1
|
Liu J, Shi D, Yu K, Liu S, Chen L, Hu X. Crystal structures and properties of derivatives of the alkaloid matrine: salts and hydrate forms. Acta Crystallogr C Struct Chem 2024; 80:685-692. [PMID: 39226425 DOI: 10.1107/s2053229624008064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
We report the crystal structures of three matrine derivatives, namely, the salts (1R,2R,9S,17S)-6-oxo-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-13-ium (2E)-3-(3,4-dihydroxyphenyl)prop-2-enoate (matrine caffeinate) sesquihydrate, C15H25N2O+·C9H7O4-·1.5H2O (Matrine-CA), and the 2-hydroxybenzoate (salicylate) monohydrate, C15H25N2O+·C7H5O3-·H2O (Matrine-SA), as well as the 1.75-hydrate form, (1R,2R,9S,17S)-7,13-diazatetracyclo[7.7.1.02,7.013,17]heptadecan-6-one 1.75-hydrate, C15H24N2O·1.75H2O (Matrine-H). Each derivative exhibited a consistent molecular conformation for the matrine core, which is notably distinct from that of the anhydrous form. Notably, both salts crystallized in the orthorhombic space group P212121, with an asymmetric unit featuring one cation and one anion. Within the two salt structures, intermolecular proton transfer between matrine and the acid is observed, culminating in the formation of a matrine cation protonated at the tertiary amine N site. The Matrine-CA crystal packing is manifested as a three-dimensional (3D) network arising from one-dimensional (1D) supramolecular helical chains, stabilized by N-H...O and O-H...O hydrogen bonds. In the case of Matrine-SA, the matrine cation is interconnected via hydrogen bonds with salicylate anions and water molecules, also forming a 1D helical motif. The structure of the hydrate form, Matrine-H, is reported again with the disordered solvent molecules accurately located. To further elucidate the structural attributes, Hirshfeld surface analysis and fingerprint plots are employed, offering a nuanced perspective on the intermolecular contacts and interactions within these crystalline forms.
Collapse
Affiliation(s)
- Jiyong Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Dier Shi
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Kaxi Yu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Shuna Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Linshen Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiurong Hu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
2
|
Su CM, Kim J, Tang J, Hung YF, Zuckermann FA, Husmann R, Roady P, Kim J, Lee YM, Yoo D. A clinically attenuated double-mutant of porcine reproductive and respiratory syndrome virus-2 that does not prompt overexpression of proinflammatory cytokines during co-infection with a secondary pathogen. PLoS Pathog 2024; 20:e1012128. [PMID: 38547254 PMCID: PMC11003694 DOI: 10.1371/journal.ppat.1012128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/09/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/β) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease. Previous studies identified the non-structural protein 1β (nsp1β) of PRRSV-2 as an IFN antagonist and the nucleocapsid (N) protein as the NF-κB activator. Further studies showed the leucine at position 126 (L126) of nsp1β as the essential residue for IFN suppression and the region spanning the nuclear localization signal (NLS) of N as the NF-κB activation domain. In the present study, we generated a double-mutant PRRSV-2 that contained the L126A mutation in the nsp1β gene and the NLS mutation (ΔNLS) in the N gene using reverse genetics. The immunological phenotype of this mutant PRRSV-2 was examined in porcine alveolar macrophages (PAMs) in vitro and in young pigs in vivo. In PAMs, the double-mutant virus did not suppress IFN-β expression but decreased the NF-κB-dependent inflammatory cytokine productions compared to those for wild-type PRRSV-2. Co-infection of PAMs with the mutant PRRSV-2 and Streptococcus suis (S. suis) also reduced the production of NF-κB-directed inflammatory cytokines. To further examine the cytokine profiles and the disease severity by the mutant virus in natural host animals, 6 groups of pigs, 7 animals per group, were used for co-infection with the mutant PRRSV-2 and S. suis. The double-mutant PRRSV-2 was clinically attenuated, and the expressions of proinflammatory cytokines and chemokines were significantly reduced in pigs after bacterial co-infection. Compared to the wild-type PRRSV-2 and S. suis co-infection control, pigs coinfected with the double-mutant PRRSV-2 exhibited milder clinical signs, lower titers and shorter duration of viremia, and lower expression of proinflammatory cytokines. In conclusion, our study demonstrates that genetic modification of the type I IFN suppression and NF-κB activation functions of PRRSV-2 may allow us to design a novel vaccine candidate to alleviate the clinical severity of PRRS-2 and PRDC during bacterial co-infection.
