1
|
Rosenzweig Z, Garcia J, Thompson GL, Perez LJ. Inactivation of bacteria using synergistic hydrogen peroxide with split-dose nanosecond pulsed electric field exposures. PLoS One 2024; 19:e0311232. [PMID: 39556570 PMCID: PMC11573215 DOI: 10.1371/journal.pone.0311232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/16/2024] [Indexed: 11/20/2024] Open
Abstract
The use of pulsed electric fields (PEF) as a nonthermal technology for the decontamination of foods is of growing interest. This study aimed to enhance the inactivation of Escherichia coli, Listeria innocua, and Salmonella enterica in Gomori buffer using a combination of nsPEF and hydrogen peroxide (H2O2). Three sub-MIC concentrations (0.1, 0.3, and 0.5%) of H2O2 and various contact times ranging from 5-45 min were tested. PEF exposures as both single (1000 pulse) and split-dose (500+500 pulse) trains were delivered via square-wave, monopolar, 600 ns pulses at 21 kV/cm and 10 Hz. We demonstrate that >5 log CFU/mL reduction can be attained from combination PEF/H2O2 treatments with a 15 min contact time for E. coli (0.1%) and a 30 min contact time for L. innocua and S. enterica (0.5%), despite ineffective results from either individual treatment alone. A 5 log reduction in microbial population is generally the lowest acceptable level in consideration of food safety and represents inactivation of 99.999% of bacteria. Split-dose PEF exposures enhance lethality for several tested conditions, indicating greater susceptibility to PEF after oxidative damage has occurred.
Collapse
Affiliation(s)
- Zachary Rosenzweig
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, United States of America
| | - Jerrick Garcia
- Department of Chemical Engineering, Rowan University, Glassboro, New Jersey, United States of America
| | - Gary L. Thompson
- WuXi AppTec, Philadelphia, Pennsylvania, United States of America
| | - Lark J. Perez
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
2
|
Haberl Meglič S, Slokar D, Miklavčič D. Inactivation of antibiotic-resistant bacteria Escherichia coli by electroporation. Front Microbiol 2024; 15:1347000. [PMID: 38333581 PMCID: PMC10850576 DOI: 10.3389/fmicb.2024.1347000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction In modern times, bacterial infections have become a growing problem in the medical community due to the emergence of antibiotic-resistant bacteria. In fact, the overuse and improper disposal of antibiotics have led to bacterial resistance and the presence of such bacteria in wastewater. Therefore, it is critical to develop effective strategies for dealing with antibiotic-resistant bacteria in wastewater. Electroporation has been found to be one of the most promising complementary techniques for bacterial inactivation because it is effective against a wide range of bacteria, is non-chemical and is highly optimizable. Many studies have demonstrated electroporation-assisted inactivation of bacteria, but rarely have clinical antibiotics or bacteria resistant to these antibiotics been used in the study. Therefore, the motivation for our study was to use a treatment regimen that combines antibiotics and electroporation to inactivate antibiotic-resistant bacteria. Methods We separately combined two antibiotics (tetracycline and chloramphenicol) to which the bacteria are resistant (with a different resistance mode) and electric pulses. We used three different concentrations of antibiotics (40, 80 and 150 µg/ml for tetracycline and 100, 500 and 2000 µg/ml for chloramphenicol, respectively) and four different electric field strengths (5, 10, 15 and 20 kV/cm) for electroporation. Results and discussion Our results show that electroporation effectively enhances the effect of antibiotics and inactivates antibiotic-resistant bacteria. The inactivation rate for tetracycline or chloramphenicol was found to be different and to increase with the strength of the pulsed electric field and/or the concentration of the antibiotic. In addition, we show that electroporation has a longer lasting effect (up to 24 hours), making bacteria vulnerable for a considerable time. The present work provides new insights into the use of electroporation to inactivate antibiotic-resistant bacteria in the aquatic environment.
Collapse
Affiliation(s)
- Saša Haberl Meglič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Dejan Slokar
- Centre of Excellence for Biosensors, Instrumentation and Process Control, Ajdovščina, Slovenia
| | - Damijan Miklavčič
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
3
|
Camera F, Colantoni E, Garcia-Sanchez T, Benassi B, Consales C, Muscat A, Vallet L, Mir LM, Andre F, Merla C. In Vitro Imaging and Molecular Characterization of Ca 2+ Flux Modulation by Nanosecond Pulsed Electric Fields. Int J Mol Sci 2023; 24:15616. [PMID: 37958601 PMCID: PMC10647260 DOI: 10.3390/ijms242115616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In recent years, the application of pulsed electric fields with very short durations (nanoseconds) and extremely high amplitudes (MV/m) has been investigated for novel medical purposes. Various electric protocols have been explored for different objectives, including the utilization of fractionated pulse doses to enhance cell electrosensitization to the uptake of different markers or an increase in apoptosis. This study focused on the use of fluorescence imaging to examine molecular calcium fluxes induced by different fractionated protocols of short electric pulses in neuroblastoma (SH-SY5Y) and mesenchymal stem cells (HaMSCs) that were electroporated using nanosecond pulsed electric fields. In our experimental setup, we did not observe cell electrosensitization in terms of an increase in calcium flux following the administration of fractionated doses of nanosecond pulsed electric fields with respect to the non-fractionated dose. However, we observed the targeted activation of calcium-dependent genes (c-FOS, c-JUN, EGR1, NURR-1, β3-TUBULIN) based on the duration of calcium flux, independent of the instantaneous levels achieved but solely dependent on the final plateau reached. This level of control may have potential applications in various medical and biological treatments that rely on calcium and the delivery of nanosecond pulsed electric fields.
Collapse
Affiliation(s)
- Francesca Camera
- Division of Health Protection Technologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (F.C.); (E.C.); (B.B.); (C.C.)
| | - Eleonora Colantoni
- Division of Health Protection Technologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (F.C.); (E.C.); (B.B.); (C.C.)
| | - Tomas Garcia-Sanchez
- Department of Information and Communication Technologies, Pompeu Fabra University, 08002 Barcelona, Spain;
| | - Barbara Benassi
- Division of Health Protection Technologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (F.C.); (E.C.); (B.B.); (C.C.)
| | - Claudia Consales
- Division of Health Protection Technologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (F.C.); (E.C.); (B.B.); (C.C.)
| | - Adeline Muscat
- CNRS, Metabolic and Systemic Aspects of the Oncogenesis, (METSY), Institute Gustave Roussy, Paris-Saclay University, 94805 Villejuif, France; (A.M.); (L.V.); (L.M.M.); (F.A.)
| | - Leslie Vallet
- CNRS, Metabolic and Systemic Aspects of the Oncogenesis, (METSY), Institute Gustave Roussy, Paris-Saclay University, 94805 Villejuif, France; (A.M.); (L.V.); (L.M.M.); (F.A.)
