1
|
Maqbool T, Chen H, Wang Q, McKenna AM, Jiang D. Transformation of sedimentary dissolved organic matter in electrokinetic remediation catalogued by FT-ICR mass spectrometry. WATER RESEARCH 2024; 262:122094. [PMID: 39083902 DOI: 10.1016/j.watres.2024.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Abstract
In electrokinetic remediation (EKR), the sedimentary dissolved organic matter (DOM) could impede remediation by scavenging reactive species and generating unintended byproducts. Yet its transformation and mechanisms remained largely unknown. This study conducted molecular-level characterization of the water-extractable DOM (WEOM) in EKR using negative-ion electrospray ionization coupled to 21 tesla Fourier transform ion cyclotron resonance mass spectrometry (21 T FT-ICR MS). The results suggested that ∼55 % of the ∼7,000 WEOM compounds identified were reactive, and EKR lowered their diversity, molecular weight distribution, and double-bond equivalent (DBE) through a combination of electrochemical and microbial redox reactions. Heteroatom-containing WEOM (CHON and CHOS) were abundant (∼ 35% of the total WEOM), with CHOS generally being more reactive than CHON. Low electric potential (1 V/cm) promoted the growth of dealkylation and desulfurization bacteria, and led to anodic CO2 mineralization, anodic cleavage of -SO and -SO3, and cathodic cleavage of -SH2; high electric potential (2 V/cm) only enriched desulfurization bacteria, and differently, led to anodic oxygenation and cathodic hydrogenation of unsaturated and phenolic compounds, in addition to cathodic cleavage of -SH2. The long-term impact of these changes on soil quality and nitrogen-sulfur-carbon flux may be need to studied to identify unknown risks and new applications of EKR.
Collapse
Affiliation(s)
- Tahir Maqbool
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310-4005, USA
| | - Qingshi Wang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Amy M McKenna
- National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Dr., Tallahassee, FL, 32310-4005, USA; Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Daqian Jiang
- Department of Civil, Construction, and Environmental Engineering, The University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
2
|
Wang S, Guo S. Effects of soil organic carbon metabolism on electro-bioremediation of petroleum-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132180. [PMID: 37527589 DOI: 10.1016/j.jhazmat.2023.132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/03/2023]
Abstract
Soil organic carbon (SOC) potentially interacts with microbial metabolism and may affect the degradation of petroleum-derived carbon (PDC) in the electro-bioremediation of petroleum-contaminated soil. This study evaluated the interactions among organic carbon, soil properties, and microbial communities to explore the role of SOC during the electro-bioremediation process. The results showed that petroleum degradation exerted superposition and synergistic electrokinetic and bioremediation effects, as exemplified by the EB and EB-PR tests, owing to the maintenance and enhancement of SOC utilization (P/S value), respectively. The highest P/S value (2.0-2.4) was found in the electrochemical oxidation zone due to low SOC consumption. In the biological oxidation zones, electric stimulation enhanced the degradation of PDC and SOC, with higher average P/S values than those of the Bio test. Soil pH, Eh, inorganic ions, and bioavailable petroleum fractions were the main factors reshaping the microbial communities. SOC metabolism effectively buffered the stress of environmental factors and pollutants while maintaining functional bacterial abundance, microbial alpha diversity, and community similarity, thus saving the weakened PDC biodegradation efficiency in the EB and EB-PR tests. The study of the effect of SOC metabolism on petroleum biodegradation contributes to the development of sustainable low-carbon electro-bioremediation technology.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
3
|
Wang S, Cheng F, Shao Z, Wu B, Guo S. Effects of thermal desorption on ecotoxicological characteristics of heavy petroleum-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159405. [PMID: 36243071 DOI: 10.1016/j.scitotenv.2022.159405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/25/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
This study comprehensively evaluates the ecotoxicity of high-concentration heavy petroleum (HCHP)-contaminated soil before and after thermal desorption (TD) remediation at different temperatures and times. The results showed that the detoxification of contaminated soil was effectively achieved by extending the remediation duration at 400-600 °C. After treatment at 400 °C for 60 min, the toxicological indicators including bioluminescence EC50 (acute toxicity), seed germination ratio (Gr) and plant biomass of Brassica juncea (subacute toxicity), and diversity of the microbial community (chronic toxicity) reached a maximum. The value of the SOS-Induction Factor (SOSIF), characterizing genotoxicity was below 1.5, indicating that it was non-toxic. Pearson's correlation analysis illustrated that the water-soluble fraction (WSF), ALK1-3 and ARO1-3 of petroleum hydrocarbons were the primary sources of ecotoxicity. Notably, although the total ratio of petroleum removed from the soil reached 87.26 ± 4.38 %-98.69 ± 1.61 % under high-temperature thermal desorption (HTTD, 500-600 °C), the ecotoxicity was not lower than that at 400 °C. The pyrolysis products of petroleum macromolecules and extreme changes in soil properties were the leading causes of soil ecotoxicity following HTTD. The inconsistency between the removal of petroleum pollutants and ecological health risks reveals the significance of soil ecotoxicological assessments for identifying TD remediation endpoints and process optimization.