Collapse
Affiliation(s)
- Chia-Ming Su
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jineui Kim
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Junyu Tang
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Yu Fan Hung
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Federico A. Zuckermann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Robert Husmann
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Patrick Roady
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jiyoun Kim
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, Utah, United States of America
| | - Dongwan Yoo
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
3
|
Cao Z, Ling X, Sun P, Zheng X, Zhang H, Zhong J, Yin W, Fan K, Sun Y, Li H, Sun N. Matrine Targets Intestinal Lactobacillus acidophilus to Inhibit Porcine Circovirus Type 2 Infection in Mice. Int J Mol Sci 2023; 24:11878. [PMID: 37569261 PMCID: PMC10418747 DOI: 10.3390/ijms241511878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) has caused huge economic losses to the pig industry across the world. Matrine is a natural compound that has been shown to regulate intestinal flora and has anti-PCV2 activity in mouse models. PCV2 infection can lead to changes in intestinal flora. The intestinal flora has proved to be one of the important pharmacological targets of the active components of Traditional Chinese Medicine. This study aimed to determine whether matrine exerts anti-PCV2 effects by regulating intestinal flora. In this study, fecal microbiota transplantation (FMT) was used to evaluate the effect of matrine on the intestinal flora of PCV2-infected Kunming (KM) mice. The expression of the Cap gene in the liver and the ileum, the relative expression of IL-1β mRNA, and the Lactobacillus acidophilus (L. acidophilus) gene in the ileum of mice were determined by real-time quantitative polymerase chain reaction (qPCR). ELISA was used to analyze the content of secretory immunoglobulin A (SIgA) in small intestinal fluid. L. acidophilus was isolated and identified from the feces of KM mice in order to study its anti-PCV2 effect in vivo. The expression of the Cap gene in the liver and the ileum and the relative expression of L. acidophilus and IL-1β mRNA in the ileum were determined by qPCR. The results showed that matrine could reduce the relative expression of IL-1β mRNA by regulating intestinal flora, and that its pharmacological anti-PCV2 and effect may be related to L. acidophilus. L. acidophilus was successfully isolated and identified from the feces of KM mice. The in vivo experiment revealed that administration of L. acidophilus also reduced the relative expression of IL-1β mRNA, and that it had anti-PCV2 effects in PCV2-infected mice. It was found that matrine could regulate the abundance of L. acidophilus in the gut of mice to exert an anti-PCV2 effect and inhibit PCV2-induced inflammatory response.
Collapse
Affiliation(s)
- Zhigang Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Xiaoya Ling
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Jia Zhong
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China; (Z.C.)
| |
Collapse
|
4
|
Han C, Xu W, Wang J, Hou X, Zhou S, Song Q, Liu X, Li H. Porcine Circovirus 2 Increases the Frequency of Transforming Growth Factor-β via the C35, S36 and V39 Amino Acids of the ORF4. Viruses 2023; 15:1602. [PMID: 37515288 PMCID: PMC10383414 DOI: 10.3390/v15071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is one of the most important endemic swine pathogens, inducing immunosuppression in pigs and predisposing them to secondary bacterial or viral infections. Our previous studies show that PCV2 infection stimulated pig intestinal epithelial cells (IPEC-J2) to produce the secretory transforming growth factor-β (TGF-β), which, in turn, caused CD4+ T cells to differentiate into regulatory T cells (Tregs). This may be one of the key mechanisms by which PCV2 induces immunosuppression. Here, we attempt to identify the viral proteins that affect the TGF-β secretion, as well as the key amino acids that are primarily responsible for this occurrence. The three amino acids C35, S36 and V39 of the ORF4 protein are the key sites at which PCV2 induces a large amount of TGF-β production in IPEC-J2 and influences the frequency of Tregs. This may elucidate the regulatory effect of PCV2 on the Tregs differentiation from the perspective of virus structure and intestinal epithelial cell interaction, laying a theoretical foundation for improving the molecular mechanism of PCV2-induced intestinal mucosal immunosuppression in piglets.