| | - Luis M. Mir
- CNRS, Metabolic and Systemic Aspects of the Oncogenesis, (METSY), Institute Gustave Roussy, Paris-Saclay University, 94805 Villejuif, France; (A.M.); (L.V.); (L.M.M.); (F.A.)
| | - Franck Andre
- CNRS, Metabolic and Systemic Aspects of the Oncogenesis, (METSY), Institute Gustave Roussy, Paris-Saclay University, 94805 Villejuif, France; (A.M.); (L.V.); (L.M.M.); (F.A.)
| | - Caterina Merla
- Division of Health Protection Technologies, Italian National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), 00123 Rome, Italy; (F.C.); (E.C.); (B.B.); (C.C.)
| |
Collapse
|
4
|
Silkunas M, Gudvangen E, Novickij V, Pakhomov AG. Sub-MHz bursts of nanosecond pulses excite neurons at paradoxically low electric field thresholds without membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184034. [PMID: 35981654 DOI: 10.1016/j.bbamem.2022.184034] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Neuromodulation applications of nanosecond electric pulses (nsEP) are hindered by their low potency to elicit action potentials in neurons. Excitation by a single nsEP requires a strong electric field which injures neurons by electroporation. We bypassed the high electric field requirement by replacing single nsEP stimuli with high-frequency brief nsEP bursts. In hippocampal neurons, excitation thresholds progressively decreased at nsEP frequencies above 20-200 kHz, with up to 20-30-fold reduction at sub-MHz and MHz rates. For a fixed burst duration, thresholds were determined by the duty cycle, irrespective of the specific nsEP duration, rate, or number of pulses per burst. For 100-μs bursts of 100-, 400-, or 800-ns pulses, the threshold decreased as a power function when the duty cycle exceeded 3-5 %. nsEP bursts were compared with single "long" pulses whose duration and amplitude matched the duration and the time-average amplitude of the burst. Such pulses deliver the same electric charge as bursts, within the same time interval. High-frequency nsEP bursts excited neurons at the time-average electric field 2-3 times below the threshold for a single long pulse. For example, the excitation threshold of 139 ± 14 V/cm for a single 100-μs pulse decreased to 57 ± 8 V/cm for a 100-μs burst of 100-ns, 0.25-MHz pulses (p < 0.001). Applying nsEP in bursts reduced or prevented the loss of excitability in multiple stimulation attempts. Stimulation by high-frequency nsEP bursts is a powerful novel approach to excite neurons at paradoxically low electric charge while also avoiding the electroporative membrane damage.
Collapse
Affiliation(s)
- Mantas Silkunas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA; Institute for Digestive System Research, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA
| | | | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA 23508, USA.
| |
Collapse
|
5
|
Electroporation safety factor of 300 nanosecond and 10 millisecond defibrillation in Langendorff-perfused rabbit hearts. PLoS One 2021; 16:e0257287. [PMID: 34559811 PMCID: PMC8462679 DOI: 10.1371/journal.pone.0257287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 08/30/2021] [Indexed: 11/19/2022] Open
Abstract
AIMS Recently, a new defibrillation modality using nanosecond pulses was shown to be effective at much lower energies than conventional 10 millisecond monophasic shocks in ex vivo experiments. Here we compare the safety factors of 300 nanosecond and 10 millisecond shocks to assess the safety of nanosecond defibrillation. METHODS AND RESULTS The safety factor, i.e. the ratio of median effective doses (ED50) for electroporative damage and defibrillation, was assessed for nanosecond and conventional (millisecond) defibrillation shocks in Langendorff-perfused New Zealand white rabbit hearts. In order to allow for multiple shock applications in a single heart, a pair of needle electrodes was used to apply shocks of varying voltage. Propidium iodide (PI) staining at the surface of the heart showed that nanosecond shocks had a slightly lower safety factor (6.50) than millisecond shocks (8.69), p = 0.02; while PI staining cross-sections in the electrode plane showed no significant difference (5.38 for 300 ns shocks and 6.29 for 10 ms shocks, p = 0.22). CONCLUSIONS In Langendorff-perfused rabbit hearts, nanosecond defibrillation has a similar safety factor as millisecond defibrillation, between 5 and 9, suggesting that nanosecond defibrillation can be performed safely.
Collapse
|
6
|
Kiełbik A, Szlasa W, Novickij V, Szewczyk A, Maciejewska M, Saczko J, Kulbacka J. Effects of high-frequency nanosecond pulses on prostate cancer cells. Sci Rep 2021; 11:15835. [PMID: 34349171 PMCID: PMC8339066 DOI: 10.1038/s41598-021-95180-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Electroporation with pulsed electric fields show a potential to be applied as an experimental focal therapy of tumors. Sub-microsecond regime of electric pulses displays unique electrophysical features operative in cells and membranes. Recently, MHz compression of nanosecond pulses electric fields (nsPEFs) bursts proved to enhance the effectiveness of the therapy. High morbidity of prostate cancer (PCa) and risk of overtreatment associated with this malignancy call for new minimal-invasive treatment alternative. Herein we present the in vitro study for developing applications based on this new technology. In this study, we used flow cytometric analysis, cell viability assay, caspase activity analysis, wound healing assay, confocal microscopy study, and immunofluorescence to investigate the biological effect of high-frequency nsPEFs on PCa cells. Our results show that high-frequency nsPEFs induces the permeabilization and cell death of PCa cells. The cytotoxicity is significantly enhanced in MHz compression of pulses and with the presence of extracellular Ca2+. High-frequency nsPEFs trigger changes in PCa cells' cytoskeleton and their mobility. The presented data show a therapeutic potential of high-frequency nsPEFs in a PCa setting. The sub-microsecond regime of pulses can potentially be applied in nanosecond electroporation protocols for PCa treatment.
