1
|
Salvarani FM, Vieira EV. Clostridial Infections in Cattle: A Comprehensive Review with Emphasis on Current Data Gaps in Brazil. Animals (Basel) 2024; 14:2919. [PMID: 39457848 PMCID: PMC11506116 DOI: 10.3390/ani14202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Clostridial infections in cattle are a significant concern for Brazilian livestock. These diseases are caused by various species of Clostridium, which are known for their ability to produce potent toxins. Botulism in cattle is a serious and often fatal condition caused by the ingestion of neurotoxins produced by C. botulinum. This bacterium thrives in decomposing organic matter, such as spoiled feed, carcasses, and contaminated water. Tetanus is less common, but it is a serious disease that follows the contamination of wounds with Clostridium tetani spores. It results in muscle stiffness, spasms, and often death due to respiratory failure. Blackleg (C. chauvoei) is a disease that primarily affects young cattle, leading to acute lameness, swelling, and high fever. Malignant edema (C. septicum and others) is characterized by rapid onset of swelling at wound sites, and it can occur after injuries or surgical procedures. Enterotoxemia is triggered by the rapid growth of C. perfringens in the gut following excessive carbohydrate intake. This leads to toxin production that causes sudden death. In conclusion, clostridial bovine infections remain a persistent challenge for Brazilian cattle farmers. With continued focus on vaccination, good management practices, and research, the impact of these diseases can be minimized, safeguarding the livestock industry's economic viability.
Collapse
Affiliation(s)
- Felipe Masiero Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal 68740-970, PA, Brazil
| | | |
Collapse
|
2
|
Hamzavipour R, Zahmatkesh A, Paradise A, Hosseini F. Protection efficacy and immunogenicity of Clostridium chauvoei proteins as a subunit blackleg vaccine or an adjuvant for Clostridium perfringens epsilon toxoid. Toxicon 2024; 251:108124. [PMID: 39395742 DOI: 10.1016/j.toxicon.2024.108124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Potential application of Clostridium chauvoei proteins was studied as a subunit blackleg vaccine or a biological adjuvant for Clostridium perfringens epsilon toxoid vaccine. Extracellular and cell surface proteins were extracted from C. chauvoei culture, and their protective efficacy was evaluated by potency test in guinea pigs. In order to investigate the effect of cell surface proteins on C. perfringens epsilon toxoid immunogenicity, rabbits were inoculated subcutaneously twice with: C. perfringens type D toxoid supernatant +200 μg C. chauvoei cell surface proteins (PR-200), toxoid supernatant + 400 μg cell surface proteins (PR-400), inactivated C. perfringens type D vaccine (Vac), toxoid supernatant (Tox), or PBS. Isolation of cell surface proteins yielded about 2.5 mg/L culture protein with a sharp band at 43 kDa probably corresponding to flagellin. Potency test demonstrated the protection ability of both cellular and extracellular proteins of C. chauvoei. ELISA showed that the highest antibody titers against epsilon toxoid belonged to PR-400 and Vac groups. The effect of days post immunization on antibody response was not significant. No significant difference was observed between PR-400 and Vac, as well as PR-200 and Tox groups. Clostridium chauvoei cell surface proteins may have the potential for application as a blackleg disease vaccine and an adjuvant for clostridial toxoids.
Collapse
Affiliation(s)
- Roxana Hamzavipour
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| | - Azadeh Zahmatkesh
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
| | - Alireza Paradise
- Department of Anaerobic Bacterial Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Farzaneh Hosseini
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
3
|
Motta JF, Ferreira MRA, Waller SB, Rodrigues RR, Donassolo RA, Moreira Júnior C, Alves MLF, Feijó FD, Conceição FR. Immunogenicity of a pentavalent recombinant Escherichiacoli bacterin against enterotoxemia and botulism in sheep. Anaerobe 2024; 89:102895. [PMID: 39122140 DOI: 10.1016/j.anaerobe.2024.102895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/24/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Producing commercial bacterins/toxoids against Clostridium spp. is laborious and hazardous. Conversely, developing prototype vaccines using purified recombinant toxoids, though safe and effective, is both laborious and costly for application in production animals. OBJECTIVE Considering that inactivated recombinant Escherichiacoli (bacterin) is a simple, cost-effective, and to be safe solution, we evaluated, for the first time, a pentavalent formulation of recombinant bacterins containing the alpha, beta, and epsilon toxins of Clostridiumperfringens and C and D neurotoxins of Clostridiumbotulinum in sheep. METHODS Subcutaneously, 18 Texel sheep received two doses (200 μg of each antigen) of recombinant bacterin (n = 7) or purified recombinant antigens (n = 6) on days 0 and 28, while the control group (n = 5) did not receive an immunization. Sera samples from days 0 (before the 1st dose), 28 (before the 2nd dose), and 56, 84, and 112 were used for measuring IgG (indirect ELISA) and neutralizing antibodies (mouse serum neutralization). RESULTS Both formulations induced significant levels of IgG against all five toxins (p < 0.05) up to day 112, with peaks at days 28 and 56 post-immunization. The expected booster effect occurred only for the botulinum toxins. The neutralizing antibody titers were satisfactory against ETX (≥2 IU/ml for both formulations) and BoNT-D [5 IU/ml (bacterin) and 10 IU/ml (purified)]. CONCLUSION While adjustments are required, the recombinant bacterin platform holds great potential for polyvalent vaccines due to its straightforward, safe, and cost-effective production, establishing it as a user-friendly technology for the veterinary immunobiological industry.
Collapse
Affiliation(s)
- Jaqueline Freitas Motta
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Marcos Roberto A Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil.
| | - Stefanie Bressan Waller
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil; Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Rafael Amaral Donassolo
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Clóvis Moreira Júnior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil; Instituto Federal Sul-rio-grandense (IFSul), Campus Pelotas, Pelotas, RS, Brazil
| | - Fernanda Dornelles Feijó
- Departamento de Zootecnia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabricio Rochedo Conceição
- Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil; Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas (UFPEL), Pelotas, RS, Brazil
| |
Collapse
|
4
|
Rodrigues Rodrigues R, Freitas Motta J, Alves Ferreira MR, Moreira Júnior C, Ferreira Alves ML, Costa AV, Andrade Bilhalva M, Amaral Donassolo R, Cancela Galvão C, Silva Martins FM, Masiero Salvarani F, Rochedo Conceição F. Immunization of sheep with a recombinant vaccine containing immunogenic nontoxic domains of Clostridium perfringens alpha and beta toxins. Microb Pathog 2023; 182:106269. [PMID: 37516212 DOI: 10.1016/j.micpath.2023.106269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Clostridium perfringens (types A and C) can cause several diseases by secreting alpha (CPA) and beta (CPB) exotoxins in the gastrointestinal tract. Although vaccination is the main measure of immunization against C. perfringens, available vaccines have limitations in terms of productivity and safety. Thus, recombinant vaccines are an important, more effective, practical, and safer strategy in the immunization of animals. In this study, we evaluated the immunization of sheep with recombinant Escherichia coli bacterins expressing CPA and CPB complete proteins (co-administered), the immunogenic nontoxic domains rCPA-C247-370 and rCPB-C143-311 co-administered or fused as a bivalent chimera (rCPBcAc). For this, in silico analysis was performed to design rCPBcAc, considering the stability of the mRNA (-278.80 kcal/mol), the degree of antigenicity (0.7557), the epitopes of the B cell ligand, and different physicochemical characteristics. All proteins were expressed in vitro. In vivo, animals vaccinated with the co-administered antigens rCPA + rCPB and rCPA-C+ rCPB-C (200 μg each) had mean CPA and CPB neutralizing antitoxin titers of 4, 10, 4.8, and 14.4 IU/mL, respectively, while those vaccinated with 200 μg of rCPBcAc chimera (approximately 100 μg of each antigen) had titers of <4 and 12 IU/mL of CPA and CPB antitoxins, respectively, 56 days after the administration of the first dose. In addition, the chimera was considered to be immunogenic for inducing antitoxin titers using the half dose. In this study, we presented a new recombinant antigen potentially applicable for vaccines against the CPA and CPB toxins for preventing diseases caused by Clostridium perfringens.