Collapse
Affiliation(s)
- Cheng Han
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Weicheng Xu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Jianfang Wang
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xuewei Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| |
Collapse
|
5
|
Ling X, Cao Z, Sun P, Zhang H, Sun Y, Zhong J, Yin W, Fan K, Zheng X, Li H, Sun N. Target Discovery of Matrine against PRRSV in Marc-145 Cells via Activity-Based Protein Profiling. Int J Mol Sci 2023; 24:11526. [PMID: 37511286 PMCID: PMC10381006 DOI: 10.3390/ijms241411526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) seriously endangers the sustainable development of the pig industry. Our previous studies have shown that matrine can resist porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study aimed to explore the anti-PRRSV targets of matrine in Marc-145 cells. Biotin-labeled matrine 1 and 2 were used as probes. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each probe in Marc-145 cells. The anti-PRRSV activity of each probe was evaluated via MTT, qPCR and Western blot, and its anti-inflammatory activity was evaluated via qPCR and Western blot. The targets of matrine in Marc-145 cells were searched using activity-based protein profiling (ABPP), and compared with the targets predicted via network pharmacology for screening the potential targets of matrine against PRRSV. The protein-protein interaction networks (PPI) of potential targets were constructed using a network database and GO/KEGG enrichment analysis was performed. ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1 were identified as potential targets of matrine, and their functions were related to antiviral capacity and immunity. Matrine may play an anti-PRRSV role by directly acting on ACAT1, ALB, HMOX1, HSPA8, HSP90AB1, PARP1 and STAT1.
Collapse
Affiliation(s)
- Xiaoya Ling
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Zhigang Cao
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Panpan Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Hua Zhang
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Yaogui Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Jia Zhong
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Wei Yin
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Jinzhong 030600, China
| | - Xiaozhong Zheng
- Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Hongquan Li
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| | - Na Sun
- Shanxi Key Laboratory for Modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030600, China
| |
Collapse
|
6
|
Peng C, Zhu Q, Liu J, Yang J, You B, Zhang H, Zhu Y, Hu J. Therapeutic action of Kushen recipe extractive and its inhibitory effect on eotaxin in mouse models with contact dermatitis. Allergol Immunopathol (Madr) 2023; 51:110-123. [PMID: 37422787 DOI: 10.15586/aei.v51i4.793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 02/08/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND Treatment of skin allergic diseases remains a challenging research topic. OBJECTIVE To investigate the effect of Kushen recipe extractive (KS) gel on contact dermatitis (CD) of mouse. METHODS Allergic contact dermatitis (ACD) model of mouse was established. Immunohistochemical method (ICH) and flow cytometry method (FCM) were used to detect CD4+ and CD8+ T lymphocytes and explore the regulation effect of KS on the immune status of the organism. The expression status of eotaxin tissue was evaluated by real-time polymerase chain reaction (RT-PCR), ICH, and western blotting method. The survival rates of HaCaT cell and Fibroblasts affected by KS were detected by methyl thiazolyl tetrazolium (MTT) method. The inhibitory effect of KS on eotaxin produced by HaCaT cell and FBs induced by TNF-α and interleukin (IL)-4 were evaluated using RT-PCR and enzyme-linked immunosorbent assay methods. The inhibitory effect of KS on nuclear factor-κB (NF-κB) and Signal transducers and activators of transcription 6 (STAT6) activation induced by TNF-α and IL-4 was detected by electrophoretic mobility shift assay and western blotting methods. RESULTS We confirmed that KS shows favorable therapeutic effect on CD, which can obviously inhibit eotaxin expression and Eosinophils recruitment in allergic skin of mouse, as well as regulate the immune status of the organism. Furthermore, KS and its main effective components can inhibit TNF-α and IL-4 induced upregulation of eotaxin via the two signal transduction pathways, NF-κB and STAT6. CONCLUSIONS The great importance of traditional Chinese recipe KS is evidenced by its therapeutic effect and mechanism in ACD of mouse.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Health Management, Beidaihe Rehabilitation and Rest Center of PLA, Qinhuangdao, China
| | - Quangang Zhu
- Department of Pharmacy, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Jiyong Liu
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jishun Yang
- Department of Health Security Administration, Naval Medical Center, Naval Medical University, Shanghai, China