Collapse
Affiliation(s)
- Aleksander Kiełbik
- grid.4495.c0000 0001 1090 049XMedical University Hospital, Borowska 213, 50-556 Wrocław, Poland ,grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Wojciech Szlasa
- grid.4495.c0000 0001 1090 049XFaculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | - Vitalij Novickij
- grid.9424.b0000 0004 1937 1776Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Anna Szewczyk
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland ,grid.8505.80000 0001 1010 5103Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 50-328 Wrocław, Poland
| | - Magdalena Maciejewska
- grid.413454.30000 0001 1958 0162Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| | - Jolanta Saczko
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| | - Julita Kulbacka
- grid.4495.c0000 0001 1090 049XDepartment of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
7
|
Haberkorn I, Siegenthaler L, Buchmann L, Neutsch L, Mathys A. Enhancing single-cell bioconversion efficiency by harnessing nanosecond pulsed electric field processing. Biotechnol Adv 2021; 53:107780. [PMID: 34048886 DOI: 10.1016/j.biotechadv.2021.107780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/23/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Nanosecond pulsed electric field (nsPEF) processing is gaining momentum as a physical means for single-cell bioconversion efficiency enhancement. The technology allows biomass yields per substrate (YX/S) to be leveraged and poses a viable option for stimulating intracellular compound production. NsPEF processing thus resonates with myriad domains spanning the pharmaceutical and medical sectors, as well as food and feed production. The exact working mechanisms underlying nsPEF-based enhancement of bioconversion efficiency, however, remain elusive, and a better understanding would be pivotal for leveraging process control to broaden the application of nsPEF and scale-up industrial implementation. To bridge this gap, the study provides the electrotechnological and metabolic fundamentals of nsPEF processing in the bio-based domain to enable a critical evaluation of pathways underlying the enhancement of single-cell bioconversion efficiency. Evidence suggests that treating cells during the rapid proliferating and thus the early to mid-exponential state of cellular growth is critical to promoting bioconversion efficiency. A combined effect of transient intracellular and sublethal stress induction and effects caused on the plasma membrane level result in an enhancement of cellular bioconversion efficiency. Congruency exists regarding the involvement of transient cytosolic Ca2+ hubs in nsPEF treatment responses, as well as that of reactive oxygen species formation culminating in the onset of cellular response pathways. A distinct assignment of single effects and their contributions to enhancing bioconversion efficiency, however, remains challenging. Current applications of nsPEF processing comprise microalgae, bacteria, and yeast biorefineries, but these endeavors are in their infancies with limitations associated with a lack of understanding of the underlying treatment mechanisms, an incomplete reporting, insufficient characterization, and control of processing parameters. The study aids in fostering the upsurge of nsPEF applications in the bio-based domain by providing a basis to gain a better understanding of cellular mechanisms underlying an nsPEF-based enhancement of cellular bioconversion efficiency and suggests best practice guidelines for nsPEF documentation for improved knowledge transfer. Better understanding and reporting of processes parameters and consequently improved process control could foster industrial-scale nsPEF realization and ultimately aid in perpetuating nsPEF applicability within the bio-based domain.
Collapse
Affiliation(s)
- Iris Haberkorn
- ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Lya Siegenthaler
- ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | - Lukas Neutsch
- ZHAW, Bioprocess Technology Research Group, Grüentalstrasse 14, 8820 Wädenswil, Switzerland.
| | - Alexander Mathys
- ETH Zürich, Laboratory of Sustainable Food Processing, Institute of Food, Nutrition and Health, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
8
|
Carr L, Golzio M, Orlacchio R, Alberola G, Kolosnjaj-Tabi J, Leveque P, Arnaud-Cormos D, Rols MP. A nanosecond pulsed electric field (nsPEF) can affect membrane permeabilization and cellular viability in a 3D spheroids tumor model. Bioelectrochemistry 2021; 141:107839. [PMID: 34020398 DOI: 10.1016/j.bioelechem.2021.107839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022]
Abstract
Three-dimensional (3D) cellular models represent more realistically the complexity of in vivo tumors compared to 2D cultures. While 3D models were largely used in classical electroporation, the effects of nanosecond pulsed electric field (nsPEF) have been poorly investigated. In this study, we evaluated the biological effects induced by nsPEF on spheroid tumor model derived from the HCT-116 human colorectal carcinoma cell line. By varying the number of pulses (from 1 to 500) and the polarity (unipolar and bipolar), the response of nsPEF exposure (10 ns duration, 50 kV/cm) was assessed either immediately after the application of the pulses or over a period lasting up to 6 days. Membrane permeabilization and cellular death occurred following the application of at least 100 pulses. The extent of the response increased with the number of pulses, with a significant decrease of viability, 24 h post-exposure, when 250 and 500 pulses were applied. The effects were highly reduced when an equivalent number of bipolar pulses were delivered. This reduction was eliminated when a 100 ns interphase interval was introduced into the bipolar pulses. Altogether, our results show that nsPEF effects, previously observed at the single cell level, also occur in more realistic 3D tumor spheroids models.
Collapse
Affiliation(s)
- Lynn Carr
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; School of Electronic Engineering, Bangor University, Bangor, UK
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Rosa Orlacchio
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France
| | - Geraldine Alberola
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | - Jelena Kolosnjaj-Tabi
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France
| | | | - Delia Arnaud-Cormos
- Univ. Limoges, CNRS, XLIM, UMR 7252, F-87000 Limoges, France; Institut Universitaire de France (IUF), 75005 Paris, France.
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, 31077 Toulouse, France.
| |
Collapse
|
9
|
Poudel A, Oludiran A, Sözer EB, Casciola M, Purcell EB, Muratori C. Growth in a biofilm sensitizes Cutibacterium acnes to nanosecond pulsed electric fields. Bioelectrochemistry 2021; 140:107797. [PMID: 33773215 DOI: 10.1016/j.bioelechem.2021.107797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
The Gram-positive anaerobic bacterium Cutibacterium acnes (C. acnes) is a commensal of the human skin, but also an opportunistic pathogen that contributes to the pathophysiology of the skin disease acne vulgaris. C. acnes can form biofilms; cells in biofilms are more resilient to antimicrobial stresses. Acne therapeutic options such as topical or systemic antimicrobial treatments often show incomplete responses. In this study we measured the efficacy of nanosecond pulsed electric fields (nsPEF), a new promising cell and tissue ablation technology, to inactivate C. acnes. Our results show that all tested nsPEF doses (250 to 2000 pulses, 280 ns pulses, 28 kV/cm, 5 Hz; 0.5 to 4 kJ/ml) failed to inactivate planktonic C. acnes and that pretreatment with lysozyme, a naturally occurring cell-wall-weakening enzyme, increased C. acnes vulnerability to nsPEF. Surprisingly, growth in a biofilm appears to sensitize C. acnes to nsPEF-induced stress, as C. acnes biofilm-derived cells showed increased cell death after nsPEF treatments that did not affect planktonic cells. Biofilm inactivation by nsPEF was confirmed by treating intact biofilms grown on glass coverslips with an indium oxide conductive layer. Altogether our results show that, contrary to other antimicrobial agents, nsPEF kill more efficiently bacteria in biofilms than planktonic cells.
