1
|
Shen D, Yu H, Wang L, Wang Y, Hong Y, Li C. Molecular Docking-Guided Design on Glucose-Responsive Nanoparticles for Microneedle Fabrication and "Three-Meal-per-Day" Blood-Glucose Regulation. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37339143 DOI: 10.1021/acsami.3c06483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
It was greatly significant, but difficult, to develop stimulus-responsive polymeric nanoparticles with efficient protein-loading and protein-delivering properties. Crucial obstacles were the ambiguous protein/nanoparticle-interacting mechanisms and the corresponding inefficient trial-and-error strategies, which brought large quantities of experiments in design and optimization. In this work, a molecular docking-guided universal "segment-functional group-polymer" process was proposed to simplify the previous laborious experimental step. The insulin-delivering glucose-responsive polymeric nanoparticles for diabetic treatments were taken as the examples. The molecular docking study obtained insights from the insulin/segment interactions. It was then experimentally confirmed in six functional groups for insulin-loading performances of their corresponding polymers. The optimization formulation was further proved effective in blood-glucose stabilization on the diabetic rats under the "three-meal-per-day" mode. It was believed that the molecular docking-guided designing process was promising in the protein-delivering field.
Collapse
Affiliation(s)
- Di Shen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yichuan Hong
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chengjiang Li
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, P. R. China
| |
Collapse
|
2
|
Natural Polysaccharide-Based Nanodrug Delivery Systems for Treatment of Diabetes. Polymers (Basel) 2022; 14:polym14153217. [PMID: 35956731 PMCID: PMC9370904 DOI: 10.3390/polym14153217] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, natural polysaccharides have been considered as the ideal candidates for novel drug delivery systems because of their good biocompatibility, biodegradation, low immunogenicity, renewable source and easy modification. These natural polymers are widely used in the designing of nanocarriers, which possess wide applications in therapeutics, diagnostics, delivery and protection of bioactive compounds or drugs. A great deal of studies could be focused on developing polysaccharide nanoparticles and promoting their application in various fields, especially in biomedicine. In this review, a variety of polysaccharide-based nanocarriers were introduced, including nanoliposomes, nanoparticles, nanomicelles, nanoemulsions and nanohydrogels, focusing on the latest research progress of these nanocarriers in the treatment of diabetes and the possible strategies for further study of polysaccharide nanocarriers.
Collapse
|
3
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
4
|
Yang Y, Jin YJ, Jia X, Lu SK, Fu ZR, Liu YX, Liu Y. Supramolecular Hyaluronic Assembly with Aggregation-Induced Emission Mediated in Two Stages for Targeting Cell Imaging. ACS Med Chem Lett 2020; 11:451-456. [PMID: 32292549 PMCID: PMC7153013 DOI: 10.1021/acsmedchemlett.9b00559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/28/2020] [Indexed: 01/25/2023] Open
Abstract
Supramolecular aggregation-induced emission (AIE) has become a research hotspot in cell imaging. Herein, supramolecular assembly with AIE effect was constructed in two stages, where adamantane modified tetraphenylethene self-assembly emitted weak fluorescence, and then after adding β-cyclodextrin modified hyaluronic acid, the formed nanoparticles enhanced AIE fluorescence for targeted cancer cell imaging.
Collapse
Affiliation(s)
- Yang Yang
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ya-Jun Jin
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Xin Jia
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shi-Kuo Lu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Ze-Rui Fu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yu-Xi Liu
- School
of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yu Liu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Zhang YH, Wang J, Xin S, Wang LJ, Sheng X. Antitumor Activity of Cyclodextrin-based Supramolecular Platinum Prodrug In vitro and In vivo. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180816666190618114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Considering the limitations of cisplatin in clinical application, there is
ongoing research to fabricate new platinum-containing prodrug which are highly effective to tumor
cells and have low toxicity to normal cells.
Methods:
In this study, a cyclodextrin-based supramolecular platinum prodrug that is 6,6’-ophenylenediseleno-
bridged bis (β-cyclodextrin)s (CD) and its potassium tetrachloroplatinate(II)
complex was reported. The cytotoxicity experiments were performed to evaluate the anticancer
activities of supramolecular prodrug in vitro by means of MTT assay. The practical application of
supramolecular prodrug in tumor treatment in vivo were evaluated using BALB/c nude mice model
bearing Hela cancer cells.