Collapse
Affiliation(s)
- Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil.
| | - Jaqueline Freitas Motta
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | | | - Clóvis Moreira Júnior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil; Instituto Federal Sul-rio-grandense, IFSul, Campus Pelotas, RS, Brazil
| | - Ana Vitória Costa
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Miguel Andrade Bilhalva
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Rafael Amaral Donassolo
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | - Cleideanny Cancela Galvão
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | | | | | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil; Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Du J, Wang T, Xu L, Wang C, Liu Y, Pan C, Chen X, Zhu Z, Luo Y, Yin C. Clostridium perfringens epsilon prototoxin mutant rpETX Y30A/Y71A/H106P/Y196A as a vaccine candidate against enterotoxemia. Vaccine 2023:S0264-410X(23)00719-3. [PMID: 37357076 DOI: 10.1016/j.vaccine.2023.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Epsilon toxin (ETX) is secreted by Clostridium perfringens (C. perfringens)as a relatively inactive prototoxin (pETX), which is enzymatically activated to ETX by removing carboxy-terminal and amino-terminal peptides. Genetically engineered ETX mutants have been shown to function as potential vaccine candidates in the prevention of the enterotoxemia caused by C. perfringens. In the present study, two recombinant site-directed mutants of pETX, rpETXY30A/Y71A/H106P/Y196A (rpETXm41) and rpETXY30A/H106P/Y196A/F199E (rpETXm42), were synthesized by mutating four essential amino acid residues (Tyr30, Tyr71, His106, Tyr196 or Phe199). Compared to recombinant pETX (rpETX), both rpETXm41 and rpETXm42 lacked the detectable toxicity in MDCK cells and mice, which suggested that both rpETXm41 and rpETXm42 are sufficiently safe to be vaccine candidates. Despite the fact that rpETXm41 and rpETXm42 were reactogenic with polyclonal antibodies against crude ETX, both single- and double-dose vaccination (Vs and Vd, respectively) of rpETXm41 induced a higher level of IgG titer and protection in mice than that of rpETXm42. Therefore, we selected rpETXm41 for the further study. Sheep received Vs of 150 μg rpETXm41 developed significant levels of toxin-neutralizing antibodies persisting for at least 6 months, which conferred protection against crude ETX challenge without microscopic lesions. These data suggest that genetically detoxified rpETXY30A/Y71A/H106P/Y196A could form the basis of a next-generation enterotoxemia vaccine.
Collapse
Affiliation(s)
- Jige Du
- China Institute of Veterinary Drug Control, Beijing, PR China.
| | - Tuanjie Wang
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Lei Xu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Cong Wang
- China Animal Husbandry Industry Co., Ltd., Beijing 100070, PR China
| | - Ying Liu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Chenfan Pan
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Xiaoyun Chen
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Zhen Zhu
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Yufeng Luo
- China Institute of Veterinary Drug Control, Beijing, PR China
| | - Chunsheng Yin
- China Institute of Veterinary Drug Control, Beijing, PR China.
| |
Collapse
|
6
|
A non-toxic recombinant bivalent chimeric protein rETX m3CSA m4/TMD as a potential vaccine candidate against enterotoxemia and braxy. Vaccine 2023; 41:1232-1238. [PMID: 36635138 DOI: 10.1016/j.vaccine.2022.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 01/11/2023]
Abstract
Clostridium perfringens epsilon toxin (ETX) and Clostridium septicum alpha toxin (CSA) are lethal and necrotizing toxins, which play key roles in enterotoxemia and braxy of ruminants, respectively. In the present study, we synthesized a bivalent chimeric protein rETXm3CSAm4/TMD comprising ETXm3 (Y30A/H106P/Y196A) and CSAm4/TMD (C86L/N296A/H301A/W342A and a deletion of residues 212 to 222). Compared with recombinant ETX and recombinant CSA, rETXm3CSAm4/TMD showed no cytotoxicity in Madin-Darby Canine Kidney cells and was not fatal to mice. Moreover, rETXm3CSAm4/TMD could protect immunized mice against 10 × mouse LD100 of crude ETX or 3 × mouse LD100 of crude CSA without obvious histopathologic difference. Most importantly, both rabbits and sheep immunized with rETXm3CSAm4/TMD produced high titers of neutralizing antibody which protected the animals against the challenge with crude ETX or crude CSA. These data suggest that genetically detoxified rETXm3CSAm4/TMD is a potential subunit vaccine candidate against enterotoxemia and braxy.
Collapse
|
7
|
Saadh MJ, Lafi FF, Dahadha AA, Albannan MS. Immunogenicity of a newly developed vaccine against Clostridium perfringens alpha-toxin in rabbits and cattle. Vet World 2022; 15:1617-1623. [PMID: 36185515 PMCID: PMC9394151 DOI: 10.14202/vetworld.2022.1617-1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Clostridium perfringens type A is an anaerobic bacterium that produces four major toxins (alpha, beta, epsilon, and iota) that cause various diseases. Most of the important C. perfringens-associated diseases of farm animals are caused by alpha-toxin. This study aimed to produce a vaccine against alpha-toxin using C. perfringens type A (ATCC 13124) and investigate its potency, stability, and safety.
Materials and Methods: The vaccine was formulated of its constituents for 1 h. Each milliliter of the final vaccine product contained alpha toxoid 15 lecithovitellinase activity (Lv) by adding (0.375 mL containing 40 Lv) and approximately 0.2 mL from 3% concentrated aluminum hydroxide gel, <0.001% W/V thiomersal, <0.05% W/V formaldehyde, and nearly 0.425 mL phosphate-buffered saline (pH 7.2). The vaccine efficacy was evaluated in rabbits and cattle by performing potency, stability, and safety tests.
Results: The vaccine produced approximately 8.8 and 4.9 IU/mL neutralizing antibodies in rabbits and cattle, respectively. These concentrations were higher than the lowest concentration recommended by various international protocols and the United States Department of Agriculture by 2.20-fold in rabbits and 1.23-fold in cattle. Interestingly, the formulated vaccine enhanced immune responses by 1.80-fold in rabbits compared with that in cattle; the difference was statistically significant (p < 0.0001). The vaccine was stable for 30 months. In vaccinated rabbits, the body temperature slightly increased temporarily during the first 10 h of vaccination; however, the temperature difference was not statistically significant (p > 0.05).
Conclusion: This study describes a manufacturing process to obtain sufficient amounts of a vaccine against C. perfringens alpha-toxin. The formulated vaccine effectively elicited a higher level of neutralizing antibody response than the international standards. Furthermore, the vaccine was found to be stable, safe, and effective in preventing C. perfringens-related diseases in rabbits and cattle. Further studies are necessary to evaluate the efficacy of this vaccine in other farm animals.
Collapse
Affiliation(s)
- Mohamed J. Saadh
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Feras F. Lafi
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Adnan A. Dahadha
- Department of Genetic Engineering and Biotechnology, Faculty of Science, Philadelphia University, Jordan
| | - Mohamed S. Albannan
- Department of Research and development, Biotechnology Research Center, 23 July St., Industrial Zone, New Damietta, 34517, Egypt
| |
Collapse
|
8
|
Alves MLF, Ferreira MRA, Rodrigues RR, Conceição FR. Clostridium haemolyticum, a review of beta toxin and insights into the antigen design for vaccine development. Mol Immunol 2022; 148:45-53. [PMID: 35665660 DOI: 10.1016/j.molimm.2022.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/01/2022] [Accepted: 05/16/2022] [Indexed: 01/03/2023]
Abstract
Phospholipases C (PLCs) represent an important group of lethal toxins produced by pathogenic bacteria of the Clostridium genus, including the beta toxin of C. haemolyticum. Bacillary hemoglobinuria in cattle and sheep is the main disease caused by this pathogen and its incidence can be reduced by annual vaccination of herds. Currently, widely used vaccines depend on cultivating the pathogen and obtaining high concentrations of the toxin, disadvantages that can be overcome with the use of recombinant vaccines. In the development of this new generation of immunizing agents, identifying and understanding the structural and immunological aspects of the antigen are crucial steps, but despite this, the beta toxin is poorly characterized. Fortunately, the time and resources required for these investigations can be reduced using immunoinformatics. To advance the development of recombinant vaccines, in addition to a brief review of the structural and immunological aspects of beta toxin, this work provides in silico mapping of immunodominant regions to guide future vaccinology studies against C. haemolyticum. A review of alternatives to overcome the limitations of beta toxin vaccines (conventional or recombinant) is also proposed.