Collapse
Affiliation(s)
- Asia Poudel
- Old Dominion University, Department of Chemistry and Biochemistry, USA
| | - Adenrele Oludiran
- Old Dominion University, Department of Chemistry and Biochemistry, USA
| | - Esin B Sözer
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, USA
| | - Maura Casciola
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, USA; Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Erin B Purcell
- Old Dominion University, Department of Chemistry and Biochemistry, USA.
| | - Claudia Muratori
- Old Dominion University, Frank Reidy Research Center for Bioelectrics, USA.
| |
Collapse
|
10
|
Consales C, Butera A, Merla C, Pasquali E, Lopresto V, Pinto R, Pierdomenico M, Mancuso M, Marino C, Benassi B. Exposure of the SH-SY5Y Human Neuroblastoma Cells to 50-Hz Magnetic Field: Comparison Between Two-Dimensional (2D) and Three-Dimensional (3D) In Vitro Cultures. Mol Neurobiol 2020; 58:1634-1649. [PMID: 33230715 PMCID: PMC7932966 DOI: 10.1007/s12035-020-02192-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
We here characterize the response to the extremely low-frequency (ELF) magnetic field (MF, 50 Hz, 1 mT) of SH-SY5Y human neuroblastoma cells, cultured in a three-dimensional (3D) Alvetex® scaffold compared to conventional two-dimensional (2D) monolayers. We proved that the growing phenotype of proliferating SH-SY5Y cells is not affected by the culturing conditions, as morphology, cell cycle distribution, proliferation/differentiation gene expression of 3D-cultures overlap what reported in 2D plates. In response to 72-h exposure to 50-Hz MF, we demonstrated that no proliferation change and apoptosis activation occur in both 2D and 3D cultures. Consistently, no modulation of Ki67, MYCN, CCDN1, and Nestin, of invasiveness and neo-angiogenesis-controlling genes (HIF-1α, VEGF, and PDGF) and of microRNA epigenetic signature (miR-21-5p, miR-222-3p and miR-133b) is driven by ELF exposure. Conversely, intracellular glutathione content and SOD1 expression are exclusively impaired in 3D-culture cells in response to the MF, whereas no change of such redox modulators is observed in SH-SY5Y cells if grown on 2D monolayers. Moreover, ELF-MF synergizes with the differentiating agents to stimulate neuroblastoma differentiation into a dopaminergic (DA) phenotype in the 3D-scaffold culture only, as growth arrest and induction of p21, TH, DAT, and GAP43 are reported in ELF-exposed SH-SY5Y cells exclusively if grown on 3D scaffolds. As overall, our findings prove that 3D culture is a more reliable experimental model for studying SH-SY5Y response to ELF-MF if compared to 2D conventional monolayer, and put the bases for promoting 3D systems in future studies addressing the interaction between electromagnetic fields and biological systems.
Collapse
Affiliation(s)
- Claudia Consales
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Alessio Butera
- Experimental Medicine and Surgery, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Caterina Merla
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Emanuela Pasquali
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Vanni Lopresto
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Rosanna Pinto
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Maria Pierdomenico
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Mariateresa Mancuso
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Carmela Marino
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy
| | - Barbara Benassi
- Division of Health Protection Technologies, ENEA-Casaccia Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
11
|
Concepts and Capabilities of In-House Built Nanosecond Pulsed Electric Field (nsPEF) Generators for Electroporation: State of Art. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124244] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electroporation is a pulsed electric field triggered phenomenon of cell permeabilization, which is extensively used in biomedical and biotechnological context. There is a growing scientific demand for high-voltage and/or high-frequency pulse generators for electropermeabilization of cells (electroporators). In the scope of this article we have reviewed the basic topologies of nanosecond pulsed electric field (nsPEF) generators for electroporation and the parametric capabilities of various in-house built devices, which were introduced in the last two decades. Classification of more than 60 various nsPEF generators was performed and pulse forming characteristics (pulse shape, voltage, duration and repetition frequency) were listed and compared. Lastly, the trends in the development of the electroporation technology were discussed.
Collapse
|
12
|
Delso C, Martínez JM, Cebrián G, Álvarez I, Raso J. Understanding the occurrence of tailing in survival curves of Salmonella Typhimurium treated by pulsed electric fields. Bioelectrochemistry 2020; 135:107580. [PMID: 32526677 DOI: 10.1016/j.bioelechem.2020.107580] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 02/02/2023]
Abstract
This study aimed to gain more in-depth knowledge of the mechanisms involved in microbial inactivation by pulsed electric fields (PEF) to understand the tailing observed in survival curves of Salmonella Typhimurium (STCC 878). The comparison of the inactivation achieved by the application of one train of pulses with those obtained with pulses applied in two trains shows that the tail of the survival curves was a consequence of a transient increment of the microbial resistance to the effect of the electric field in a proportion of the cells. After some time following the application of the first pulse train, cells became again sensitive to the second train, and tailing tended to disappear. The required time was highly dependent on the characteristics of the incubation medium. Similar effects were observed when the treatments were validated on whole milk and orange juice. This study has demonstrated by the first time on microbial cells the benefits of splitting the delivered PEF treatment in two trains with a period of delay between them. Therefore, this insight opens up the possibility of developing new strategies to achieve the required inactivation levels to guarantee food safety by moderate PEF treatments.
Collapse
Affiliation(s)
- Carlota Delso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Juan Manuel Martínez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Guillermo Cebrián
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Ignacio Álvarez
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Javier Raso
- Food Technology, Facultad de Veterinaria, Instituto Agroalimentario de Aragón-IA2, (Universidad de Zaragoza-CITA), Zaragoza, Spain.
| |
Collapse
|
13
|
Murauskas A, Staigvila G, Girkontaitė I, Zinkevičienė A, Ruzgys P, Šatkauskas S, Novickij J, Novickij V. Predicting electrotransfer in ultra-high frequency sub-microsecond square wave electric fields. Electromagn Biol Med 2019; 39:1-8. [PMID: 31884821 DOI: 10.1080/15368378.2019.1710529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Measurement of cell transmembrane potential (TMP) is a complex methodology involving patch-clamp methods or fluorescence-based potentiometric markers, which have limited to no applicability during ultrafast charging and relaxation phenomena. In such a case, analytical methods are applied for evaluation of the voltage potential changes in biological cells. In this work, the TMP-based electrotransfer mechanism during ultra-high frequency (≥1 MHz) electric fields is studied and the phenomenon of rapid membrane charge accumulation, which is non-occurrent during conventional low-frequency electroporation is simulated using finite element method (FEM). The influence of extracellular medium conductivity (0.1, 1.5 S/m) and pulse rise/fall times (10-50 ns) TMP generation are presented. It is shown that the medium conductivity has a dramatic influence on the electroporation process in the high-frequency range of applied pulsed electric fields (PEF). The applied model allowed to grasp the differences in polarization between 100 and 900 ns PEF and enabled successful prediction of the experimental outcome of propidium iodide electrotransfer into CHO-K1 cells and the conductivity-dependent patterns of MHz range PEF-triggered electroporation were determined. The results of this study form recommendations for development and pre-evaluation of future PEF protocols and generators based on ultra-high frequency electroporation for anticancer and gene therapies.
