1
|
Tang Y, Zhao K, Yin HM, Yang LP, Wu YC, Li FY, Yang Z, Lu HX, Wang B, Yang Y, Zhang YZ, Yang XL. Identification and Genomic Characterization of Two Novel Hepatoviruses in Shrews from Yunnan Province, China. Viruses 2024; 16:969. [PMID: 38932262 PMCID: PMC11209087 DOI: 10.3390/v16060969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatitis A virus (HAV), a member of the genus Hepatovirus (Picornaviridae HepV), remains a significant viral pathogen, frequently causing enterically transmitted hepatitis worldwide. In this study, we conducted an epidemiological survey of HepVs carried by small terrestrial mammals in the wild in Yunnan Province, China. Utilizing HepV-specific broad-spectrum RT-PCR, next-generation sequencing (NGS), and QNome nanopore sequencing (QNS) techniques, we identified and characterized two novel HepVs provisionally named EpMa-HAV and EpLe-HAV, discovered in the long-tailed mountain shrew (Episoriculus macrurus) and long-tailed brown-toothed shrew (Episoriculus leucops), respectively. Our sequence and phylogenetic analyses of EpMa-HAV and EpLe-HAV indicated that they belong to the species Hepatovirus I (HepV-I) clade II, also known as the Chinese shrew HepV clade. Notably, the codon usage bias pattern of novel shrew HepVs is consistent with that of previously identified Chinese shrew HepV. Furthermore, our structural analysis demonstrated that shrew HepVs differ from other mammalian HepVs in RNA secondary structure and exhibit variances in key protein sites. Overall, the discovery of two novel HepVs in shrews expands the host range of HepV and underscores the existence of genetically diverse animal homologs of human HAV within the genus HepV.
Collapse
Affiliation(s)
- Yi Tang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
| | - Kai Zhao
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hong-Min Yin
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
| | - Li-Ping Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
| | - Yue-Chun Wu
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Feng-Yi Li
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Ze Yang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
| | - Hui-Xuan Lu
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA;
| | - Yin Yang
- Department of Medical, The Second People’s Hospital of Dali Prefecture, Dali 67100, China;
| | - Yun-Zhi Zhang
- Yunnan Key Laboratory of Screening and Research on Anti-Pathogenic Plant Resources from Western Yunnan, Key Laboratory for Cross-Border Control and Quarantine of Zoonoses in Universities of Yunnan Province, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (Y.T.); (H.-M.Y.); (Z.Y.)
| | - Xing-Lou Yang
- Key Laboratory of Genetic Evolution & Animal Models, Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; (K.Z.); (L.-P.Y.); (Y.-C.W.); (F.-Y.L.); (H.-X.L.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
2
|
de Moraes Pires WM, Cruz ACR, de Souza AJS, Silva SP, Souza Barbosa Coelho TF, Dias DD, Rosa Júnior JW, Mendes SB, da Costa Fraga E, Barros MC, Sampaio I. Genomic characterization of a novel Hepatovirus identified in Maranhão state, Brazil. Sci Rep 2024; 14:7981. [PMID: 38575654 PMCID: PMC10995186 DOI: 10.1038/s41598-024-58171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Bats are efficient reservoirs of a number of viruses with zoonotic potential, and are involved directly in the transmission cycle of many zoonoses. In the present study, which is part of a larger project that is documenting the viromes of the bat species found in the Mid-North states of Maranhão and Piauí, we analyzed 16 pooled samples obtained from four species of bat of the genus Artibeus-Artibeus obscurus, Artibeus cinereus, Artibeus lituratus and Artibeus planirostris. We describe and identify a Hepatovirus, denominated Hepatovirus H isolate sotense, which was found in a pool of internal organs (liver and lungs) extracted from a specimen of A. planirostris, a frugivorous bat, collected in the Cerrado biome of Maranhão state. This material was analyzed using new generation sequencing, which produced a contig of 7390 nucleotides and presented a degree of identity with a number of existing Hepatovirus sequences available for bats (amino acid identity of 61.5% with Bat hepatovirus C of Miniopterus cf. manavi, 66.6% with Bat hepatovirus G of Coleura afra, 67.4% with Hepatovirus G2 of Rhinolophus landeri, and 75.3% with Hepatovirus H2 of Rhinolophus landeri). The analysis of the functional domains of this contig confirmed a pattern consistent with the characteristics of the genus Hepatovirus (Picornaviridae). In the phylogenetic tree with several other Hepatovirus species, this genome also grouped in a monophyletic clade with Hepatovirus H (HepV-H1; HepV-H2, and HepV-H3) albeit on an external branch, which suggests that it may be a distinct genotype within this species. This is the first isolate of Hepatovirus H identified in bats from South America, and represents an important discovery, given that most studies of viruses associated with bats in the state of Maranhão have focused on the family Rhabdoviridae.