Collapse
Affiliation(s)
- Mariliana Luiza Ferreira Alves
- Instituto Federal Sul-rio-grandense - IFSUL, Praça Vinte de Setembro, 455, Centro, Pelotas CEP 96.015-360, RS, Brazil; Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil.
| | - Marcos Roberto Alves Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil
| | - Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, CP 354, Pelotas CEP 96.160-000, RS, Brazil
| |
Collapse
|
9
|
Recombinant Escherichia coli Cell Lysates as a Low-Cost Alternative for Vaccines Against Veterinary Clostridial Diseases. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:105-115. [PMID: 34816401 DOI: 10.1007/978-1-0716-1888-2_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This chapter describes a practical, industry-friendly, and efficient vaccine protocol based on the use of Escherichia coli cell fractions (inclusion bodies or cell lysate supernatant) containing the recombinant antigen. This approach was characterized and evaluated in laboratory and farm animals by the seroneutralization assay in mice, thereby showing to be an excellent alternative to induce a protective immune response against clostridial diseases.
Collapse
|
10
|
Immunogenic and neutralization efficacy of recombinant perfringolysin O of Clostridium perfringens and its C-terminal receptor-binding domain in a murine model. Immunol Res 2022; 70:240-255. [PMID: 35032316 PMCID: PMC8760870 DOI: 10.1007/s12026-021-09254-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/27/2021] [Indexed: 11/05/2022]
Abstract
Clostridium perfringens is a Gram-positive anaerobe ubiquitously present in different environments, including the gut of humans and animals. C. perfringens have been classified in the seven toxinotypes based on the secreted toxins that cause different diseases in humans and animals. Perfringolysin O (PFO), a cholesterol-dependent pore-forming cytolysin, is one of the potent toxins secreted by almost all C. perfringens isolates. The PFO acts in synergy with α-toxin in the progression of gas gangrene in humans and necrohemorrhagic enteritis in the calves.C. perfringens infections spread very fast, and the animals die within a few hours of the onset of infection. This necessitates the use of vaccines to control clostridial infections. Though the vaccine potential of other toxins has been reported, PFO has remained unexplored. The present study describes the immunogenic and protective potential of native recombinant PFO (WTrPFO). Since the PFO is toxic to the host cells, the non-toxic C-terminal domain of PFO (rPFOC-ter) was also assessed for its immunogenicity and protective efficacy. Immunization of mice with the purified soluble recombinant histidine-tagged WTrPFO and rPFOC-ter, expressed in E. coli, generated robust mixed immune response and T cell memory. Pre-incubation of the WTrPFO with anti-WTrPFO and rPFOC-ter antisera negated its hemolytic activity in mice RBCs, as well as its cytotoxic effect in mice peritoneal macrophages in vitro. Thus, immunization with the WTrPFO and its non-toxic C-terminal domain generated neutralizing antibodies, suggesting their vaccine potential against the PFO. Thus, the non-toxic C-terminal domain of PFO could serve as an alternative to PFO as a vaccine candidate.
Collapse
|
11
|
Alves MLF, Moreira GMSG, Ferreira MRA, Donassolo RA, Moreira C, Rodrigues RR, Conceição FR. Clostridium spp. Toxins: A Practical Guide for Expression and Characterization in Escherichia coli. Methods Mol Biol 2022; 2411:117-125. [PMID: 34816402 DOI: 10.1007/978-1-0716-1888-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Farm animals are frequently affected by a group of diseases with a rapid clinical course, caused by Clostridium spp. and immunization is essential to provide protection. However, the current manufacturing platform for these vaccines has disadvantages and the main alternative is the use of an expression system that uses Escherichia coli to obtain recombinant vaccine antigens. In this chapter we describe procedures for cloning, expression and characterization of recombinant toxins from Clostridium spp. produced in E. coli for veterinary vaccine applications.
Collapse
Affiliation(s)
| | | | | | - Rafael Amaral Donassolo
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Clóvis Moreira
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Rafael Rodrigues Rodrigues
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabricio Rochedo Conceição
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil.
| |
Collapse
|
12
|
Poorhassan F, Nemati F, Saffarian P, Mirhosseini SA, Motamedi MJ. Design of a chitosan-based nano vaccine against epsilon toxin of Clostridium perfringens type D and evaluation of its immunogenicity in BALB/c mice. Res Pharm Sci 2021; 16:575-585. [PMID: 34760006 PMCID: PMC8562408 DOI: 10.4103/1735-5362.327504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/03/2021] [Accepted: 09/26/2021] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Clostridium perfringens is an anaerobic, spore-forming, and pathogenic bacterium that causes intestinal diseases in humans and animals. In these cases, therapeutic intervention is challenging; because the disease progresses much rapidly. This bacterium can produce 5 main toxins (alpha, beta, epsilon, iota, and a type of enterotoxin) among which the epsilon toxin (ETX) is used for bioterrorism. This toxin can be prevented by immunization with specific immunogenic vaccines. In the present research, we aimed at developing a recombinant chitosan-based nano-vaccine against ETX of C. perfringens and evaluate its effects on the antibody titration against epsilon toxin in BALB/c mice as the vaccine model. Experimental approach The etx gene from C. perfringens type D was cloned and expressed in E. coli. After analysis by SDS-PAGE and western blotting, the expressed products were purified, and the obtained proteins were used for immunization in mice as a chitosan nanoparticle containing recombinant, purified ETX, and protein. Findings/Results The results of ELISA showed that IgA antibody serum level increased sufficiently using recombinant protein with nanoparticle as an oral and injectable formulation. IgG antibody titers increased significantly after administrating the recombinant proteins with nanoparticles through both oral delivery and intravenous injection. Conclusion and implication In conclusion, the recombinant ETX is suggested as a good candidate for vaccine production against diseases caused by ETX of C. perfringens type D.
Collapse
Affiliation(s)
- Farnaz Poorhassan
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, I.R. Iran
| | - Parvaneh Saffarian
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, I.R. Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, I.R. Iran
| | - Mohammad Javad Motamedi
- Molecular Biology Department, Green Gene Company, Tehran, I.R. Iran.,Department of Molecular Biology and Genetic Engineering, Stem Cell Technology Research Center, Tehran, I.R. Iran
| |
Collapse
|
13
|
Oliveira RDC, de Oliveira Júnior CA, Alves GG, Assis RA, Silva ROS, de Sousa Xavier MA, Lobato FCF. Cattle and goats' humoral response to vaccination with Clostridium perfringens type D purified epsilon toxoids. Anaerobe 2021; 72:102465. [PMID: 34662696 DOI: 10.1016/j.anaerobe.2021.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/30/2022]
Abstract
Herd vaccination is an important preventive measure against enterotoxemia in ruminants. Vaccination in goats should be performed every four months, and recent studies have shown that immunity in cattle lasts for less than one year. One of the mechanisms for increasing the duration of the immune response is to use purified toxoids as immunogens. The aim of the present study was to evaluate the humoral response in cattle and goats after vaccination with purified and semi-purified Clostridium perfringens type D epsilon toxoid. The following three different vaccines were used: vaccine 1 (V1), a semi-purified toxoid adsorbed to aluminum hydroxide; vaccine 2 (V2), a purified toxoid adsorbed to aluminum hydroxide; and vaccine (V3), a purified toxoid adsorbed on chitosan microparticles. Groups of cattle (n = 6-7) and goats (n = 6-7) were vaccinated on days 0 and 30, and serum samples for antitoxin titration were collected every 30 days for one-year post-vaccination. Goats were revaccinated on day 360, and their serum was evaluated on days 367 and 374. The antibody peaks ranged between 6.90 and 11.47 IU/mL in cattle and from 1.11 to 4.40 IU/mL in goats. In cattle administered with the V1 and V2 vaccines, we observed that the antibody titers were maintained above 0.2 IU/mL until the end of the experiment. In goats, V2 elicited long-lasting antibodies, and all animals maintained the protective titers for 210 days after the first dose. In conclusion, the purified toxoid vaccine with aluminum hydroxide adjuvant was able to induce strong and long-lasting humoral responses in both species and could be an alternative for improving the immunization schedule against enterotoxemia in goats and cattle.
