behaviour contributing to elusive bleeding phenotypes.
Collapse
|
28
|
Seifert J, Rheinlaender J, Lang F, Gawaz M, Schäffer TE. Thrombin-induced cytoskeleton dynamics in spread human platelets observed with fast scanning ion conductance microscopy. Sci Rep 2017; 7:4810. [PMID: 28684746 PMCID: PMC5500533 DOI: 10.1038/s41598-017-04999-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 05/19/2017] [Indexed: 02/08/2023] Open
Abstract
Platelets are small anucleate blood cells involved in haemostasis. Platelet activation, caused by agonists such as thrombin or by contact with the extracellular matrix, leads to platelet adhesion, aggregation, and coagulation. Activated platelets undergo shape changes, adhere, and spread at the site of injury to form a blood clot. We investigated the morphology and morphological dynamics of human platelets after complete spreading using fast scanning ion conductance microscopy (SICM). In contrast to unstimulated platelets, thrombin-stimulated platelets showed increased morphological activity after spreading and exhibited dynamic morphological changes in the form of wave-like movements of the lamellipodium and dynamic protrusions on the platelet body. The increase in morphological activity was dependent on thrombin concentration. No increase in activity was observed following exposure to other activation agonists or during contact-induced activation. Inhibition of actin polymerization and inhibition of dynein significantly decreased the activity of thrombin-stimulated platelets. Our data suggest that these morphological dynamics after spreading are thrombin-specific and might play a role in coagulation and blood clot formation.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany
| | | | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Diseases, University of Tübingen, Tübingen, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
29
|
Shin EK, Park H, Noh JY, Lim KM, Chung JH. Platelet Shape Changes and Cytoskeleton Dynamics as Novel Therapeutic Targets for Anti-Thrombotic Drugs. Biomol Ther (Seoul) 2017; 25:223-230. [PMID: 27871158 PMCID: PMC5424631 DOI: 10.4062/biomolther.2016.138] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/27/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Platelets play an essential role in hemostasis through aggregation and adhesion to vascular injury sites but their unnecessary activation can often lead to thrombotic diseases. Upon exposure to physical or biochemical stimuli, remarkable platelet shape changes precede aggregation or adhesion. Platelets shape changes facilitate the formation and adhesion of platelet aggregates, but are readily reversible in contrast to the irrevocable characteristics of aggregation and adhesion. In this dynamic phenomenon, complex molecular signaling pathways and a host of diverse cytoskeleton proteins are involved. Platelet shape change is easily primed by diverse pro-thrombotic xenobiotics and stimuli, and its inhibition can modulate thrombosis, which can ultimately contribute to the development or prevention of thrombotic diseases. In this review, we discussed the current knowledge on the mechanisms of platelet shape change and also pathological implications and therapeutic opportunities for regulating the related cytoskeleton dynamics.
Collapse
Affiliation(s)
- Eun-Kyung Shin
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanseul Park
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji-Yoon Noh
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jin-Ho Chung
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|