Collapse
Affiliation(s)
| | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Instituto Evandro Chagas IEC/SVS/MS, Ananindeua, Pará, 67030-000, Brazil
| | - Alex Junior Souza de Souza
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo, Brazil
| | - Sandro Patroca Silva
- Department of Arbovirology and Hemorrhagic Fevers, Instituto Evandro Chagas IEC/SVS/MS, Ananindeua, Pará, 67030-000, Brazil
| | | | - Daniel Damous Dias
- Laboratory of Medical Entomology, Instituto Evandro Chagas IEC/SVS/MS, Ananindeua, Pará, 67030-000, Brazil
| | - José Wilson Rosa Júnior
- Department of Arbovirology and Hemorrhagic Fevers, Instituto Evandro Chagas IEC/SVS/MS, Ananindeua, Pará, 67030-000, Brazil
| | - Samira Brito Mendes
- Graduate Program in Biodiversity and Biotechnology-Bionorte Network, Laboratory of Genetics and Molecular Biology, Universidade Estadual do Maranhão, São Luís, Maranhão, 65055-310, Brazil
| | - Elmary da Costa Fraga
- Laboratory of Genetics and Molecular Biology-GENBIMOL, Universidade Estadual Do Maranhão-Campus Caxias, Caxias, Maranhão, 65604-380, Brazil
| | - Maria Claudene Barros
- Laboratory of Genetics and Molecular Biology-GENBIMOL, Universidade Estadual Do Maranhão-Campus Caxias, Caxias, Maranhão, 65604-380, Brazil
| | - Iracilda Sampaio
- Laboratory of Evolution, Institute of Coastal Studies, Universidade Federal do Pará-UFPA-UFPA, Bragança, Pará, 68600-000, Brazil
| |
Collapse
|
3
|
Veith T, Beltran-Saavedra LF, Bleicker T, Schmidt ML, Mollericona JL, Grützmacher K, Wallace R, Drexler JF, Walzer C, Jones TC, Drosten C, Corman VM. Divergent Genotype of Hepatitis A Virus in Alpacas, Bolivia, 2019. Emerg Infect Dis 2023; 29:2524-2527. [PMID: 37796297 PMCID: PMC10683824 DOI: 10.3201/eid2912.231123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Hepatitis A virus (HAV) is a common human pathogen found exclusively in primates. In a molecular and serologic study of 64 alpacas in Bolivia, we detected RNA of distinct HAV in ≈9% of animals and HAV antibodies in ≈64%. Complete-genome analysis suggests a long association of HAV with alpacas.
Collapse
|
4
|
Van Damme P, Pintó RM, Feng Z, Cui F, Gentile A, Shouval D. Hepatitis A virus infection. Nat Rev Dis Primers 2023; 9:51. [PMID: 37770459 DOI: 10.1038/s41572-023-00461-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Abstract
Hepatitis A is a vaccine-preventable infection caused by the hepatitis A virus (HAV). Over 150 million new infections of hepatitis A occur annually. HAV causes an acute inflammatory reaction in the liver that usually resolves spontaneously without chronic sequelae. However, up to 20% of patients experience a prolonged or relapsed course and <1% experience acute liver failure. Host factors, such as immunological status, age, pregnancy and underlying hepatic diseases, can affect the severity of disease. Anti-HAV IgG antibodies produced in response to HAV infection persist for life and protect against re-infection; vaccine-induced antibodies against hepatitis A confer long-term protection. The WHO recommends vaccination for individuals at higher risk of infection and/or severe disease in countries with very low and low hepatitis A virus endemicity, and universal childhood vaccination in intermediate endemicity countries. To date, >25 countries worldwide have implemented such programmes, resulting in a reduction in the incidence of HAV infection. Improving hygiene and sanitation, rapid identification of outbreaks and fast and accurate intervention in outbreak control are essential to reducing HAV transmission.
Collapse
Affiliation(s)
- Pierre Van Damme
- Centre for the Evaluation of Vaccination, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| | - Rosa M Pintó
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Zongdi Feng
- Centre for Vaccines and Immunity, The Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Angela Gentile
- Department of Epidemiology, Hospital de Niños Ricardo Gutierrez, University of Buenos Aires, Buenos Aires, Argentina
| | - Daniel Shouval
- Institute of Hepatology, Hadassah-Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
5
|
Luo XL, Lu S, Qin C, Shi M, Lu XB, Wang L, Ga S, Jin D, Ma XL, Yang J, Dai Y, Bao LL, Cheng YP, Ge YJ, Bai YB, Zhu WT, Pu J, Sun H, Huang YY, Xu MC, Lei WJ, Dong K, Yang CX, Jiao YF, Lv Q, Li FD, Xu J. Emergence of an ancient and pathogenic mammarenavirus. Emerg Microbes Infect 2023; 12:e2192816. [PMID: 36939609 DOI: 10.1080/22221751.2023.2192816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
ABSTRACTEmerging zoonoses of wildlife origin caused by previously unknown agents are one of the most important challenges for human health. The Qinghai-Tibet Plateau represents a unique ecological niche with diverse wildlife that harbors several human pathogens and numerous previously uncharacterized pathogens. In this study, we identified and characterized a novel arenavirus (namely, plateau pika virus, PPV) from plateau pikas (Ochotona curzoniae) on the Qinghai-Tibet Plateau by virome analysis. Isolated PPV strains could replicate in several mammalian cells. We further investigated PPV pathogenesis using animal models. PPV administered via an intraventricular route caused trembling and sudden death in IFNαβR-/- mice, and pathological inflammatory lesions in brain tissue were observed. According to a retrospective serological survey in the geographical region where PPV was isolated, PPV-specific IgG antibodies were detected in 8 (2.4%) of 335 outpatients with available sera. Phylogenetic analyses revealed that this virus was clearly separated from previously reported New and Old World mammarenaviruses. Under the co-speciation framework, the estimated divergence time of PPV was 77-88 million years ago (MYA), earlier than that of OW and NW mammarenaviruses (26-34 MYA).