Collapse
Affiliation(s)
- Arūnas Murauskas
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Gediminas Staigvila
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Ruzgys
- Biophysics Group, Vytautas Magnus University, Kaunas, Lithuania
| | | | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, Vilnius, Lithuania
| |
Collapse
|
14
|
Nanosecond Pulsed Electric Fields Induce Endoplasmic Reticulum Stress Accompanied by Immunogenic Cell Death in Murine Models of Lymphoma and Colorectal Cancer. Cancers (Basel) 2019; 11:cancers11122034. [PMID: 31861079 PMCID: PMC6966635 DOI: 10.3390/cancers11122034] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022] Open
Abstract
Depending on the initiating stimulus, cancer cell death can be immunogenic or non-immunogenic. Inducers of immunogenic cell death (ICD) rely on endoplasmic reticulum (ER) stress for the trafficking of danger signals such as calreticulin (CRT) and ATP. We found that nanosecond pulsed electric fields (nsPEF), an emerging new modality for tumor ablation, cause the activation of the ER-resident stress sensor PERK in both CT-26 colon carcinoma and EL-4 lymphoma cells. PERK activation correlates with sustained CRT exposure on the cell plasma membrane and apoptosis induction in both nsPEF-treated cell lines. Our results show that, in CT-26 cells, the activity of caspase-3/7 was increased fourteen-fold as compared with four-fold in EL-4 cells. Moreover, while nsPEF treatments induced the release of the ICD hallmark HMGB1 in both cell lines, extracellular ATP was detected only in CT-26. Finally, in vaccination assays, CT-26 cells treated with nsPEF or doxorubicin equally impaired the growth of tumors at challenge sites eliciting a protective anticancer immune response in 78% and 80% of the animals, respectively. As compared to CT-26, both nsPEF- and mitoxantrone-treated EL-4 cells had a less pronounced effect and protected 50% and 20% of the animals, respectively. These results support our conclusion that nsPEF induce ER stress, accompanied by bona fide ICD.
Collapse
|
15
|
Haberkorn I, Buchmann L, Hiestand M, Mathys A. Continuous nanosecond pulsed electric field treatments foster the upstream performance of Chlorella vulgaris-based biorefinery concepts. BIORESOURCE TECHNOLOGY 2019; 293:122029. [PMID: 31473378 DOI: 10.1016/j.biortech.2019.122029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Nanosecond pulsed electric field treatment (nsPEF) is an innovative, technology-driven, and resource-efficient approach to foster the upstream performance of microalgae-based biorefinery concepts to transform microalgae into economic more viable raw materials for the biobased industry. A processing window applying three treatments of 100 ns, 5 Hz, and 10 kV cm-1 to industrially relevant phototrophic Chlorella vulgaris in the early exponential growth phase significantly increased biomass yields by up to 17.53 ± 10.46% (p = 3.18 × 10-5). Treatments had limited effects on the carbon and pigment contents, but the protein content was decreased. The longest possible pulse width (100 ns) resulted in the highest biomass yield indicating underlying working mechanisms of enhanced cell proliferation based on intracellular and plasma membrane-related effects. The applicability to eukaryotes and prokaryotes, such as C. vulgaris and cyanobacteria highlights the possible impacts of nsPEF across multiple domains of the biobased industry relying on single-cell-based value-chains.
Collapse
Affiliation(s)
- Iris Haberkorn
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Leandro Buchmann
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Michèle Hiestand
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Alexander Mathys
- ETH Zurich, Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, Sustainable Food Processing Laboratory, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
16
|
Selective distant electrostimulation by synchronized bipolar nanosecond pulses. Sci Rep 2019; 9:13116. [PMID: 31511591 PMCID: PMC6739416 DOI: 10.1038/s41598-019-49664-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
A unique aspect of electrostimulation (ES) with nanosecond electric pulses (nsEP) is the inhibition of effects when the polarity is reversed. This bipolar cancellation feature makes bipolar nsEP less efficient at biostimulation than unipolar nsEP. We propose to minimize stimulation near pulse-delivering electrodes by applying bipolar nsEP, whereas the superposition of two phase-shifted bipolar nsEP from two independent sources yields a biologically-effective unipolar pulse remotely. This is accomplished by electrical compensation of all nsEP phases except the first one, resulting in the restoration of stimulation efficiency due to cancellation of bipolar cancellation (CANCAN-ES). We experimentally proved the CANCAN-ES paradigm by measuring YO-PRO-1 dye uptake in CHO-K1 cells which were permeabilized by multiphasic nsEP (600 ns per phase) from two generators; these nsEP were synchronized either to overlap into a unipolar pulse remotely from electrodes (CANCAN), or not to overlap (control). Enhancement of YO-PRO-1 entry due to CANCAN was observed in all sets of experiments and reached ~3-fold in the center of the gap between electrodes, exactly where the unipolar pulse was formed, and equaled the degree of bipolar cancellation. CANCAN-ES is promising for non-invasive deep tissue stimulation, either alone or combined with other remote stimulation techniques to improve targeting.
Collapse
|
17
|
Michel O, Błasiak P, Saczko J, Kulbacka J, Drąg-Zalesińska M, Rzechonek A. Electropermeabilization of metastatic chondrosarcoma cells from primary cell culture. Biotechnol Appl Biochem 2019; 66:945-954. [PMID: 31476023 DOI: 10.1002/bab.1809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 08/20/2019] [Indexed: 11/12/2022]
Abstract
Primary cell cultures are challenging, but reliable model reflecting tumor response in vitro. The study was designed to examine if the increased electropermeabilization can overcame initial drug insensitivity in chondrosarcoma cells from lung metastasis. We established a primary cell culture and evaluated the cytotoxic impact of four drugs-cisplatin (CDDP), camptothecin, 2-methoxyestradiol, and leucovorin calcium (LeuCa). After determination of parameters allowing for electropermeabilization, we performed electrochemotherapy in vitro with the least toxic drugs-CDDP and LeuCa. Although combining CDDP and leucovorin together increased their toxicity and supported apoptosis, application of pulsed electric fields (PEFs) brought no advantage for their efficacy. The study emphasizes the need for introduction of primary cell cultures into studies on pulse electric fields as model frequently less sensitive to PEF-based treatments than continuous cell lines.
Collapse
Affiliation(s)
- Olga Michel
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Błasiak
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Wroclaw, Poland
| | - Małgorzata Drąg-Zalesińska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Adam Rzechonek
- Department of Thoracic Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
18
|
Edelblute CM, Guo S, Hornef J, Yang E, Jiang C, Schoenbach K, Heller R. Moderate Heat Application Enhances the Efficacy of Nanosecond Pulse Stimulation for the Treatment of Squamous Cell Carcinoma. Technol Cancer Res Treat 2019; 17:1533033818802305. [PMID: 30253713 PMCID: PMC6156209 DOI: 10.1177/1533033818802305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Nanosecond pulse stimulation as a tumor ablation therapy has been studied for the treatment of various carcinomas in animal models and has shown a significant survival benefit. In the current study, we found that moderate heating at 43°C for 2 minutes significantly enhanced in vitro nanosecond pulse stimulation-induced cell death of KLN205 murine squamous cell carcinoma cells by 2.43-fold at 600 V and by 2.32-fold at 900 V, as evidenced by propidium iodide uptake. Furthermore, the ablation zone in KLN205 cells placed in a 3-dimensional cell-culture model and pulsed at a voltage of 900 V at 43°C was 3 times larger than in cells exposed to nanosecond pulse stimulation at room temperature. Application of moderate heating alone did not cause cell death. A nanosecond pulse stimulation electrode with integrated controllable laser heating was developed to treat murine ectopic squamous cell carcinoma. With this innovative system, we were able to quickly heat and maintain the temperature of the target tumor at 43°C during nanosecond pulse stimulation. Nanosecond pulse stimulation with moderate heating was shown to significantly extend overall survival, delay tumor growth, and achieve a high rate of complete tumor regression. Moderate heating extended survival nearly 3-fold where median overall survival was 22 days for 9.8 kV without moderate heating and over 63 days for tumors pulsed with 600, 100 ns pulses at 5 Hz, at voltage of 9.8 kV with moderate heating. Median overall survival in the control groups was 24 and 31 days for mice with untreated tumors and tumors receiving moderate heat alone, respectively. Nearly 69% (11 of 16) of tumor-bearing mice treated with nanosecond pulse stimulation with moderate heating were tumor free at the completion of the study, whereas complete tumor regression was not observed in the control groups and in 9.8 kV without moderate heating. These results suggest moderate heating can reduce the necessary applied voltage for tumor ablation with nanosecond pulse stimulation.