Collapse
Affiliation(s)
- Ricardo de Castro Oliveira
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, CEP 31.270-901, MG, Brazil; Merck Sharp & Dohme (MSD), Avenida Comendador Loureiro Ramos, 1500, Montes Claros, CEP 39.404-003, MG, Brazil
| | - Carlos Augusto de Oliveira Júnior
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, CEP 31.270-901, MG, Brazil
| | - Guilherme Guerra Alves
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, CEP 31.270-901, MG, Brazil
| | - Ronnie Antunes Assis
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, CEP 31.270-901, MG, Brazil; Merck Sharp & Dohme (MSD), Avenida Comendador Loureiro Ramos, 1500, Montes Claros, CEP 39.404-003, MG, Brazil
| | - Rodrigo Otávio Silveira Silva
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, CEP 31.270-901, MG, Brazil
| | - Mauro Aparecido de Sousa Xavier
- Universidade Estadual de Montes Claros (UNIMONTES), Avenida, Professor Rui Braga, S/N Montes Claros, CEP 39.401-089, MG, Brazil
| | - Francisco Carlos Faria Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, 6627, Belo Horizonte, CEP 31.270-901, MG, Brazil.
| |
Collapse
|
14
|
Measurement over 1 Year of Neutralizing Antibodies in Cattle Immunized with Trivalent Vaccines Recombinant Alpha, Beta and Epsilon of Clostridium perfringens. Toxins (Basel) 2021; 13:toxins13090594. [PMID: 34564599 PMCID: PMC8470993 DOI: 10.3390/toxins13090594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
The alpha (CPA), beta (CPB) and epsilon (ETX) toxins of Clostridium perfringens are responsible for causing diseases that are difficult to eradicate and have lethal potential in production animals. Vaccination of herds is still the best control strategy. Recombinant clostridial vaccines have shown good success at inducing neutralizing antibody titers and appear to be a viable alternative to the conventional production of commercial clostridial toxoids. Research is still needed on the longevity of the humoral immune response induced by recombinant proteins in immunized animals, preferably in target species. The objective of this study was to measure the humoral immune response of cattle immunized with trivalent vaccines containing the recombinant proteins alpha (rCPA), beta (rCPB) and epsilon (rETX) of C. perfringens produced in Escherichia coli at three different concentrations (100, 200, and 400 µg) of each protein for 12 months. The recombinant vaccines containing 200 (RV2) and 400 µg (RV3) yielded statistically similar results at 56 days. They performed better throughout the study period because they induced higher neutralizing antibody titers and were detectable for up to 150 and 180 days, respectively. Regarding industrial-scale production, RV2 would be the most economical and viable formulation as it achieved results similar to RV3 at half the concentration of recombinant proteins in its formulation. However, none of the vaccines tested induced the production of detectable antibody titers on day 365 of the experiment, the time of revaccination typically recommended in vaccination protocols. Thus, reiterating the need for research in the field of vaccinology to achieve greater longevity of the humoral immune response against these clostridial toxins in animals, in addition to the need to discuss the vaccine schedules and protocols adopted in cattle production.
Collapse
|
15
|
Freitas NFQR, Otaka DY, Galvão CC, de Almeida DM, Ferreira MRA, Moreira Júnior C, Hidalgo MMMH, Conceição FR, Salvarani FM. Humoral Immune Response Evaluation in Horses Vaccinated with Recombinant Clostridium perfringens Toxoids Alpha and Beta for 12 Months. Toxins (Basel) 2021; 13:566. [PMID: 34437437 PMCID: PMC8402361 DOI: 10.3390/toxins13080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
In horses, Clostridium perfringens is associated with acute and fatal enterocolitis, which is caused by a beta toxin (CPB), and myonecrosis, which is caused by an alpha toxin (CPA). Although the most effective way to prevent these diseases is through vaccination, specific clostridial vaccines for horses against C. perfringens are not widely available. The aim of this study was to pioneer the immunization of horses with three different concentrations (100, 200 and 400 µg) of C. perfringens recombinant alpha (rCPA) and beta (rCPB) proteins, as well as to evaluate the humoral immune response over 360 days. Recombinant toxoids were developed and applied to 50 horses on days 0 and 30. Those vaccines attempted to stimulate the production of alpha antitoxin (anti-CPA) and beta antitoxin (anti-CPB), in addition to becoming innocuous, stable and sterile. There was a reduction in the level of neutralizing anti-CPA and anti-CPB antibodies following the 60th day; therefore, the concentrations of 200 and 400 µg capable of inducing a detectable humoral immune response were not determined until day 180. In practical terms, 200 µg is possibly the ideal concentration for use in the veterinary industry's production of vaccines against the action of C. perfringens in equine species.
Collapse
Affiliation(s)
- Nayra F. Q. R. Freitas
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Brazil; (N.F.Q.R.F.); (D.Y.O.); (C.C.G.); (D.M.d.A.)
| | - Denis Y. Otaka
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Brazil; (N.F.Q.R.F.); (D.Y.O.); (C.C.G.); (D.M.d.A.)
| | - Cleideanny C. Galvão
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Brazil; (N.F.Q.R.F.); (D.Y.O.); (C.C.G.); (D.M.d.A.)
| | - Dayane M. de Almeida
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Brazil; (N.F.Q.R.F.); (D.Y.O.); (C.C.G.); (D.M.d.A.)
| | - Marcos R. A. Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul CEP 96160-000, Brazil; (M.R.A.F.); (C.M.J.); (F.R.C.)
| | - Clóvis Moreira Júnior
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul CEP 96160-000, Brazil; (M.R.A.F.); (C.M.J.); (F.R.C.)
| | - Marina M. M. H. Hidalgo
- Faculdade de Veterinária, Universidade Federal de Pelotas, Rio Grande do Sul CEP 96160-000, Brazil;
| | - Fabricio R. Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Rio Grande do Sul CEP 96160-000, Brazil; (M.R.A.F.); (C.M.J.); (F.R.C.)
| | - Felipe M. Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Brazil; (N.F.Q.R.F.); (D.Y.O.); (C.C.G.); (D.M.d.A.)
| |
Collapse
|
16
|
Sarmah H, Hazarika R, Tamuly S, Deka P, Manoharan S, Sharma RK. Evaluation of different antigenic preparations against necrotic enteritis in broiler birds using a novel Clostridium perfringens type G strain. Anaerobe 2021; 70:102377. [PMID: 33957249 DOI: 10.1016/j.anaerobe.2021.102377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/09/2021] [Accepted: 04/17/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Keeping in view, the constraints faced by the Indian broiler industry with lack of a suitable vaccine against Necrotic Enteritis (NE), a study has been proposed to explore the prevalence and detail characterization of C. perfringens type G in NE suspected broiler chicken in the process of suitable vaccine development. METHODS Intestinal scrapings/faecal contents of NE suspected broiler chickens were screened to establish the prevalence of C.perfringens type G in broiler birds. A most pathogenic, highly resistant type G isolate of C. perfringens, bearing both tpeL and gapC gene was selected for preparation of three different vaccine formulations, and to evaluate their immunogenic potential in broiler birds. RESULTS Screening of clinical samples of NE suspected broiler birds revealed C. perfringens type G, bearing gapC gene in 51.22% samples, of which 47.62% revealed tpeL gene. Seven of the tpeLpos type G isolates were comparatively more pathogenic for mice, of which, one exhibited multidrug resistance towards ciprofloxacin, norfloxacin, tetracycline and levofloxacin. The sonicated supernatant (SS) prepared from the selected tpeL and gapC positive isolate could maintain a significantly higher protective IgG response than toxoid and bacterin preparation from the 21st to 28thday of age in immunized birds. CONCLUSION The additional TpeL toxin in C. perfringens type G has been proved to be an additional key biological factor in the pathogenesis of NE in broiler chickens. Considering the release of more immunogenic proteins, the SS proved to be a better immunogenic preparation against NE with a multiple immunization dose.