Collapse
Affiliation(s)
- Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Chuan Qin
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Mang Shi
- The Center for Infection & Immunity Study, School of Medicine, Shenzhen campus of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Bo Lu
- Infectious diseases department, First Affiliated Hospital, Xinjiang Medical University, Urumqi, Xinjiang Autonomous Region, China
| | - Lu Wang
- Kashi Center for Disease Control and Prevention, Kashi, Xinjiang Autonomous Region, China
| | - Sang Ga
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, Qinghai Province, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Xin-Li Ma
- Kashi first people's hospital, Kashi, Xinjiang Autonomous Region, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yan Dai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Lin-Lin Bao
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yan-Peng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Ya-Jun Ge
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yi-Bo Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Wen-Tao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Hui Sun
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Yu-Yuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Ming-Chao Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China
| | - Wen-Jing Lei
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Kui Dong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Cai-Xin Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Yi-Fan Jiao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China
| | - Qi Lv
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Feng-Di Li
- Key Laboratory of Human Disease Comparative Medicine, Chinese Ministry of Health, Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China.,Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China.,Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China.,Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi province, China.,Institute of Public Health, Nankai University, Tianjin, China
| |
Collapse
|
6
|
Zhu W, Yang J, Lu S, Jin D, Pu J, Wu S, Luo XL, Liu L, Li Z, Xu J. RNA Virus Diversity in Birds and Small Mammals From Qinghai–Tibet Plateau of China. Front Microbiol 2022; 13:780651. [PMID: 35250920 PMCID: PMC8894885 DOI: 10.3389/fmicb.2022.780651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022] Open
Abstract
Most emerging and re-emerging viruses causing infectious diseases in humans and domestic animals have originated from wildlife. However, current knowledge of the spectrum of RNA viruses in the Qinghai-Tibet Plateau in China is still limited. Here, we performed metatranscriptomic sequencing on fecal samples from 56 birds and 91 small mammals in Tibet and Qinghai Provinces, China, to delineate their viromes and focused on vertebrate RNA viruses. A total of 184 nearly complete genome RNA viruses belonging to 28 families were identified. Among these, 173 new viruses shared <90% amino acid identity with previously known viral sequences. Several of these viruses, such as those belonging to genera Orthonairovirus and Hepatovirus, could be zoonotic viruses. In addition, host taxonomy and geographical location of these viruses showed new hosts and distribution of several previously discovered viruses. Moreover, 12 invertebrate RNA viruses were identified with <40% amino acid identity to known viruses, indicating that they belong to potentially new taxa. The detection and characterization of RNA viruses from wildlife will broaden our knowledge of virus biodiversity and possible viral diseases in the Qinghai–Tibet Plateau.
Collapse
Affiliation(s)
- Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Shusheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, China
| | - Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Research Institute of Public Heath, Nankai University, Tianjin, China
- *Correspondence: Jianguo Xu,
| |
Collapse
|
7
|
Khoshdel-Rad N, Zahmatkesh E, Bikmulina P, Peshkova M, Kosheleva N, Bezrukov EA, Sukhanov RB, Solovieva A, Shpichka A, Timashev P, Vosough M. Modeling Hepatotropic Viral Infections: Cells vs. Animals. Cells 2021; 10:1726. [PMID: 34359899 PMCID: PMC8305759 DOI: 10.3390/cells10071726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The lack of an appropriate platform for a better understanding of the molecular basis of hepatitis viruses and the absence of reliable models to identify novel therapeutic agents for a targeted treatment are the two major obstacles for launching efficient clinical protocols in different types of viral hepatitis. Viruses are obligate intracellular parasites, and the development of model systems for efficient viral replication is necessary for basic and applied studies. Viral hepatitis is a major health issue and a leading cause of morbidity and mortality. Despite the extensive efforts that have been made on fundamental and translational research, traditional models are not effective in representing this viral infection in a laboratory. In this review, we discuss in vitro cell-based models and in vivo animal models, with their strengths and weaknesses. In addition, the most important findings that have been retrieved from each model are described.
Collapse
Affiliation(s)
- Niloofar Khoshdel-Rad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Ensieh Zahmatkesh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| | - Polina Bikmulina
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
| | - Nastasia Kosheleva
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- FSBSI ‘Institute of General Pathology and Pathophysiology, 125315 Moscow, Russia
| | - Evgeny A. Bezrukov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Roman B. Sukhanov
- Department of Urology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (E.A.B.); (R.B.S.)
| | - Anna Solovieva
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (P.B.); (M.P.); (A.S.)
- World-Class Research Center “Digital biodesign and personalized healthcare”, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Department of Polymers and Composites, N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia;
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (N.K.-R.); (E.Z.)