Results:
Compared with commercial anticancer drug cisplatin, the resultant cyclodextrin-based
platinum prodrug exhibited comparative anticancer effect but with much lower toxicity side effects
in vitro and in vivo.
Conclusion:
The cyclodextrin-based supramolecular platinum prodrug displayed antitumor activity
comparable to the commercial antitumor drug cisplatin but with lower side effects both in vitro and
in vivo, implying that the two adjacent cyclodextrin cavities not merely act as desired solubilizer,
but also endowed the prodrug with cell permeability through the interaction of cyclodextrin with
phospholipids and cholesterol on cell membrane.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jie Wang
- Office of Academic Affairs, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Siqintana Xin
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Li-Juan Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
6
|
Jiaojiao Y, Sun C, Wei Y, Wang C, Dave B, Cao F, Liandong H. Applying emerging technologies to improve diabetes treatment. Biomed Pharmacother 2018; 108:1225-1236. [PMID: 30372824 DOI: 10.1016/j.biopha.2018.09.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 10/28/2022] Open
Abstract
Insulin, as the most important drug for the treatment of diabetes, can effectively control the blood glucose concentration in humans. Due to its instability, short half-life, easy denaturation and side effects, the administration way of insulin are limited to subcutaneous injection accompany with poor glucose control and low patient compliance. In recent years, emerging insulin delivery systems have been developed in diabetes research. In this review, a variety of stimuli-responsive insulin delivery systems with their response mechanism and regulation principle are described. Further, the introduction of stem cell transplantation and mobile application based delivery technologies are prudent for the diabetes treatment. This article also discusses the advantages and limitations of current strategies, along with the opportunities and challenges for future insulin therapy.
Collapse
Affiliation(s)
- Yu Jiaojiao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Caifeng Sun
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Yuli Wei
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Chaoying Wang
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | | | - Fei Cao
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China
| | - Hu Liandong
- School of Pharmaceutical Sciences, Hebei University, Baoding, China; Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding, China.
| |
Collapse
|
7
|
Zhao L, Xiao C, Wang L, Gai G, Ding J. Glucose-sensitive polymer nanoparticles for self-regulated drug delivery. Chem Commun (Camb) 2018; 52:7633-52. [PMID: 27194104 DOI: 10.1039/c6cc02202b] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glucose-sensitive drug delivery systems, which can continuously and automatically regulate drug release based on the concentration of glucose, have attracted much interest in recent years. Self-regulated drug delivery platforms have potential application in diabetes treatment to reduce the intervention and improve the quality of life for patients. At present, there are three types of glucose-sensitive drug delivery systems based on glucose oxidase (GOD), concanavalin A (Con A), and phenylboronic acid (PBA) respectively. This review covers the recent advances in GOD-, Con A-, or PBA-mediated glucose-sensitive nanoscale drug delivery systems, and provides their major challenges and opportunities.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Liyan Wang
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Guangqing Gai
- Laboratory of Building Energy-Saving Technology Engineering, College of Material Science and Engineering, Jilin Jianzhu University, Changchun 130118, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
8
|
Elshaarani T, Yu H, Wang L, Zain-ul-Abdin ZUA, Ullah RS, Haroon M, Khan RU, Fahad S, Khan A, Nazir A, Usman M, Naveed KUR. Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery. J Mater Chem B 2018; 6:3831-3854. [DOI: 10.1039/c7tb03332j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In past few years, phenylboronic acids (PBAs) have attracted researcher's attention due to their unique responsiveness towards diol-containing molecules such as glucose.