Collapse
Affiliation(s)
- Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Fenglian Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Zhiguo Shao
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang 110016, China.
| |
Collapse
|
4
|
Gao P, Wang S, Cheng F, Guo S. Improvement of the electrokinetic fluxes by tall fescue: Alleviation of ion attenuation and maintainability of soil colloidal properties. CHEMOSPHERE 2022; 290:133128. [PMID: 34861265 DOI: 10.1016/j.chemosphere.2021.133128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
In this study, we aimed to address the attenuation of electrokinetic fluxes that occur during plant (tall fescue)-based electrokinetic remediation of oil-contaminated soil. Following 60 days of treatment, the concentration of water-soluble cations and anions in the electrokinetics-assisted phytoremediation treatment (EK-P) were 20.03 mg/kg and 15.7 mg/kg higher than that in the electrokinetic (EK) treatment, respectively. At the electrode, plants were able to alleviate the ion aggregation effect caused by the electrokinetics, reduce the conversion of soluble ions to insoluble ones, and reduce the decay of water-soluble ions. In addition, the zeta potential of EK-P was 5.05 mV lower than that of EK. Plants maintained the stability of the soil colloid and reduced the movement of the peak of colloidal particle size from small to large particles, thereby reducing the amount of colloidal deposition. Finally, the EK-P current was 22.49% higher than that in EK while the electrokinetic effect was maintained. Meanwhile, electrokinetics increased plant biomass by 20.21%. Electrokinetics was found to create a synergy with the plants, an effect that eventually enhanced the rate of oil degradation.
Collapse
Affiliation(s)
- Peng Gao
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Fenglian Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| |
Collapse
|
5
|
Huang Y, He Z, Xu L, Yang B, Hou Y, Lei L, Li Z. Alternating current enhanced bioremediation of petroleum hydrocarbon-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:47562-47573. [PMID: 33895947 DOI: 10.1007/s11356-021-13942-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In this work, bioremediation was applied with sinusoidal alternating current (AC) electric fields to remove petroleum hydrocarbon (TPH) for soil remediation. Applying AC electric field with bioremediation (AC+BIO) could efficiently remove 31.6% of the TPH in 21 days, much faster than that in the BIO only system (13.7%) and AC only system (5.5%). When the operation time extended to 119 days, the AC+BIO system could remove 73.3% of the TPH. Applying AC electric field (20-200 V/m) could maintain the soil pH at neutral, superior to the direct current electric field. The maximum difference between soil temperature and the room temperature was 1.9 °C in the AC (50 V/m) +BIO system. The effects of AC voltage gradient (20-200 V/m) on the microorganisms and TPH degradation efficiency by AC+BIO were investigated, and the optimized AC voltage gradient was assessed as 50 V/m for lab-scale experiments. The microbial community structures in the BIO and AC+BIO systems were compared. Although Pseudomonas was the dominant species, Firmicutes became more abundant in the AC+BIO system than the BIO system, indicating their adaptive capacity to the stress of the AC electric field. Real petroleum-contaminated soil was used as a reaction matrix to evaluate the performance of AC+BIO in the field. The initial current density was about 0.2 mA/cm2, voltage gradient was about 20 V/m, and the average TPH degradation rate was 8.1 μg/gdry soil per day. This study provided insights and fundamental supports for the applications of AC+BIO to treat petroleum-polluted soils.