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
| |
Collapse
|
8
|
A novel picornavirus identified in wild Macaca mulatta in China. Arch Virol 2019; 165:495-504. [PMID: 31845155 DOI: 10.1007/s00705-019-04442-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023]
Abstract
The discovery of novel viruses in wild animals allows the prediction of their potential threat to the health of humans and other animals. We report a highly divergent picornavirus (tentatively named "mobovirus A"), identified in a fecal sample from Macaca mulatta in Yunnan province, China, using viral metagenomic analysis, with viral loads of 2 × 107 copies/g. The complete genomic sequence of mobovirus A is 8,325 nucleotides in length. Phylogenetic analysis showed that it clustered with Guangxi changeable lizard picornavirus 1 and Guangxi Chinese leopard gecko picornavirus, with less than 38%, 40%, and 40% amino acid identity in the P1, P2, and P3 protein, respectively. The viruses in this cluster were most closely related to members of the genera Harkavirus, Tremovirus and Hepatovirus. Genomic analysis revealed that mobovirus A has the typical genomic organization and motifs of a picornavirus. Additionally, its codon usage bias complements that of M. mulatta, suggesting that this feature is not restricted only to hepatoviruses. Thus, according to the guidelines of the Picornaviridae Study Group of the International Committee on Taxonomy of Viruses, mobovirus A should be considered a member of a new genus (tentatively named for Monkey-borne virus, "Mobovirus") in the family Picornaviridae. These data will facilitate the understanding of the genetic diversity and evolution of picornaviruses. Further studies are needed to understand the epidemiology and potential pathogenicity of the virus in M. mulatta.
Collapse
|
9
|
Cagliani R, Forni D, Sironi M. Mode and tempo of human hepatitis virus evolution. Comput Struct Biotechnol J 2019; 17:1384-1395. [PMID: 31768229 PMCID: PMC6872792 DOI: 10.1016/j.csbj.2019.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human viral hepatitis, a major cause of morbidity and mortality worldwide, is caused by highly diverse viruses with different genetic, ecological, and pathogenetic features. Technological advances that allow throughput sequencing of viral genomes, as well as the development of computational tools to analyze such genome data, have largely expanded our knowledge on the host range and evolutionary history of human hepatitis viruses. Thus, with the exclusion of hepatitis D virus, close or distant relatives of these human pathogens were identified in a number of domestic and wild mammals. Also, sequences of human viral strains isolated from different geographic locations and over different time-spans have allowed the application of phylogeographic and molecular dating approaches to large viral phylogenies. In this review, we summarize the most recent insights into our understanding of the evolutionary events and ecological contexts that determined the origin and spread of human hepatitis viruses.
Collapse
Affiliation(s)
- Rachele Cagliani
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Diego Forni
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| | - Manuela Sironi
- Bioinformatics, Scientific Institute, IRCCS E. MEDEA, 23842 Bosisio Parini, Lecco, Italy
| |
Collapse
|
10
|
Guo K, Li LL, Zhang Q, Yu JM, Ye Y. Diversified Variants of Astrovirus MLB2 in Patients Following Hematopoietic Stem Cell Transplantation and the Evolutionary Rates and Patterns of the Virus. Evol Bioinform Online 2019; 15:1176934319864922. [PMID: 31360058 PMCID: PMC6637835 DOI: 10.1177/1176934319864922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/03/2022] Open
Abstract
We assessed the quasispecies heterogeneity of a human astrovirus MLB2 (HAstV-MLB2-YJMGK) in immunocompromised patients following hematopoietic stem cell transplantation and performed genetic and evolutionary analyses of HAstV isolates circulating worldwide. The result showed that the virus had diversified variants and a strong positive selection in the patient, indicating that such patients may be a reservoir for astrovirus. The time to the most recent common ancestor of MLB2 and classic HAstVs was around 1800 years, and it has a decline in effective population size of HAstVs in the late 100 years.
Collapse
Affiliation(s)
- Ke Guo
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.,Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Li-Li Li
- Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Qing Zhang
- Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Jie-Mei Yu
- Department of Diarrhea, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yan Ye
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
11
|
Xu J. Reverse microbial etiology: A research field for predicting and preventing emerging infectious diseases caused by an unknown microorganism. JOURNAL OF BIOSAFETY AND BIOSECURITY 2019; 1:19-21. [PMID: 32501431 PMCID: PMC7148598 DOI: 10.1016/j.jobb.2018.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/11/2018] [Indexed: 02/05/2023] Open
Abstract
To predict, detect, prepare for, and prevent potential emerging infectious diseases caused by unknown microorganisms in the future, we have proposed the research field of reverse microbial etiology. We isolate and classify unknown microorganisms and assesse their ability to cause infection, an outbreak, or epidemic. We suggest a list of potential pathogens and propose a preparation, prevention, and control strategy to protect global health and global economy and to ensure global security.
Collapse
Affiliation(s)
- Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
12
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
13
|
McKnight KL, Lemon SM. Hepatitis A Virus Genome Organization and Replication Strategy. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a033480. [PMID: 29610147 DOI: 10.1101/cshperspect.a033480] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatitis A virus (HAV) is a positive-strand RNA virus classified in the genus Hepatovirus of the family Picornaviridae It is an ancient virus with a long evolutionary history and multiple features of its capsid structure, genome organization, and replication cycle that distinguish it from other mammalian picornaviruses. HAV proteins are produced by cap-independent translation of a single, long open reading frame under direction of an inefficient, upstream internal ribosome entry site (IRES). Genome replication occurs slowly and is noncytopathic, with transcription likely primed by a uridylated protein primer as in other picornaviruses. Newly produced quasi-enveloped virions (eHAV) are released from cells in a nonlytic fashion in a unique process mediated by interactions of capsid proteins with components of the host cell endosomal sorting complexes required for transport (ESCRT) system.