Collapse
Affiliation(s)
- Hiramoni Sarmah
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Ritam Hazarika
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Shantonu Tamuly
- Department of Animal Biochemistry, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Pankaj Deka
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India
| | - Seeralan Manoharan
- Vaccine Research Centre-Bacterial Vaccines, Centre for Animal Health Studies, TANUVAS, Chennai, India
| | - Rajeev K Sharma
- Department of Microbiology, College of Veterinary Science, AAU., Khanapara, Guwahati, Assam, India.
| |
Collapse
|
17
|
Vaccination against pathogenic clostridia in animals: a review. Trop Anim Health Prod 2021; 53:284. [PMID: 33891221 PMCID: PMC8062623 DOI: 10.1007/s11250-021-02728-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/12/2021] [Indexed: 12/02/2022]
Abstract
Clostridium is a Gram-positive, rod-shaped, anaerobic, and spore-forming bacterium, which is found in the surrounding environments throughout the world. Clostridium species cause botulism, tetanus, enterotoxaemia, gas gangrene, necrotic enteritis, pseudomembranous colitis, blackleg, and black disease. Clostridium infection causes severe economic losses in livestock and poultry industries. Vaccination seems to be an effective way to control Clostridial diseases. This review discusses the toxins and vaccine development of the most common pathogenic Clostridium species in animals, including Clostridium perfringens, Clostridium novyi, Clostridium chauvoei, and Clostridium septicum. In this comprehensive study, we will review different kinds of clostridial toxins and the vaccines that are experimentally or practically available and will give a short description on each vaccine focusing on its applications, advantages, and disadvantages.
Collapse
|
18
|
Rodrigues RR, Alves Ferreira MR, Donassolo RA, Ferreira Alves ML, Motta JF, Junior CM, Salvarani FM, Moreira AN, Conceicao FR. Evaluation of the expression and immunogenicity of four versions of recombinant Clostridium perfringens beta toxin designed by bioinformatics tools. Anaerobe 2021; 69:102326. [PMID: 33508438 DOI: 10.1016/j.anaerobe.2021.102326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/02/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Beta toxins (CPB) produced by Clostridium perfringens type B and C cause various diseases in animals, and the use of toxoids is an important prophylactic measure against such diseases. Promising recombinant toxoids have been developed recently. However, both soluble and insoluble proteins expressed in Escherichia coli can interfere with the production and immunogenicity of these antigens. In this context, bioinformatics tools have been used to design new versions of the beta toxin, and levels of expression and solubility were evaluated in different strains of E. coli. The immunogenicity in sheep was assessed using the molecule with the greatest potential that was selected on analyzing these results. In silico analyzes, greater mRNA stability (-169.70 kcal/mol), solubility (-0.755), and better tertiary structure (-0.12) were shown by rCPB-C. None of the strains of E. coli expressed rFH8-CPB, but a high level of expression and solubility was shown by rCPB-C. Higher levels of total and neutralizing anti-CPB antibodies were observed in sheep inoculated with bacterins containing rCPB-C. Thus, this study suggests that due to higher productivity of rCPB-C in E. coli and immunogenicity, it is considered as the most promising molecule for the production of a recombinant vaccine against diseases caused by the beta toxin produced by C. perfringens type B and C.
Collapse
Affiliation(s)
| | | | - Rafael Amaral Donassolo
- Centro de Desenvolvimento Tecnológico/Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Mariliana Luiza Ferreira Alves
- Centro de Desenvolvimento Tecnológico/Biotecnologia, Universidade Federal de Pelotas, RS, Brazil; Instituto Federal Sul-rio-grandense, IFSul, Campus Pelotas, RS, Brazil
| | - Jaqueline Freitas Motta
- Centro de Desenvolvimento Tecnológico/Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Clovis Moreira Junior
- Centro de Desenvolvimento Tecnológico/Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | - Felipe Masiero Salvarani
- Instituto de Medicina Veterinária, Universidade Federal Do Pará, Castanhal, CEP 68740-970, Pará, Brazil
| | - Angela Nunes Moreira
- Centro de Desenvolvimento Tecnológico/Biotecnologia, Universidade Federal de Pelotas, RS, Brazil
| | | |
Collapse
|
19
|
Complete genomic sequence and analysis of β2 toxin gene mapping of Clostridium perfringens JXJA17 isolated from piglets in China. Sci Rep 2021; 11:475. [PMID: 33436645 PMCID: PMC7804025 DOI: 10.1038/s41598-020-79333-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Clostridium perfringens (Cp) is a ubiquitous opportunistic pathogen of humans and animals in the natural environment and animal intestines. The pathogenicity of Cp depends on the production of toxins encoded by genes on the chromosomes or plasmids. In contemporary literature, there is no clear consensus about the pathogenicity of CpA β2 toxin. To analyze the homology of the genome of piglet source CpA and its β2 toxin, we sequenced the whole genome of strain JXJA17 isolated from diarrhea piglets using the Illumina Miseq and Pacbio Sequel platforms. The genome was composed of a circular chromosome with 3,324,072 bp (G + C content: 28.51%) and nine plasmids. Genome and 16S rDNA homology analysis revealed a close relation of the JXJA17 strain with the JGS1495, Cp-06, Cp-16, and FORC_003 strains. These strains were isolated from different samples and belonged to different toxin-types. JXJA17 strain was found to carry two toxin genes (plc and cpb2). In contrast to other Cp strains, the cpb2 of JXJA17 was located on a large plasmid (58 kb) with no co-localization of other toxin genes or antibiotic resistance genes. Analysis of JXJA17 genome homology and its cpb2 would facilitate our further study the relationship between β2 toxin and piglet diarrhea.