Collapse
Affiliation(s)
- Ying Huang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
| | - Zhongwei He
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Polytechnic Institute, Zhejiang University, Hangzhou, 310015, China
| | - Lili Xu
- Environmental Science Research & Design Institute of Zhejiang Province, Hangzhou, 310027, China
| | - Bin Yang
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Lecheng Lei
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China
| | - Zhongjian Li
- College of Chemical and Biological Engineering, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou, 32400, China.
| |
Collapse
|
6
|
Zhang M, Wu B, Guo P, Wang S, Guo S. Bioremediation of polycyclic aromatic hydrocarbons contaminated soil under the superimposed electric field condition. CHEMOSPHERE 2021; 273:128723. [PMID: 33127102 DOI: 10.1016/j.chemosphere.2020.128723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/10/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
An innovative superimposed electric field (SEF) was designed with the aim to achieve uniform removal of polycyclic aromatic hydrocarbons (PAHs) in soil. Also the influence of SEF on the bioremediation efficiency of PAHs was investigated in compared with the common electric field (CEF). Five experiments were conducted in this study, namely EK-CEF (applied CEF), EKB-CEF (CEF enhanced bioremediation), EK-SEF (applied SEF), EKB-SEF (SEF enhanced bioremediation), and Bio (bioremediation). The results indicated that electric field with periodically reversed polarity could effectively prevent the occurrence of large changes in soil pH, temperature, and electric current. The electric field intensity of SEF was concentrated in the range of 0.5-1.5 V/cm, and the difference between the maximum and minimum PAHs removal percentage in EK-SEF was just 5.4%, in comparison to 14.8% in EK-CEF. The bioremediation promoting effect did not show significant difference between SEF and CEF. Compared to Bio, the removal percentages of the 5-ring and 6-ring PAHs attributed to the degrading bacteria were much higher in EKB-SEF and EKB-CEF. Moreover, the microbial number increased with the distance away from electrodes, and the microbial community changed correspondingly. All these would be resulted in differences removal efficiencies among different PAHs components. Despite its intrinsic advantages, the influence of SEF on soil physicochemical and biological properties needs further study.
Collapse
Affiliation(s)
- Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | | | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, Shenyang, 110016, China.
| |
Collapse
|
7
|
Ji W, Parameswarappa Jayalakshmamma M, Abou Khalil C, Zhao L, Boufadel M. Removal of hydrocarbon from soils possessing macro-heterogeneities using electrokinetics and surfactants. CHEMICAL ENGINEERING JOURNAL ADVANCES 2020. [DOI: 10.1016/j.ceja.2020.100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
8
|
Rodrigues EM, Cesar DE, Santos de Oliveira R, de Paula Siqueira T, Tótola MR. Hydrocarbonoclastic bacterial species growing on hexadecane: Implications for bioaugmentation in marine ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115579. [PMID: 33254655 DOI: 10.1016/j.envpol.2020.115579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 06/12/2023]
Abstract
of bioaugmentation strategies are an obstacle for damage mitigation caused by oil spills in marine environments. Cells added to the contaminated sites are quickly lost by low adherence to the contaminants, rendering ineffective. This study used two hydrocarbonoclastic species - Rhodococcus rhodochrous TRN7 and Nocardia farcinica TRH1 cells - growing in mineral medium containing hexadecane to evaluate cell distribution in a crude-oil contaminated marine water. Cell affinity to hydrophobic compounds was quantified using Microbial Adhesion to Hydrocarbons test and analysis of fatty acids profile was performed using the Microbial Identification System. Bioremediation simulations were set up and cell populations of both strains were quantified by Fluorescent in situ Hybridization. R. rhodochrous and N. farcinica reached up to 97% and 60% of adhesion to hexadecane, respectively. The carbon source had more influence on the fatty acid profiles of both strains than the microbial species. The presence of 45.24% of 13:0 anteiso on total fatty acids in R. rhodochrous and 12.35% of saturated fatty acids with less than 13 carbons atoms in N. farcinica, as well as the occurrence of fatty alcohols only in presence of hexadecane in both species, are indicators that fatty acid changes are involved in the adaptation of the cells to remain at the water/oil interface. Cell quantification after bioremediation simulations revealed an increase in the density of both species, suggesting that the bioremediation strategies resulted on the increase of hydrocarbonoclastic species and up to 27.9% of all prokaryotic microbial populations in the microcosms were composed of R. rhodochrous or N. farcinica. These findings show the potential of application of these two bacterial strains in bioaugmentation of hydrocarbon-contaminated marine ecosystems.R. rhodochrous TRN7 and N. farcinica TRH1 hydrocarbonoclastic strains modify the fatty acid profile and increases density, optimizing hydrocarbons biodegradation.