Collapse
Affiliation(s)
- Kevin L McKnight
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| | - Stanley M Lemon
- Departments of Medicine and Microbiology & Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
14
|
Sander AL, Corman VM, Lukashev AN, Drexler JF. Evolutionary Origins of Enteric Hepatitis Viruses. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031690. [PMID: 29610146 DOI: 10.1101/cshperspect.a031690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The enterically transmitted hepatitis A (HAV) and hepatitis E viruses (HEV) are the leading causes of acute viral hepatitis in humans. Despite the discovery of HAV and HEV 40-50 years ago, their evolutionary origins remain unclear. Recent discoveries of numerous nonprimate hepatoviruses and hepeviruses allow revisiting the evolutionary history of these viruses. In this review, we provide detailed phylogenomic analyses of primate and nonprimate hepatoviruses and hepeviruses. We identify conserved and divergent genomic properties and corroborate historical interspecies transmissions by phylogenetic comparisons and recombination analyses. We discuss the likely non-recent origins of human HAV and HEV precursors carried by mammals other than primates, and detail current zoonotic HEV infections. The novel nonprimate hepatoviruses and hepeviruses offer exciting new possibilities for future research focusing on host range and the unique biological properties of HAV and HEV.
Collapse
Affiliation(s)
- Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119991 Moscow, Russia.,Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Preparations, 142782 Moscow, Russia
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Center for Infection Research (DZIF), Germany
| |
Collapse
|
15
|
Smith DB, Simmonds P. Classification and Genomic Diversity of Enterically Transmitted Hepatitis Viruses. Cold Spring Harb Perspect Med 2018; 8:a031880. [PMID: 29530950 PMCID: PMC6120691 DOI: 10.1101/cshperspect.a031880] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatitis A virus (HAV) and hepatitis E virus (HEV) are significant human pathogens and are responsible for a substantial proportion of cases of severe acute hepatitis worldwide. Genetically, both viruses are heterogeneous and are classified into several genotypes that differ in their geographical distribution and risk group association. There is, however, little evidence that variants of HAV or HEV differ antigenically or in their propensity to cause severe disease. Genetically more divergent but primarily hepatotropic variants of both HAV and HEV have been found in several mammalian species, those of HAV being classified into eight species within the genus Hepatovirus in the virus family Picornaviridae. HEV is classified as a member of the species Orthohepevirus A in the virus family Hepeviridae, a species that additionally contains viruses infecting pigs, rabbits, and a variety of other mammalian species. Other species (Orthohepevirus B-D) infect a wide range of other mammalian species including rodents and bats.
Collapse
Affiliation(s)
- Donald B Smith
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
16
|
A Novel Marsupial Hepatitis A Virus Corroborates Complex Evolutionary Patterns Shaping the Genus Hepatovirus. J Virol 2018; 92:JVI.00082-18. [PMID: 29695421 PMCID: PMC6002732 DOI: 10.1128/jvi.00082-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 11/30/2022] Open
Abstract
The discovery of highly diverse nonprimate hepatoviruses illuminated the evolutionary origins of hepatitis A virus (HAV) ancestors in mammals other than primates. Marsupials are ancient mammals that diverged from other Eutheria during the Jurassic. Viruses from marsupials may thus provide important insight into virus evolution. To investigate Hepatovirus macroevolutionary patterns, we sampled 112 opossums in northeastern Brazil. A novel marsupial HAV (MHAV) in the Brazilian common opossum (Didelphis aurita) was detected by nested reverse transcription-PCR (RT-PCR). MHAV concentration in the liver was high, at 2.5 × 109 RNA copies/g, and at least 300-fold higher than those in other solid organs, suggesting hepatotropism. Hepatovirus seroprevalence in D. aurita was 26.6% as determined using an enzyme-linked immunosorbent assay (ELISA). Endpoint titers in confirmatory immunofluorescence assays were high, and marsupial antibodies colocalized with anti-HAV control sera, suggesting specificity of serological detection and considerable antigenic relatedness between HAV and MHAV. MHAV showed all genomic hallmarks defining hepatoviruses, including late-domain motifs likely involved in quasi-envelope acquisition, a predicted C-terminal pX extension of VP1, strong avoidance of CpG dinucleotides, and a type 3 internal ribosomal entry site. Translated polyprotein gene sequence distances of at least 23.7% from other hepatoviruses suggested that MHAV represents a novel Hepatovirus species. Conserved predicted cleavage sites suggested similarities in polyprotein processing between HAV and MHAV. MHAV was nested within rodent hepatoviruses in phylogenetic reconstructions, suggesting an ancestral hepatovirus host switch from rodents into marsupials. Cophylogenetic reconciliations of host and hepatovirus phylogenies confirmed that host-independent macroevolutionary patterns shaped the phylogenetic relationships of extant hepatoviruses. Although marsupials are synanthropic and consumed as wild game in Brazil, HAV community protective immunity may limit the zoonotic potential of MHAV. IMPORTANCE Hepatitis A virus (HAV) is a ubiquitous cause of acute hepatitis in humans. Recent findings revealed the evolutionary origins of HAV and the genus Hepatovirus defined by HAV in mammals other than primates in general and in small mammals in particular. The factors shaping the genealogy of extant hepatoviruses are unclear. We sampled marsupials, one of the most ancient mammalian lineages, and identified a novel marsupial HAV (MHAV). The novel MHAV shared specific features with HAV, including hepatotropism, antigenicity, genome structure, and a common ancestor in phylogenetic reconstructions. Coevolutionary analyses revealed that host-independent evolutionary patterns contributed most to the current phylogeny of hepatoviruses and that MHAV was the most drastic example of a cross-order host switch of any hepatovirus observed so far. The divergence of marsupials from other mammals offers unique opportunities to investigate HAV species barriers and whether mechanisms of HAV immune control are evolutionarily conserved.