Collapse
Affiliation(s)
- Chelsea M Edelblute
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Siqi Guo
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - James Hornef
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,2 Department of Biomedical Engineering, College of Engineering, Old Dominion University, Norfolk, VA, USA
| | - Enbo Yang
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Chunqi Jiang
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,2 Department of Biomedical Engineering, College of Engineering, Old Dominion University, Norfolk, VA, USA
| | - Karl Schoenbach
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,3 School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Richard Heller
- 1 Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,3 School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
19
|
Ruzgys P, Novickij V, Novickij J, Šatkauskas S. Nanosecond range electric pulse application as a non-viral gene delivery method: proof of concept. Sci Rep 2018; 8:15502. [PMID: 30341389 PMCID: PMC6195529 DOI: 10.1038/s41598-018-33912-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 10/08/2018] [Indexed: 12/28/2022] Open
Abstract
Current electrotransfection protocols are well-established for decades and, as a rule, employ long micro-millisecond range electric field pulses to facilitate DNA transfer while application of nanosecond range pulses is limited. The purpose of this paper is to show that the transfection using ultrashort pulses is possible by regulating the pulse repetition frequency. We have used 200 ns pulses (10-18 kV/cm) in bursts of ten with varied repetition frequency (1 Hz-1 MHz). The Chinese Hamster Ovary (CHO) cells were used as a cell model. Experiments were performed using green fluorescent protein (GFP) and luciferase (LUC) coding plasmids. Transfection expression levels were evaluated using flow cytometry or luminometer. It was shown that with the increase of frequency from 100 kHz to 1 MHz, the transfection expression levels increased up to 17% with minimal decrease in cell viability. The LUC coding plasmid was transferred more efficiently using high frequency bursts compared to single pulses of equivalent energy. The first proof of concept for frequency-controlled nanosecond electrotransfection was shown, which can find application as a new non-viral gene delivery method.
Collapse
Affiliation(s)
- Paulius Ruzgys
- Biophysical Research Group, Vytautas Magnus University, Vileikos g. 8-212, 44404, Kaunas, Lithuania
| | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania.
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Saulius Šatkauskas
- Biophysical Research Group, Vytautas Magnus University, Vileikos g. 8-212, 44404, Kaunas, Lithuania
| |
Collapse
|
20
|
High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation. Bioelectrochemistry 2018; 119:92-97. [DOI: 10.1016/j.bioelechem.2017.09.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 01/13/2023]
|
21
|
Muratori C, Pakhomov AG, Gianulis E, Meads J, Casciola M, Mollica PA, Pakhomova ON. Activation of the phospholipid scramblase TMEM16F by nanosecond pulsed electric fields (nsPEF) facilitates its diverse cytophysiological effects. J Biol Chem 2017; 292:19381-19391. [PMID: 28982976 PMCID: PMC5702676 DOI: 10.1074/jbc.m117.803049] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Indexed: 12/17/2022] Open
Abstract
Nanosecond pulsed electric fields (nsPEF) are emerging as a novel modality for cell stimulation and tissue ablation. However, the downstream protein effectors responsible for nsPEF bioeffects remain to be established. Here we demonstrate that nsPEF activate TMEM16F (or Anoctamin 6), a protein functioning as a Ca2+-dependent phospholipid scramblase and Ca2+-activated chloride channel. Using confocal microscopy and patch clamp recordings, we investigated the relevance of TMEM16F activation for several bioeffects triggered by nsPEF, including phosphatidylserine (PS) externalization, nanopore-conducted currents, membrane blebbing, and cell death. In HEK 293 cells treated with a single 300-ns pulse of 25.5 kV/cm, Tmem16f expression knockdown and TMEM16F-specific inhibition decreased nsPEF-induced PS exposure by 49 and 42%, respectively. Moreover, the Tmem16f silencing significantly decreased Ca2+-dependent chloride channel currents activated in response to the nanoporation. Tmem16f expression also affected nsPEF-induced cell blebbing, with only 20% of the silenced cells developing blebs compared with 53% of the control cells. This inhibition of cellular blebbing correlated with a 25% decrease in cytosolic free Ca2+ transient at 30 s after nanoporation. Finally, in TMEM16F-overexpressing cells, a train of 120 pulses (300 ns, 20 Hz, 6 kV/cm) decreased cell survival to 34% compared with 51% in control cells (*, p < 0.01). Taken together, these results indicate that TMEM16F activation by nanoporation mediates and enhances the diverse cellular effects of nsPEF.
Collapse
Affiliation(s)
| | | | - Elena Gianulis
- From the Frank Reidy Research Center for Bioelectrics, and
| | - Jade Meads
- From the Frank Reidy Research Center for Bioelectrics, and
| | - Maura Casciola
- From the Frank Reidy Research Center for Bioelectrics, and
| | - Peter A Mollica
- the Department of Medical Diagnostics and Translational Sciences, Old Dominion University, Norfolk, Virginia 23508
| | | |
Collapse
|
22
|
Yao C, Lv Y, Zhao Y, Dong S, Liu H, Ma J. Synergistic combinations of short high-voltage pulses and long low-voltage pulses enhance irreversible electroporation efficacy. Sci Rep 2017; 7:15123. [PMID: 29123231 PMCID: PMC5680269 DOI: 10.1038/s41598-017-15494-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Irreversible electroporation (IRE) uses ~100 μs pulsed electric fields to disrupt cell membranes for solid tumor ablation. Although IRE has achieved exciting preliminary clinical results, implementing IRE could be challenging because of volumetric limitations at the ablation region. Combining short high-voltage (SHV: 1600V, 2 μs, 1 Hz, 20 pulses) pulses with long low-voltage (LLV: 240-480 V, 100 μs, 1 Hz, 60-80 pulses) pulses induces a synergistic effect that enhances IRE efficacy. Here, cell cytotoxicity and tissue ablation were investigated. The results show that combining SHV pulses with LLV pulses induced SKOV3 cell death more effectively, and compared to either SHV pulses or LLV pulses applied alone, the combination significantly enhanced the ablation region. Particularly, prolonging the lag time (100 s) between SHV and LLV pulses further reduced cell viability and enhanced the ablation area. However, the sequence of SHV and LLV pulses was important, and the LLV + SHV combination was not as effective as the SHV + LLV combination. We offer a hypothesis to explain the synergistic effect behind enhanced cell cytotoxicity and enlarged ablation area. This work shows that combining SHV pulses with LLV pulses could be used as a focal therapy and merits investigation in larger pre-clinical models and microscopic mechanisms.