Collapse
|
20
|
Saadh MJ, Sa'adeh IJ, Dababneh MF, Almaaytah AM, Bayan MF. Production, immunogenicity, stability, and safety of a vaccine against Clostridium perfringens beta toxins. Vet World 2020; 13:1517-1523. [PMID: 33061221 PMCID: PMC7522943 DOI: 10.14202/vetworld.2020.1517-1523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Aim: The beta toxin is causing the most severe Clostridium perfringens-related diseases. This work was dedicated to developing a vaccine against beta toxin using C. perfringens type C (NCTC 3180). Materials and Methods: The crude toxoid harvest contained 710 limits of flocculation (Lf)/mL. The vaccine was formulated. Each 1 mL of the final vaccine product contained at least 50 Lf/mL of beta toxoids, 0.2 mL 3% aluminum hydroxide gel (equivalent to 5.18 mg of aluminum), <0.001% W/V thiomersal, formaldehyde <0.05% W/V, and ~0.7 mL phosphate-buffered saline (pH 7.2). The efficacy of the vaccine was evaluated by potency, stability, and safety tests. Results: The vaccine demonstrated 24.36 IU/mL (standard deviation, ±0.56) and 14.74 IU/mL (±0.36) of neutralizing antibodies in rabbits and cattle, respectively. Indeed, these levels were above the minimum recommended by international protocols since the obtained antibody levels had 2.43- and 1.47-fold increase in both rabbits and cattle, respectively, over the minimum antitoxin level suggested by the United States Department of Agriculture. Interestingly, our formulation was capable of inducing 1.65-fold higher immune responses in rabbits than that stimulated in cattle (65% increase) with a significant difference (p<0.0001). The vaccine was stable up to 30 months. The vaccinated rabbits were suffered from a temporarily slight increase in temperatures in the first 10 h without any significant difference (p>0.05). Conclusion: The research showed a procedure for the manufacturing process of the vaccine against C. perfringens beta toxins with a feasible quantity and the vaccine described here showed to be effective in eliciting levels of neutralizing antibodies higher than required by international standards. In addition, The vaccine was stable up to 30 months. Thus, it may represent an effective and safe for preventing C. perfringens-related diseases in rabbits and cattle, although further studies to prove its efficacy in the field on other farm animals are still needed.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Issam J Sa'adeh
- Department of Radiology, King Abdulaziz Medical City, National Guard Hospital, Riyadh, Saudi Arabia
| | - Moeen F Dababneh
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Ammar M Almaaytah
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad F Bayan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman, Jordan
| |
Collapse
|
21
|
Santos FDS, Ferreira MRA, Maubrigades LR, Gonçalves VS, de Lara APS, Moreira C, Salvarani FM, Conceição FR, Leivas Leite FP. Bacillus toyonensis BCT-7112 T transient supplementation improves vaccine efficacy in ewes vaccinated against Clostridium perfringens epsilon toxin. J Appl Microbiol 2020; 130:699-706. [PMID: 32767796 DOI: 10.1111/jam.14814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/06/2020] [Accepted: 07/27/2020] [Indexed: 01/17/2023]
Abstract
AIM The aim of the present study was to examine the vaccine immune response in ewes supplemented with Bacillus toyonensis BCT-7112T during a period of 5-day supplementation before vaccination against a recombinant Clostridium perfringens epsilon toxin (rETX). METHODS AND RESULTS Ewes were vaccinated with 200 µg of rETX adjuvanted with 10% aluminium hydroxide. The treat group was orally supplemented with B. toyonensis BCT-7112T (3 × 108 viable spores) for 5 days prior to the first and second vaccination. Ewes supplemented with B. toyonensis BCT-7112T showed higher neutralizing antibody titres than the non-supplemented ewes (P < 0·05), with an increase in serum levels for total IgG anti-rETX by 3·2-fold (P < 0·0001), and for both IgG isotypes IgG1 and IgG2 by 2·1-fold and 2·3-fold (P < 0·01), respectively, compared with the control group. The peripheral blood mononuclear cells of ewes in the supplemented group had a higher (P < 0·05) cytokine mRNA transcription levels for IL-2 (6·4-fold increase), IFN-γ (2·9-fold increase) and transcription factor Bcl6 (2·3-fold increase) compared with the control group. CONCLUSION We conclude that a 5 days of supplementation with B. toyonensis BCT-7112T prior vaccination is sufficient to significantly improve the humoral immune response of ewes against C. perfringens recombinant ETX vaccine. SIGNIFICANCE AND IMPACT OF THE STUDY These findings open a new perspective in the utilization of B. toyonensis BCT-7112T as an immunomodulator since a 5 days period of probiotic supplementation is sufficient to improve the vaccine immune response.
Collapse
Affiliation(s)
- F D S Santos
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - M R A Ferreira
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - L R Maubrigades
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - V S Gonçalves
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - A P S de Lara
- Institute of Biology, Postgraduate Program in Parasitology, Federal University of Pelotas, Pelotas, Brazil
| | - C Moreira
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - F M Salvarani
- Institute of Veterinary Medicine, Federal University of Pará, Castanhal, Brazil
| | - F R Conceição
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| | - F P Leivas Leite
- Center for Technological Development, Postgraduate Program in Biotechnology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
22
|
Are Vaccines the Solution for Methane Emissions from Ruminants? A Systematic Review. Vaccines (Basel) 2020; 8:vaccines8030460. [PMID: 32825375 PMCID: PMC7565300 DOI: 10.3390/vaccines8030460] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 11/16/2022] Open
Abstract
Ruminants produce considerable amounts of methane during their digestive process, which makes the livestock industry as one of the largest sources of anthropogenic greenhouse gases. To tackle this situation, several solutions have been proposed, including vaccination of ruminants against microorganisms responsible for methane synthesis in the rumen. In this review, we summarize the research done on this topic and describe the state of the art of this strategy. The different steps implied in this approach are described: experimental design, animal model (species, age), antigen (whole cells, cell parts, recombinant proteins, peptides), adjuvant (Freund's, Montanide, saponin, among others), vaccination schedule (booster intervals and numbers) and measurements of treatment success (immunoglobulin titers and/or effects on methanogens and methane production). Highlighting both the advances made and knowledge gaps in the use of vaccines to inhibit ruminant methanogen activity, this research review opens the door to future studies. This will enable improvements in the methodology and systemic approaches so as to ensure the success of this proposal for the sustainable mitigation of methane emission.
Collapse
|
23
|
Moreira C, Ferreira MRA, Finger PF, Magalhães CG, Cunha CEP, Rodrigues RR, Otaka DY, Galvão CC, Salvarani FM, Moreira ÂN, Conceição FR. Protective efficacy of recombinant bacterin vaccine against botulism in cattle. Vaccine 2020; 38:2519-2526. [PMID: 32037222 DOI: 10.1016/j.vaccine.2020.01.089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/18/2019] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Botulism is a paralytic disease caused by the intoxication of neurotoxins produced by Clostridium botulinum. Among the seven immunologically distinct serotypes of neurotoxins (BoNTs A - G), serotypes C and D, or a chimeric fusion termed C/D or D/C, are responsible for animal botulism. The most effective way to prevent botulism in cattle is through vaccination; however, the commercially available vaccines produced by detoxification of native neurotoxins are time-consuming and hazardous. To overcome these drawbacks, a non-toxic recombinant vaccine was developed as an alternative. In this study, the recombinant protein vaccine was produced using an Escherichia coli cell-based system. The formaldehyde-inactivated E. coli is able to induce 7.45 ± 1.77 and 6.6 ± 1.28 IU/mL neutralizing mean titers against BoNTs C and D in cattle, respectively, determined by mouse neutralization bioassay, and was deemed protective by the Brazilian legislation. Moreover, when the levels of anti-BoNT/C and D were compared with those achieved by the recombinant purified vaccines, no significant statistical difference was observed. Cattle vaccinated with the commercial vaccine developed 1.33 and 3.33 IU/mL neutralizing mean titers against BoNT serotypes C and D, respectively. To the best of our knowledge, this study is the first report on recombinant E. coli bacterin vaccine against botulism. The vaccine was safe and effective in generating protective antibodies and, thus, represents an industry-friendly alternative for the prevention of cattle botulism.
Collapse
Affiliation(s)
- Clóvis Moreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Marcos R A Ferreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Paula F Finger
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Carolina G Magalhães
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Carlos E P Cunha
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Rafael R Rodrigues
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Denis Y Otaka
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, CEP 68740-970, Brazil
| | - Cleideanny C Galvão
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, CEP 68740-970, Brazil
| | - Felipe M Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, CEP 68740-970, Brazil
| | - Ângela N Moreira
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil.
| |
Collapse
|
24
|
Xing J, Ji X, Sun Y, Zhu L, Jiang Q, Guo X, Liu J. Preparation and immunological characterization of an inactivated canine Clostridium perfringens type A vaccine. Lett Appl Microbiol 2019; 69:385-390. [PMID: 31529707 DOI: 10.1111/lam.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/21/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022]
Abstract
Clostridium perfringens is the main cause of sudden death in dogs and currently there is no vaccine to prevent it. In this study, a canine C. perfringens type A strain was used to prepare a vaccine. C. perfringens was inactivated by formaldehyde and adjuvants were added. The safety and immunological characteristics of the inactivated C. perfringens vaccine were evaluated in mice and dogs. The results showed that the C. perfringens vaccine was safe and had immunoprotective activity. The serum antibody titre of immunized mice reached up to 6·25 × 104 . Both single immunization of 4 ml and dual immunizations of 2 ml each provided good immune protection, with five of five immunized dogs surviving. This study also studied a detoxified crude α-toxin extract vaccine. The results showed that a single immunization with 0·5 ml of the detoxified crude α-toxin extract vaccine provided immune protection, with five of five immunized dogs surviving. The inactivated C. perfringens type A vaccine can be used to prevent canine C. perfringens infections. SIGNIFICANCE AND IMPACT OF THE STUDY: Clostridium perfringens is the main cause of sudden death in dogs and currently there is no vaccine to prevent it. In this study, an inactivated canine C. perfringens vaccine and a detoxified crude α-toxin vaccine were prepared. The safety and protective effects of these vaccines were evaluated using mouse and dog models. The vaccines were shown to be safe and to provide immune protection effects that can be used to prevent canine C. perfringens infection.