Collapse
|
17
|
Dai X, Shang G, Lu S, Yang J, Xu J. A new subtype of eastern tick-borne encephalitis virus discovered in Qinghai-Tibet Plateau, China. Emerg Microbes Infect 2018; 7:74. [PMID: 29691370 PMCID: PMC5915441 DOI: 10.1038/s41426-018-0081-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Tick-borne encephalitis virus (TBEV) has been classified into three subtypes, namely the European (Eu-TBEV), Far Eastern (FE-TBEV), and Siberian (Sib-TBEV). In this study, we discovered a new subtype of TBEV in wild rodent Marmota himalayana in Qinghai-Tibet Plateau in China, proposed as subtype Himalayan (Him-TBEV). Two complete genomes of TBEV were obtained from respiratory samples of 200 marmots. The phylogenetic analysis using the E protein and polyprotein demonstrated that the two strains of Him-TBEV formed an independent branch, separated from Eu-TBEV, Sib-TBEV, and FE-TBEV. The nomenclature of Him-TBEV as a new subtype was also supported by comparative analysis using nucleotide and amino acid sequences of E protein and polyprotein. For E protein, The Him-TBEV showed 82.6–84.6% nucleotide identities and 92.7–95.0% amino acid identities with other three subtypes. For polyprotein, the Him-TBEV showed 83.5–85.2% nucleotide identities and 92.6–94.2% amino acids identities with other three subtypes. Furthermore, of 69 amino acid substitutions profiles detected in complete polyprotein of 112 strains of TBEV, Him-TBEV subtype displayed unique amino acids in the 36 positions. Notably, for the subtype-specific amino acid position 206 of E protein, Him-TBEV shared the Val with Eu-TBEV, but differed from FE-TBEV and Sib-TBEV. The evolutionary analysis with BEAST suggested that Him-TBEV diverged from other subtypes of eastern TBEV group about 2469 years ago. It should be mentioned that Qinghai-Tibet Plateau in China is the plague endemic region where Marmota himalayana is the primary host. The public health significance of discovery of Him-TBEV in Marmota himalayana must be carefully evaluated.
Collapse
Affiliation(s)
- Xiaoyi Dai
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Beijing, Changping, China
| | - Guobao Shang
- Haixi Prefecture Center for Disease Control and Prevention, 817000, Haixi Prefecture, Qinghai, China
| | - Shan Lu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Beijing, Changping, China.,Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, 201508, Shanghai, Jinshan, China
| | - Jing Yang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Beijing, Changping, China.,Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, 201508, Shanghai, Jinshan, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Beijing, Changping, China. .,Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, 201508, Shanghai, Jinshan, China.
| |
Collapse
|
18
|
Luo XL, Lu S, Jin D, Yang J, Wu SS, Xu J. Marmota himalayana in the Qinghai-Tibetan plateau as a special host for bi-segmented and unsegmented picobirnaviruses. Emerg Microbes Infect 2018; 7:20. [PMID: 29511159 PMCID: PMC5841229 DOI: 10.1038/s41426-018-0020-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Wildlife has been considered the main source of novel viruses causing emerging infectious diseases. Marmota himalayana is endemic to the Qinghai–Tibetan Plateau, China. Here, based on a high-throughput method using Illumina RNA sequencing, we studied the RNA virome of M. himalayana and discovered multiple novel viruses, especially picobirnaviruses (PBVs), which have a bi-segmented genome and belong to the family Picobirnaviridae. A total of 63% of the viral contigs corresponded to PBVs, comprising 274 segment 1 and 56 segment 2 sequences. Unexpectedly, four unsegmented PBV genomes were also detected and confirmed by PCR and resequencing. According to the phylogenetic analysis, the following nine PBV assortment types are proposed: C1:GI, C2:GIV, C4:GI, C4:GV, C5:GI, C7:GI, C8:GIV, C8:GV and C8:GII. We hypothesize a model of segmentation for the PBV genome, mediated by a 6-bp direct repeat sequence, GAAAGG. The model is supported by detection of the segmentation-associated sequence GAAAGG not only in the 5′ untranslated regions of segment 1 (221 in 289) and segment 2 (57 in 80) of bi-segmented PBVs but also in the 5′ untranslated regions and junction sequences between the capsid and RdRp genes of unsegmented PBVs. Therefore, with RNA sequencing, we found an unexpected biodiversity of PBVs in M. himalayana, indicating that M. himalayana is a special host for PBVs. We also proposed a putative model of how bi-segmented PBVs could be converted into unsegmented PBVs, which sheds new light on the processes of RNA virus genome evolution.