Collapse
Affiliation(s)
- Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China.
| | - Yanpeng Lv
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China.
| | - Yajun Zhao
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| | - Shoulong Dong
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| | - Hongmei Liu
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| | - Jianhao Ma
- The State Key Laboratory of Power Transmission Equipment and System Security and New Technology, the School of Electrical Engineering, Chongqing University, Chongqing, 400030, China
| |
Collapse
|
23
|
Controllable Moderate Heating Enhances the Therapeutic Efficacy of Irreversible Electroporation for Pancreatic Cancer. Sci Rep 2017; 7:11767. [PMID: 28924200 PMCID: PMC5603521 DOI: 10.1038/s41598-017-12227-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/06/2017] [Indexed: 12/25/2022] Open
Abstract
Irreversible electroporation (IRE) as a non-thermal tumor ablation technology has been studied for the treatment of pancreatic carcinoma and has shown a significant survival benefit. We discovered that moderate heating (MH) at 43 °C for 1-2 minutes significantly enhanced ex vivo IRE tumor ablation of Pan02 cells by 5.67-fold at 750 V/cm and by 1.67-fold at 1500 V/cm. This amount of heating alone did not cause cell death. An integrated IRE system with controllable laser heating and tumor impedance monitoring was developed to treat mouse ectopic pancreatic cancer. With this novel IRE system, we were able to heat and maintain the temperature of a targeted tumor area at 42 °C during IRE treatment. Pre-heating the tumor greatly reduced the impedance of tumor and its fluctuation. Most importantly, MHIRE has been demonstrated to significantly extend median survival and achieve a high rate of complete tumor regression. Median survival was 43, 46 and 84 days, for control, IRE with 100 μs, 1 Hz, 90 pulses and electric fields 2000–2500 V/cm and MHIRE treatment respectively. 55.6% of tumor-bearing mice treated with MHIRE were tumor-free, whereas complete tumor regression was not observed in the control and IRE treatment groups.
Collapse
|
24
|
Jensen SD, Khorokhorina VA, Muratori C, Pakhomov AG, Pakhomova ON. Delayed hypersensitivity to nanosecond pulsed electric field in electroporated cells. Sci Rep 2017; 7:10992. [PMID: 28887559 PMCID: PMC5591300 DOI: 10.1038/s41598-017-10825-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
We demonstrate that conditioning of mammalian cells by electroporation with nanosecond pulsed electric field (nsPEF) facilitates their response to the next nsPEF treatment. The experiments were designed to unambiguously separate the electroporation-induced sensitization and desensitization effects. Electroporation was achieved by bursts of 300-ns, 9 kV/cm pulses (50 Hz, n = 3-100) and quantified by propidium dye uptake within 11 min after the nsPEF exposure. We observed either sensitization to nsPEF or no change (when the conditioning was either too weak or too intense, or when the wait time after conditioning was too short). Within studied limits, conditioning never caused desensitization. With settings optimal for sensitization, the second nsPEF treatment became 2.5 times (25 °C) or even 6 times (37 °C) more effective than the same nsPEF treatment delivered without conditioning. The minimum wait time required for sensitization development was 30 s, with still longer delays increasing the effect. We show that the delayed hypersensitivity was not mediated by either cell swelling or oxidative effect of the conditioning treatment; biological mechanisms underlying the delayed electrosensitization remain to be elucidated. Optimizing nsPEF delivery protocols to induce sensitization can reduce the dose and adverse side effects of diverse medical treatments which require multiple pulse applications.
Collapse
Affiliation(s)
- Sarah D Jensen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Vera A Khorokhorina
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.,A. Tsyb Medical Radiological Research Center, Obninsk, Kaluga region, Russia
| | - Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
25
|
Novickij V, Švedienė J, Paškevičius A, Novickij J. In vitro evaluation of nanosecond electroporation against Trichophyton rubrum with or without antifungal drugs and terpenes. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Muratori C, Pakhomov AG, Heller L, Casciola M, Gianulis E, Grigoryev S, Xiao S, Pakhomova ON. Electrosensitization Increases Antitumor Effectiveness of Nanosecond Pulsed Electric Fields In Vivo. Technol Cancer Res Treat 2017; 16:987-996. [PMID: 28585492 PMCID: PMC5762058 DOI: 10.1177/1533034617712397] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nanosecond pulsed electric fields are emerging as a new modality for tissue and tumor ablation. We previously reported that cells exposed to pulsed electric fields develop hypersensitivity to subsequent pulsed electric field applications. This phenomenon, named electrosensitization, is evoked by splitting the pulsed electric field treatment in fractions (split-dose treatments) and causes in vitro a 2- to 3-fold increase in cytotoxicity. The aim of this study was to show the benefit of split-dose treatments for in vivo tumor ablation by nanosecond pulsed electric field. KLN 205 squamous carcinoma cells were embedded in an agarose gel or grown subcutaneously as tumors in mice. Nanosecond pulsed electric field ablations were produced using a 2-needle probe with a 6.5-mm interelectrode distance. In agarose gel, splitting a pulsed electric field dose of 300, 300-ns pulses (20 Hz, 4.4-6.4 kV) in 2 equal fractions increased cell death up to 3-fold compared to single-train treatments. We then compared the antitumor effectiveness of these treatments in vivo. At 24 hours after treatment, sensitizing tumors by a split-dose pulsed electric field exposure (150 + 150, 300-ns pulses, 20 Hz, 6.4 kV) caused a 4- and 2-fold tumor volume reduction as compared to sham and single-train treatments, respectively. Tumor volume reduction that exceeds 75% was 43% for split-dose–treated animals compared to only 12% for single-dose treatments. The difference between the 2 experimental groups remained statistically significant for at least 1 week after the treatment. The results show that electrosensitization occurs in vivo and can be exploited to assist in vivo cancer ablation.
Collapse
Affiliation(s)
- Claudia Muratori
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Loree Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Maura Casciola
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Elena Gianulis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Sergey Grigoryev
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - Shu Xiao
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| | - O N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
27
|
Yao C, Lv Y, Dong S, Zhao Y, Liu H. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses. PLoS One 2017; 12:e0173181. [PMID: 28253331 PMCID: PMC5333894 DOI: 10.1371/journal.pone.0173181] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/16/2017] [Indexed: 11/18/2022] Open
Abstract
Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.