Collapse
Affiliation(s)
- Edmo Montes Rodrigues
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil; Instituto Federal de Educação, Ciência e Tecnologia Do Ceará - IFCE - Campus Camocim, Camocim, Ceará, Brazil.
| | - Dionéia Evangelista Cesar
- Laboratório de Ecologia e Biologia Molecular de Microorganismos, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Renatta Santos de Oliveira
- Laboratório de Ecologia e Biologia Molecular de Microorganismos, Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Tatiane de Paula Siqueira
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcos Rogério Tótola
- Laboratório de Biotecnologia e Biodiversidade para o Meio Ambiente, Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
9
|
Wu Y, Wang S, Cheng F, Guo P, Guo S. Enhancement of electrokinetic-bioremediation by ryegrass: Sustainability of electrokinetic effect and improvement of n-hexadecane degradation. ENVIRONMENTAL RESEARCH 2020; 188:109717. [PMID: 32540569 DOI: 10.1016/j.envres.2020.109717] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation-assisted electrokinetic-bioremediation is a novel technology for soil remediation. We aimed to study the effects of a plant (ryegrass) on electrokinetic-bioremediation in n-hexadecane-contaminated soil. After treatment for 40 days, the n-hexadecane degradation ratio of electrokinetic-bioremediation-ryegrass (EK-Bio-RG) was 4.86% higher than that of electrokinetic-bioremediation (EK-Bio) (p < 0.05), with a maximum constant degradation rate (107.23 ± 4.62 mg kg-1· d-1). Owing to the improved electrical conductivity, 73.28% of the initial current was maintained on the 40th day in EK-Bio-RG, which was 1.62 times that in EK-Bio. Furthermore, ryegrass reduced the soil zeta potential, which indicated the alleviation of the soil electric double layer compression and prevention of the aggregation of small soil colloids into larger ones. The fine colloidal structure was conducive to mass transfer in electrokinetic-bioremediation. An analysis of the microbial community showed that the degradation of n-hexadecane was mainly attributable to gram-positive bacteria, and a new microbial community was gradually constructed in the rhizosphere, which still metabolized n-hexadecane. The results indicated that the sustainability of the electrokinetic effect was improved combined with ryegrass, and the harmonious micro-environment in the rhizosphere was constructed which furtherly optimized the EK-Bio technology to remediate organics-polluted soil.
Collapse
Affiliation(s)
- Yang Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sa Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Fenglian Cheng
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| | - Penghong Guo
- Arizona State University, Tempe, AZ, 85281, USA.
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-physicochemical Synergistic Process, China.
| |
Collapse
|
10
|
Crognale S, Cocarta DM, Streche C, D’Annibale A. Development of laboratory-scale sequential electrokinetic and biological treatment of chronically hydrocarbon-impacted soils. N Biotechnol 2020; 58:38-44. [DOI: 10.1016/j.nbt.2020.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023]
|
11
|
Cheng F, Guo S, Li G, Wang S, Li F, Wu B. The loss of mobile ions and the aggregation of soil colloid: Results of the electrokinetic effect and the cause of process termination. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.11.153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|