Collapse
Affiliation(s)
- Xue-Lian Luo
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Changping, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Changping, Beijing, China.,Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, 201508, Shanghai, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Changping, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Changping, Beijing, China
| | - Shu-Sheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, 815000, Yushu, Qinghai province, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, 102206, Changping, Beijing, China. .,Shanghai Institute for Emerging and Re-emerging infectious diseases, Shanghai Public Health Clinical Center, 201508, Shanghai, China.
| |
Collapse
|
19
|
Li W, Wang B, Li B, Zhang W, Zhu Y, Shi ZL, Yang XL. Genomic Characterization of a Novel Hepatovirus from Great Roundleaf Bats in China. Virol Sin 2018; 33:108-110. [PMID: 29460117 PMCID: PMC6178082 DOI: 10.1007/s12250-018-0013-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Affiliation(s)
- Wen Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bo Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wei Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zheng-Li Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xing-Lou Yang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
20
|
Yu JM, Li LL, Xie GC, Zhang CY, Ao YY, Duan ZJ. Experimental infection of Marmota monax with a novel hepatitis A virus. Arch Virol 2018; 163:1187-1193. [PMID: 29387970 DOI: 10.1007/s00705-018-3715-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/11/2017] [Indexed: 11/25/2022]
Abstract
To establish an animal model for the newly identified Marmota Himalayana hepatovirus, MHHAV, so as to develop a better understanding of the infection of hepatitis A viruses. Five experimental woodchucks (Marmota monax) were inoculated intravenously with the purified MHHAV from wild woodchuck feces. One animal injected with PBS was defined as a control. Feces and blood were routinely collected. After the animals were subjected to necropsy, different tissues were collected. The presence of viral RNA and negative sense viral RNA was analyzed in all the samples and histopathological and in situ hybridization analysis was performed for the tissues. MHHAV infection caused fever but no severe symptoms or death. Virus was shed in feces beginning at 2 dpi, and MHHAV RNA persisted in feces for ~2 months, with a biphasic increase, and in blood for ~30 days. Viral RNA was detected in all the tissues, with high levels in the liver and spleen. Negative-strand viral RNA was detected only in the liver. Furthermore, the animals showed histological signs of hepatitis at 45 dpi. MHHAV can infect M. monax and is associated with hepatic disease. Therefore, this animal can be used as a model of HAV pathogenesis and to evaluate antiviral and anticancer therapeutics.
Collapse
Affiliation(s)
- Jie-Mei Yu
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 100052, China
| | - Li-Li Li
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 100052, China
| | - Guang-Cheng Xie
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 100052, China
| | - Cui-Yuan Zhang
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 100052, China
| | - Yuan-Yun Ao
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 100052, China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, CDC China, Beijing, 100052, China.
| |
Collapse
|
21
|
Ao Y, Li X, Li L, Xie X, Jin D, Yu J, Lu S, Duan Z. Two novel bocaparvovirus species identified in wild Himalayan marmots. SCIENCE CHINA-LIFE SCIENCES 2017; 60:1348-1356. [PMID: 29218438 PMCID: PMC7089499 DOI: 10.1007/s11427-017-9231-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 09/16/2017] [Indexed: 12/17/2022]
Abstract
Bocaparvovirus (BOV) is a genetically diverse group of DNA viruses and a possible cause of respiratory, enteric, and neurological diseases in humans and animals. Here, two highly divergent BOVs (tentatively named as Himalayan marmot BOV, HMBOV1 and HMBOV2) were identified in the livers and feces of wild Himalayan marmots in China, by viral metagenomic analysis. Five of 300 liver samples from Himalayan marmots were positive for HMBOV1 and five of 99 fecal samples from these animals for HMBOV2. Their nearly complete genome sequences are 4,672 and 4,887 nucleotides long, respectively, with a standard genomic organization and containing protein-coding motifs typical for BOVs. Based on their NS1, NP1, and VP1, HMBOV1 and HMBOV2 are most closely related to porcine BOV SX/1-2 (approximately 77.0%/50.0%, 50.0%/53.0%, and 79.0%/54.0% amino acid identity, respectively). Phylogenetic analysis of these three proteins showed that HMBOV1 and HMBOV2 formed two distinctly independent branches in BOVs. According to these results, HMBOV1 and HMBOV2 are two different novel species in the Bocaparvovirus genus. Their identification expands our knowledge of the genetic diversity and evolution of BOVs. Further studies are needed to investigate their potential pathogenicity and their impact on Himalayan marmots and humans.
Collapse
Affiliation(s)
- Yuanyun Ao
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Xiaoyue Li
- Laboratory Department, the First People's Hospital of Anqing, Anqing, 246000, China
| | - Lili Li
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China
| | - Xiaolu Xie
- Peking Union Medical College Hospital, Beijing, 100730, China
| | - Dong Jin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Jiemei Yu
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.
| | - Shan Lu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Zhaojun Duan
- National Institute for Viral Diseases Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 100052, China.
| |
Collapse
|
22
|
Lemon SM, Ott JJ, Van Damme P, Shouval D. Type A viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J Hepatol 2017; 68:S0168-8278(17)32278-X. [PMID: 28887164 DOI: 10.1016/j.jhep.2017.08.034] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/08/2023]
Abstract
Although epidemic jaundice was well known to physicians of antiquity, it is only in recent years that medical science has begun to unravel the origins of hepatitis A virus (HAV) and the unique pathobiology underlying acute hepatitis A in humans. Improvements in sanitation and the successful development of highly efficacious vaccines have markedly reduced the worldwide prevalence and incidence of this enterically-transmitted infection over the past quarter century, yet the virus persists in vulnerable populations and remains a common cause of food-borne disease outbreaks in economically-advantaged societies. Reductions in the prevalence of HAV have led to increases in the median age at which infection occurs, often resulting in more severe disease in affected persons and paradoxical increases in disease burden in some developing nations. Here, we summarize recent advances in the molecular virology of HAV, an atypical member of the Picornaviridae family, survey what is known of the pathogenesis of hepatitis A in humans and the host-pathogen interactions that typify the infection, and review medical and public health aspects of immunisation and disease prevention.