Collapse
Affiliation(s)
- Chenguo Yao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
- * E-mail:
| | - Yanpeng Lv
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Shoulong Dong
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Yajun Zhao
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| | - Hongmei Liu
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, School of Electrical Engineering, Chongqing University, Chongqing, China
| |
Collapse
|
28
|
Novickij V, Lastauskienė E, Švedienė J, Grainys A, Staigvila G, Paškevičius A, Girkontaitė I, Zinkevičienė A, Markovskaja S, Novickij J. Membrane Permeabilization of Pathogenic Yeast in Alternating Sub-microsecond Electromagnetic Fields in Combination with Conventional Electroporation. J Membr Biol 2017; 251:189-195. [PMID: 28238117 DOI: 10.1007/s00232-017-9951-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/15/2017] [Indexed: 12/14/2022]
Abstract
Recently, a novel contactless treatment method based on high-power pulsed electromagnetic fields (PEMF) was proposed, which results in cell membrane permeabilization effects similar to electroporation. In this work, a new PEMF generator based on multi-stage Marx circuit topology, which is capable of delivering 3.3 T, 0.19 kV/cm sub-microsecond pulses was used to permeabilize pathogenic yeast Candida albicans separately and in combination with conventional square wave electroporation (8-17 kV/cm, 100 μs). Bursts of 10, 25, and 50 PEMF pulses were used. The yeast permeabilization rate was evaluated using flow cytometric analysis and propidium iodide (PI) assay. A statistically significant (P < 0.05) combinatorial effect of electroporation and PEMF treatment was detected. Also the PEMF treatment (3.3 T, 50 pulses) resulted in up to 21% loss of yeast viability, and a dose-dependent additive effect with pulsed electric field was observed. As expected, increase of the dB/dt and subsequently the induced electric field amplitude resulted in a detectable effect solely by PEMF, which was not achievable before for yeasts in vitro.
Collapse
Affiliation(s)
- Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania.
| | - Eglė Lastauskienė
- Department of Microbiology and Biotechnology, Vilnius University, Sauletekio al. 7, 10257, Vilnius, Lithuania
| | - Jurgita Švedienė
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Audrius Grainys
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Gediminas Staigvila
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Nature Research Centre, Akademijos st. 2, 08412, Vilnius, Lithuania
| | - Irutė Girkontaitė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Santariškių st. 5, 08406, Vilnius, Lithuania
| | - Svetlana Markovskaja
- Laboratory of Mycology, Nature Research Centre, Žaliųjų ežerų st. 49, 08406, Vilnius, Lithuania
| | - Jurij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Naugarduko st. 41, 03227, Vilnius, Lithuania
| |
Collapse
|
29
|
Gianulis EC, Labib C, Saulis G, Novickij V, Pakhomova ON, Pakhomov AG. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types. Cell Mol Life Sci 2016; 74:1741-1754. [PMID: 27986976 DOI: 10.1007/s00018-016-2434-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/27/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.
Collapse
Affiliation(s)
- Elena C Gianulis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA.
| | - Chantelle Labib
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Gintautas Saulis
- Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Vitalij Novickij
- Magnetic Field Institute, Vilnius Gediminas Technical University, Vilnius, Lithuania
| | - Olga N Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| | - Andrei G Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA, 23508, USA
| |
Collapse
|
30
|
Novickij V, Grainys A, Lastauskienė E, Kananavičiūtė R, Pamedytytė D, Kalėdienė L, Novickij J, Miklavčič D. Pulsed Electromagnetic Field Assisted in vitro Electroporation: A Pilot Study. Sci Rep 2016; 6:33537. [PMID: 27634482 PMCID: PMC5025861 DOI: 10.1038/srep33537] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Electroporation is a phenomenon occurring due to exposure of cells to Pulsed Electric Fields (PEF) which leads to increase of membrane permeability. Electroporation is used in medicine, biotechnology, and food processing. Recently, as an alternative to electroporation by PEF, Pulsed ElectroMagnetic Fields (PEMF) application causing similar biological effects was suggested. Since induced electric field in PEMF however is 2–3 magnitudes lower than in PEF electroporation, the membrane permeabilization mechanism remains hypothetical. We have designed pilot experiments where Saccharomyces cerevisiae and Candida lusitaniae cells were subjected to single 100–250 μs electrical pulse of 800 V with and without concomitant delivery of magnetic pulse (3, 6 and 9 T). As expected, after the PEF pulses only the number of Propidium Iodide (PI) fluorescent cells has increased, indicative of membrane permeabilization. We further show that single sub-millisecond magnetic field pulse did not cause detectable poration of yeast. Concomitant exposure of cells to pulsed electric (PEF) and magnetic field (PMF) however resulted in the increased number PI fluorescent cells and reduced viability. Our results show increased membrane permeability by PEF when combined with magnetic field pulse, which can explain electroporation at considerably lower electric field strengths induced by PEMF compared to classical electroporation.
Collapse
Affiliation(s)
- Vitalij Novickij
- Vilnius Gediminas Technical University, Institute of High Magnetic Fields, Vilnius, 03227, Lithuania
| | - Audrius Grainys
- Vilnius Gediminas Technical University, Institute of High Magnetic Fields, Vilnius, 03227, Lithuania
| | - Eglė Lastauskienė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Rūta Kananavičiūtė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Dovilė Pamedytytė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Lilija Kalėdienė
- Vilnius University, Department of Biotechnology and Microbiology, Vilnius, 03101, Lithuania
| | - Jurij Novickij
- Vilnius Gediminas Technical University, Institute of High Magnetic Fields, Vilnius, 03227, Lithuania
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, SI-1000, Slovenia
| |
Collapse
|
31
|
Cell Electrosensitization Exists Only in Certain Electroporation Buffers. PLoS One 2016; 11:e0159434. [PMID: 27454174 PMCID: PMC4959715 DOI: 10.1371/journal.pone.0159434] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/01/2016] [Indexed: 12/18/2022] Open
Abstract
Electroporation-induced cell sensitization was described as the occurrence of a delayed hypersensitivity to electric pulses caused by pretreating cells with electric pulses. It was achieved by increasing the duration of the electroporation treatment at the same cumulative energy input. It could be exploited in electroporation-based treatments such as electrochemotherapy and tissue ablation with irreversible electroporation. The mechanisms responsible for cell sensitization, however, have not yet been identified. We investigated cell sensitization dynamics in five different electroporation buffers. We split a pulse train into two trains varying the delay between them and measured the propidium uptake by fluorescence microscopy. By fitting the first-order model to the experimental results, we determined the uptake due to each train (i.e. the first and the second) and the corresponding resealing constant. Cell sensitization was observed in the growth medium but not in other tested buffers. The effect of pulse repetition frequency, cell size change, cytoskeleton disruption and calcium influx do not adequately explain cell sensitization. Based on our results, we can conclude that cell sensitization is a sum of several processes and is buffer dependent. Further research is needed to determine its generality and to identify underlying mechanisms.
Collapse
|