Collapse
|
9
|
Du J, Zhang P, Zhao X, Wang Y. An easy gene assembling strategy for light-promoted transfection by combining host-guest interaction of cucurbit[7]uril and gold nanoparticles. Sci Rep 2017; 7:6064. [PMID: 28729541 PMCID: PMC5519635 DOI: 10.1038/s41598-017-06449-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/13/2017] [Indexed: 01/05/2023] Open
Abstract
Cucurbit[7]uril (CB[7]), a representative member of the host family cucurbit[n]uril, can host-guest interact with many guest molecules such as adamantane, viologen and naphthalene derivatives. This host-guest interaction provides an easy strategy in gene vector assembling. Furthermore, CB[7] can self-assemble on gold nanospheres (AuNSs). Herein, the combination of CB[7] and AuNSs provides both advantages of host-guest interaction and photo-thermal effect of AuNSs. In this study, polyethyleneimine (PEI) and polyethylene glycol (PEG) were separately interacted with CB[7] via host-guest interaction. Then by assembling on AuNSs, PEI and PEG were combined together to condense DNA into polyplexes as well as enhance circulation stability of the polyplexes. These gene vectors were found to have high cellular uptake efficiency and low cytotoxicity. Furthermore, the well distributed AuNSs in the polyplexes could transform light into heat under light exposure because of the photo-thermal effect. This was found to effectively promote the entry of gene into cytoplasm and highly enhanced gene transfection efficiency.
Collapse
Affiliation(s)
- Jianwei Du
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Peng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiao Zhao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Youxiang Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
| |
Collapse
|
10
|
S S, S M, P S L S, S S, S B, V P. Hydrophilic poly (ethylene glycol) capped poly (lactic-co-glycolic) acid nanoparticles for subcutaneous delivery of insulin in diabetic rats. Int J Biol Macromol 2016; 95:1190-1198. [PMID: 27825822 DOI: 10.1016/j.ijbiomac.2016.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/27/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
The aim of the present study is to evaluate the effect of insulin loaded poly(ethylene glycol) capped poly(lactic-co-glycolic)acid nanoparticles (ISPPLG NPs) by subcutaneous administration in diabetic rats. A series of biodegradable low molecular weight PLGA [90/10 (PLG2) and 80/20 (PLG4)] copolymers were synthesized by melt polycondensation and their ISPPLG NPs were synthesized by water-oil-water (W/O/W) emulsion solvent evaporation method. The PLGA copolymers and their nanoparticles were characterized. The maximum encapsulation efficiency of ISPPLG4 NPs is 66% and the diameter of the nanoparticles is about 140nm. The in-vivo studies of ISPPLG NPs carried out in diabetic rats by subcutaneous administration show considerable reduction in serum glucose level along with partial restoration of tissue defense systems. Histopathological studies reveal that ISPPLG NPs could restore the damages caused by oxidants during hyperglycaemia. The subcutaneous administration of ISPPLG4 NPs is thus an effective method of reducing hyperglycaemia associated complications.
Collapse
Affiliation(s)
- Saravanan S
- Department of Veterinary Biochemistry, Madras Veterinary College, Chennai, 600007, Tamilnadu, India
| | - Malathi S
- Department of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai, 600025, Tamilnadu, India
| | - Sesh P S L
- Department of Veterinary Biochemistry, Madras Veterinary College, Chennai, 600007, Tamilnadu, India
| | - Selvasubramanian S
- Department of Veterinary Pharmacology and Toxicology, Madras Veterinary College, Chennai, 600007, Tamilnadu, India
| | - Balasubramanian S
- Department of Inorganic Chemistry, Guindy Campus, University of Madras, Chennai, 600025, Tamilnadu, India.
| | - Pandiyan V
- Department of Veterinary Biochemistry, Madras Veterinary College, Chennai, 600007, Tamilnadu, India
| |
Collapse
|
11
|
Huang Z, Zhang YM, Cheng Q, Zhang J, Liu YH, Wang B, Yu XQ. Structure–activity relationship studies of symmetrical cationic bolasomes as non-viral gene vectors. J Mater Chem B 2016; 4:5575-5584. [DOI: 10.1039/c6tb00870d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bolalipids based on lysine or cyclen headgroups were synthesized and their structure–activity relationship as gene delivery vectors was studied.
Collapse
Affiliation(s)
- Zheng Huang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yi-Mei Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qian Cheng
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Ji Zhang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yan-Hong Liu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Bing Wang
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Qi Yu
- Key Laboratory of Green Chemistry & Technology (Ministry of Education)
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|