Collapse
Affiliation(s)
- Stanley M Lemon
- Lineberger Comprehensive Cancer Center, and the Departments of Medicine and Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA.
| | - Jördis J Ott
- Department of Epidemiology, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany.
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, Antwerp University, Antwerp, Belgium
| | - Daniel Shouval
- Liver Unit, Institute for Gastroenterology and Hepatology, Hadassah-Hebrew University Hospital, P.O.Box 12000, Jerusalem 91120, Israel
| |
Collapse
|
23
|
Kumar A, Murthy S, Kapoor A. Evolution of selective-sequencing approaches for virus discovery and virome analysis. Virus Res 2017; 239:172-179. [PMID: 28583442 PMCID: PMC5819613 DOI: 10.1016/j.virusres.2017.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/28/2016] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Description of virus enrichment techniques for metagenomics based virome analysis. Usefulness of recently developed virome capture sequencing techniques. Perspective on negative and positive selection approaches for virome analysis.
Recent advances in sequencing technologies have transformed the field of virus discovery and virome analysis. Once mostly confined to the traditional Sanger sequencing based individual virus discovery, is now entirely replaced by high throughput sequencing (HTS) based virus metagenomics that can be used to characterize the nature and composition of entire viromes. To better harness the potential of HTS for the study of viromes, sample preparation methodologies use different approaches to exclude amplification of non-viral components that can overshadow low-titer viruses. These virus-sequence enrichment approaches mostly focus on the sample preparation methods, like enzymatic digestion of non-viral nucleic acids and size exclusion of non-viral constituents by column filtration, ultrafiltration or density gradient centrifugation. However, recently a new approach of virus-sequence enrichment called virome-capture sequencing, focused on the amplification or HTS library preparation stage, was developed to increase the ability of virome characterization. This new approach has the potential to further transform the field of virus discovery and virome analysis, but its technical complexity and sequence-dependence warrants further improvements. In this review we discuss the different methods, their applications and evolution, for selective sequencing based virome analysis and also propose refinements needed to harness the full potential of HTS for virome analysis.
Collapse
Affiliation(s)
- Arvind Kumar
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Satyapramod Murthy
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Amit Kapoor
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA; Department of Pediatrics, College of Medicine and Public Health, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
24
|
Ao YY, Yu JM, Li LL, Cao JY, Deng HY, Xin YY, Liu MM, Lin L, Lu S, Xu JG, Duan ZJ. Diverse novel astroviruses identified in wild Himalayan marmots. J Gen Virol 2017; 98:612-623. [PMID: 28100306 DOI: 10.1099/jgv.0.000709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
With advances in viral surveillance and next-generation sequencing, highly diverse novel astroviruses (AstVs) and different animal hosts had been discovered in recent years. However, the existence of AstVs in marmots had yet to be shown. Here, we identified two highly divergent strains of AstVs (tentatively named Qinghai Himalayanmarmot AstVs, HHMAstV1 and HHMAstV2), by viral metagenomic analysis in liver tissues isolated from wild Marmota himalayana in China. Overall, 12 of 99 (12.1 %) M. himalayana faecal samples were positive for the presence of genetically diverse AstVs, while only HHMAstV1 and HHMAstV2 were identified in 300 liver samples. The complete genomic sequences of HHMAstV1 and HHMAstV2 were 6681 and 6610 nt in length, respectively, with the typical genomic organization of AstVs. Analysis of the complete ORF 2 sequence showed that these novel AstVs are most closely related to the rabbit AstV, mamastrovirus 23 (with 31.0 and 48.0 % shared amino acid identity, respectively). Phylogenetic analysis of the amino acid sequences of ORF1a, ORF1b and ORF2 indicated that HHMAstV1 and HHMAstV2 form two distinct clusters among the mamastroviruses, and may share a common ancestor with the rabbit-specific mamastrovirus 23. These results suggest that HHMAstV1 and HHMAstV2 are two novel species of the genus Mamastrovirus in the Astroviridae. The remarkable diversity of these novel AstVs will contribute to a greater understanding of the evolution and ecology of AstVs, although additional studies will be needed to understand the clinical significance of these novel AstVs in marmots, as well as in humans.
Collapse
Affiliation(s)
- Yuan-Yun Ao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Jie-Mei Yu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Li-Li Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Jing-Yuan Cao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| | - Hong-Yan Deng
- Medical College of Qingdao University, Qingdao 266021, Shandong, PR China
| | - Yun-Yun Xin
- The First Affiliated Hospital of Hunan Normal University, Changsha 410000, Hunan, PR China
| | - Meng-Meng Liu
- Medical College of Qingdao University, Qingdao 266021, Shandong, PR China
| | - Lin Lin
- Shandong Center for Disease Control and Prevention, Jinan 250014, Shandong, PR China
| | - Shan Lu
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
| | - Jian-Guo Xu
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, PR China
| | - Zhao-Jun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 100052, PR China
| |
Collapse
|