Collapse
Affiliation(s)
- J Xing
- Institute of Military Veterinary Science, the Academy of Military Medical Science of PLA, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - X Ji
- Institute of Military Veterinary Science, the Academy of Military Medical Science of PLA, Changchun, China
| | - Y Sun
- Institute of Military Veterinary Science, the Academy of Military Medical Science of PLA, Changchun, China
| | - L Zhu
- Institute of Military Veterinary Science, the Academy of Military Medical Science of PLA, Changchun, China
| | - Q Jiang
- Jilin Animal Disease Prevention and Control Center, Changchun, China
| | - X Guo
- Institute of Military Veterinary Science, the Academy of Military Medical Science of PLA, Changchun, China
| | - J Liu
- Institute of Military Veterinary Science, the Academy of Military Medical Science of PLA, Changchun, China
| |
Collapse
|
25
|
Zaragoza NE, Orellana CA, Moonen GA, Moutafis G, Marcellin E. Vaccine Production to Protect Animals Against Pathogenic Clostridia. Toxins (Basel) 2019; 11:E525. [PMID: 31514424 PMCID: PMC6783934 DOI: 10.3390/toxins11090525] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/19/2022] Open
Abstract
Clostridium is a broad genus of anaerobic, spore-forming, rod-shaped, Gram-positive bacteria that can be found in different environments all around the world. The genus includes human and animal pathogens that produce potent exotoxins that cause rapid and potentially fatal diseases responsible for countless human casualties and billion-dollar annual loss to the agricultural sector. Diseases include botulism, tetanus, enterotoxemia, gas gangrene, necrotic enteritis, pseudomembranous colitis, blackleg, and black disease, which are caused by pathogenic Clostridium. Due to their ability to sporulate, they cannot be eradicated from the environment. As such, immunization with toxoid or bacterin-toxoid vaccines is the only protective method against infection. Toxins recovered from Clostridium cultures are inactivated to form toxoids, which are then formulated into multivalent vaccines. This review discusses the toxins, diseases, and toxoid production processes of the most common pathogenic Clostridium species, including Clostridiumbotulinum, Clostridiumtetani, Clostridiumperfringens, Clostridiumchauvoei, Clostridiumsepticum, Clostridiumnovyi and Clostridiumhemolyticum.
Collapse
Affiliation(s)
- Nicolas E. Zaragoza
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| | - Camila A. Orellana
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| | - Glenn A. Moonen
- Zoetis, 45 Poplar Road, Parkville VIC 3052, Australia; (G.A.M.); (G.M.)
| | - George Moutafis
- Zoetis, 45 Poplar Road, Parkville VIC 3052, Australia; (G.A.M.); (G.M.)
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia; (N.E.Z.); (C.A.O.)
| |
Collapse
|
26
|
Clostridium perfringens epsilon toxin vaccine candidate lacking toxicity to cells expressing myelin and lymphocyte protein. NPJ Vaccines 2019; 4:32. [PMID: 31372245 PMCID: PMC6667452 DOI: 10.1038/s41541-019-0128-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
A variant form of Clostridium perfringens epsilon toxin (Y30A-Y196A) with mutations, which shows reduced binding to Madin–Darby canine kidney (MDCK) cells and reduced toxicity in mice, has been proposed as the next-generation enterotoxaemia vaccine. Here we show that, unexpectedly, the Y30A-Y196A variant does not show a reduction in toxicity towards Chinese hamster ovary (CHO) cells engineered to express the putative receptor for the toxin (myelin and lymphocyte protein; MAL). The further addition of mutations to residues in a second putative receptor binding site of the Y30A-Y196A variant further reduces toxicity, and we selected Y30A-Y196A-A168F for further study. Compared to Y30A-Y196A, Y30A-Y196A-A168F showed more than a 3-fold reduction in toxicity towards MDCK cells, more than a 4-fold reduction in toxicity towards mice and at least 200-fold reduction in toxicity towards CHO cells expressing sheep MAL. The immunisation of rabbits or sheep with Y30A-Y196A-A168F induced high levels of neutralising antibodies against epsilon toxin, which persisted for at least 1 year. Y30A-Y196A-A168F is a candidate for development as a next-generation enterotoxaemia vaccine. Cells expressing myelin and lymphocyte protein (MAL), the putative receptor for Clostridium perfringens’ epsilon toxin, can be sensitive to otherwise attenuated mutants of the toxin. Here, the team led by Richard Titball at United Kingdom’s University of Exeter found that a previous variant exhibits differential toxic effects when cells express sheep or human MAL. To circumvent this, Titball’s team applied site-directed mutagenesis of the receptor binding site to develop a new variant with enhanced reduction in toxicity towards MAL-expressing cells and able to induce high levels of neutralising antibodies upon immunisation of sheep. These findings suggests that testing genetic toxoids in cells expressing MAL from the target species might be relevant for enterotoxaemia vaccine development and warrant further studies into the role of MAL in epsilon toxin-mediated pathogenesis.
Collapse
|
27
|
Ferreira MRA, Motta JF, Azevedo ML, Dos Santos LM, Júnior CM, Rodrigues RR, Donassolo RA, Reis ADSB, Barbosa JD, Salvarani FM, Moreira ÂN, Conceição FR. Inactivated recombinant Escherichia coli as a candidate vaccine against Clostridium perfringens alpha toxin in sheep. Anaerobe 2019; 59:163-166. [PMID: 31299397 DOI: 10.1016/j.anaerobe.2019.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/20/2019] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
Clostridium perfringens type A is the causative agent of gas gangrene and gastroenteric ("yellow lamb disease") disease in ruminants, with C. perfringens alpha toxin (CPA) being the main virulence factor in the pathogenesis of these illnesses. In the present study, we have developed recombinant Escherichia coli bacteria expressing rCPA and used it to vaccinate rabbits and sheep. Doses of up to 200 μg of rCPA used for inoculation, induced 13.82 IU.mL-1 of neutralizing antitoxin in rabbits, which is three times higher than that recommended by the USDA (4 IU.mL-1). In sheep, recombinant bacteria induced antitoxin titers of 4 IU.mL-1, 56 days after the first dose. rCPA which was expressed, mainly, in inclusion bodies, was not found to influence the immunogenicity of the vaccine. The recombinant Escherichia coli bacterin, produced simply and safely, is capable of affording protection against diseases caused by C. perfringens CPA. The current findings represent a novel production method for CPA vaccines potentially applicable to veterinary medicine.
Collapse
Affiliation(s)
- Marcos Roberto A Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil.
| | - Jaqueline F Motta
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Morgana L Azevedo
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Lucas M Dos Santos
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Clóvis Moreira Júnior
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Rafael R Rodrigues
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Rafael A Donassolo
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | | | - José D Barbosa
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, CEP 68740-970, Brazil
| | - Felipe M Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal, Pará, CEP 68740-970, Brazil
| | - Ângela N Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, CEP 96160-000, Brazil
| |
Collapse
|
28
|
Augusto de Oliveira C, Duarte MC, Antunes de Assis R, Alves GG, Silva ROS, Faria Lobato FC. Humoral responses in cattle to commercial vaccines containing Clostridium perfringens epsilon toxoid and C. botulinum types C and D toxoids last less than a-year. Anaerobe 2019; 59:72-75. [PMID: 31129336 DOI: 10.1016/j.anaerobe.2019.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 10/26/2022]
Abstract
The aim of this study was to evaluate the titers of neutralizing antibodies in cattle inoculated with multivalent commercial clostridial vaccines containing C. botulinum type C (BoNTC), C. botulinum type D (BoNTD), and C. perfringens epsilon (ETX) toxoids for a period of one year. Cattle (Bos taurus), aged 4-6 months and not previously immunized, were vaccinated under four different protocols at days 0 and 30 and followed over one year. Individual serum titration was performed by a serum neutralization test in mice or in MDCK cells. The number of animals with detectable neutralizing antibodies ranged from 40.6% to 78.1%, but only 12.5% of animals showed neutralizing antibodies against all tested antigens. Neutralizing antibodies were found only until 60 days for ETX, 120 days for BoNTC, and 180 days for BoNTD. The absence of detectable neutralizing antibodies against the three antigens before 360 days, suggests that cattle remained unprotected for a long period before the recommended booster vaccination.
Collapse
Affiliation(s)
- Carlos Augusto de Oliveira
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Marina Carvalho Duarte
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Ronnie Antunes de Assis
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Guilherme Guerra Alves
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| | - Rodrigo Otávio Silveira Silva
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil.
| | - Francisco Carlos Faria Lobato
- Veterinary School, Universidade Federal de Minas Gerais (UFMG), Av. Antônio Carlos, 6627, Belo Horizonte, MG, CEP 31.270-901, Brazil
| |
Collapse
|
29
|
Immunogenicity of Clostridium perfringens epsilon toxin recombinant bacterin in rabbit and ruminants. Vaccine 2018; 36:7589-7592. [DOI: 10.1016/j.vaccine.2018.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/16/2018] [Accepted: 10/21/2018] [Indexed: 11/19/2022]
|
30
|
Immunogenicity of a Bivalent Non-Purified Recombinant Vaccine against Botulism in Cattle. Toxins (Basel) 2018; 10:toxins10100381. [PMID: 30241350 PMCID: PMC6215264 DOI: 10.3390/toxins10100381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/06/2018] [Accepted: 09/14/2018] [Indexed: 12/17/2022] Open
Abstract
Botulism is a potentially fatal intoxication caused by botulinum neurotoxins (BoNTs) produced mainly by Clostridium botulinum. Vaccination against BoNT serotypes C and D is the main procedure to control cattle botulism. Current vaccines contain formaldehyde-inactivated native BoNTs, which have a time-consuming production process and pose safety risks. The development of non-toxic recombinant vaccines has helped to overcome these limitations. This study aims to evaluate the humoral immune response generated by cattle immunized with non-purified recombinant fragments of BoNTs C and D. Cattle were vaccinated in a two-dose scheme with 100, 200 and 400 µg of each antigen, with serum sampling on days 0, 56, 120, and 180 after vaccination. Animals who received either 200 or 400 μg of both antigens induced titers higher than the minimum required by the Brazilian ministry of Agriculture, Livestock and Food Supply and achieved 100% (8/8) seroconversion rate. Animals vaccinated with commercial toxoid vaccine had only a 75% (6/8) seroconversion rate for both toxins. Animals that received doses containing 400 µg of recombinant protein were the only ones to maintain titers above the required level up until day 120 post-vaccination, and to achieve 100% (8/8) seroconversion for both toxins. In conclusion, 400 µg the recombinant Escherichia coli cell lysates supernatant was demonstrated to be an affordable means of producing an effective and safe botulism vaccine for cattle.
Collapse
|
31
|
Siqueira FDF, Silva ROS, do Carmo AO, de Oliveira-Mendes BBR, Horta CCR, Lobato FCF, Kalapothakis E. Immunization with a nontoxic naturally occurring Clostridium perfringens alpha toxin induces neutralizing antibodies in rabbits. Anaerobe 2017; 49:48-52. [PMID: 29246841 DOI: 10.1016/j.anaerobe.2017.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 12/09/2017] [Accepted: 12/11/2017] [Indexed: 01/08/2023]
Abstract
Clostridium perfringens alpha toxin, encoded by plc gene, has been implicated in gas gangrene, a life threatening infection. Vaccination is considered one of the best solutions against Clostridium infections. Although studies have identified many low quality clostridial vaccines, the use of recombinant proteins has been considered a promising alternative. Previously, a naturally occurring alpha toxin isoform (αAV1b) was identified with a mutation at residue 11 (His/Tyr), which can affect its enzymatic activity. The aim of the present study was to evaluate whether the mutation in the αAV1b isoform could result in an inactive toxin and was able to induce protection against the native alpha toxin. We used recombinant protein techniques to determine whether this mutation in αAV1b could result in an inactive toxin compared to the active isoform, αZ23. Rabbits were immunized with the recombinant toxins (αAV1b and αZ23) and with native alpha toxin. αAV1b showed no enzymatic and hemolytic activities. ELISA titration assays showed a high titer of both anti-recombinant toxin (anti-rec-αAV1b and anti-rec-αZ23) antibodies against the native alpha toxin. The alpha antitoxin titer detected in the rabbits' serum pool was 24.0 IU/mL for both recombinant toxins. These results demonstrate that the inactive naturally mutated αAV1b is able to induce an immune response, and suggest it can be considered as a target for the development of a commercial vaccine against C. perfringens alpha toxin.
Collapse
Affiliation(s)
- Flávia de Faria Siqueira
- Instituto Federal de Minas Gerais, Campus Betim, Betim, 32656-840, Minas Gerais, Brazil; Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Rodrigo Otávio Silveira Silva
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Anderson Oliveira do Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | | | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Mestrado Profissional em Biotecnologia e Gestão da Inovação, Centro Universitário de Sete Lagoas, Sete Lagoas, 32701-242, Minas Gerais, Brazil
| | - Francisco Carlos Faria Lobato
- Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
32
|
Ferreira MRA, Moreira GMSG, Cunha CEPD, Mendonça M, Salvarani FM, Moreira ÂN, Conceição FR. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins (Basel) 2016; 8:E340. [PMID: 27879630 PMCID: PMC5127136 DOI: 10.3390/toxins8110340] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/21/2023] Open
Abstract
Clostridium perfringens is a spore-forming, commensal, ubiquitous bacterium that is present in the gastrointestinal tract of healthy humans and animals. This bacterium produces up to 18 toxins. The species is classified into five toxinotypes (A-E) according to the toxins that the bacterium produces: alpha, beta, epsilon, or iota. Each of these toxinotypes is associated with myriad different, frequently fatal, illnesses that affect a range of farm animals and humans. Alpha, beta, and epsilon toxins are the main causes of disease. Vaccinations that generate neutralizing antibodies are the most common prophylactic measures that are currently in use. These vaccines consist of toxoids that are obtained from C. perfringens cultures. Recombinant vaccines offer several advantages over conventional toxoids, especially in terms of the production process. As such, they are steadily gaining ground as a promising vaccination solution. This review discusses the main strategies that are currently used to produce recombinant vaccines containing alpha, beta, and epsilon toxins of C. perfringens, as well as the potential application of these molecules as vaccines for mammalian livestock animals.
Collapse
Affiliation(s)
- Marcos Roberto A Ferreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Gustavo Marçal S G Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Carlos Eduardo P da Cunha
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| | - Marcelo Mendonça
- Curso de Medicina Veterinária, Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns CEP 55292-270, Pernambuco, Brazil.
| | - Felipe M Salvarani
- Instituto de Medicina Veterinária, Universidade Federal do Pará, Castanhal CEP 68740-970, Pará, Brazil.
| | - Ângela N Moreira
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
- Faculdade de Nutrição, Universidade Federal de Pelotas, Pelotas CEP 96010-610, Rio Grande do Sul, Brazil.
| | - Fabricio R Conceição
- Centro de Desenvolvimento Tecnológico, Biotecnologia, Universidade Federal de Pelotas, Pelotas CEP 96160-000, Rio Grande do Sul, Brazil.
| |
Collapse
|