| | - Benming You
- Department of Pharmacy, The First Affiliated Hospital of PLA Naval Military Medical University, Shanghai, China
| | - Hualin Zhang
- Department of Pharmacy, Hospital of 81st Group Army PLA, Zhangjiakou, China
| | - Yu Zhu
- Department of Pharmacy, The First Affiliated Hospital of PLA Naval Military Medical University, Shanghai, China
| | - Jinhong Hu
- Department of Pharmacy, The First Affiliated Hospital of PLA Naval Military Medical University, Shanghai, China;
| |
Collapse
|
7
|
Sun K, Zhang Y, Li Y, Yang P, Sun Y. Biochemical Targets and Molecular Mechanism of Matrine against Aging. Int J Mol Sci 2023; 24:10098. [PMID: 37373246 DOI: 10.3390/ijms241210098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of this study is to explore the potential targets and molecular mechanism of matrine (MAT) against aging. Bioinformatic-based network pharmacology was used to investigate the aging-related targets and MAT-treated targets. A total of 193 potential genes of MAT against aging were obtained and then the top 10 key genes (cyclin D1, cyclin-dependent kinase 1, Cyclin A2, androgen receptor, Poly [ADP-ribose] polymerase-1 (PARP1), histone-lysine N-methyltransferase, albumin, mammalian target of rapamycin, histone deacetylase 2, and matrix metalloproteinase 9) were filtered by the molecular complex detection, maximal clique centrality (MMC) algorithm, and degree. The Metascape tool was used for analyzing biological processes and pathways of the top 10 key genes. The main biological processes were response to an inorganic substance and cellular response to chemical stress (including cellular response to oxidative stress). The major pathways were involved in cellular senescence and the cell cycle. After an analysis of major biological processes and pathways, it appears that PARP1/nicotinamide adenine dinucleotide (NAD+)-mediated cellular senescence may play an important role in MAT against aging. Molecular docking, molecular dynamics simulation, and in vivo study were used for further investigation. MAT could interact with the cavity of the PARP1 protein with the binding energy at -8.5 kcal/mol. Results from molecular dynamics simulations showed that the PARP1-MAT complex was more stable than PARP1 alone and that the binding-free energy of the PARP1-MAT complex was -15.962 kcal/mol. The in vivo study showed that MAT could significantly increase the NAD+ level of the liver of d-gal-induced aging mice. Therefore, MAT could interfere with aging through the PARP1/NAD+-mediated cellular senescence signaling pathway.
Collapse
Affiliation(s)
- Kaiyue Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingzi Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingliang Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Pengyu Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| | - Yingting Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China
| |
Collapse
|
8
|
Cao K, Chen J, Lu X, Yao Y, Huang R, Li L. Matrine-producing endophytic fungus Galactomyces candidum TRP-7: screening, identification, and fermentation conditions optimization for Matrine production. Biotechnol Lett 2023; 45:209-223. [PMID: 36504268 DOI: 10.1007/s10529-022-03331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/08/2022] [Accepted: 10/03/2022] [Indexed: 12/14/2022]
Abstract
Matrine (MA) is an alkaloid extracted from the root of genus Sophora with various pharmacological activities. Production of MA by endophytic fungi offers an alternative challenge to reduce the massive consumption to meet the increasing demand of MA. In the current study, the positive strains with MA producing ability were screened from endophytic fungal isolated from the root of Sophora tonkinensis Gagnep. Chromatographic analyses verified the identity of the produced MA. Among these fungi, Galactomyces candidum strain TRP-7 was the most valuable strain for MA production with the initial yield 8.26 mg L-1. The MA production was efficiently maximized up to 17.57 mg L-1 of fermentation broth, after optimization of eight process parameters using Plackett-Burman and Box-Behnken designs. The statistical optimization resulted in a 1.127 times increase in MA production as compared to the initial yield of TRP-7. This is the first report to isolate endophytic fungi with MA-producing activity from S. tonkinensis Gagnep., and to identify an endophytic fungus G. candidum TRP-7 as a new promising start strain for a higher MA yield.
Collapse
Affiliation(s)
- Kexin Cao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.,College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jianhua Chen
- College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xuan Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China
| | - Yuqun Yao
- School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545006, Guangxi, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, Guangxi, China.
| |
Collapse
|
9
|
Zhang Z, Yang Y, Yan L, Wan X, Sun K, Gou H, Ding J, Peng J, Liu G, Wang C. Effect of matrine in MAC-T cells and their transcriptome analysis: A basic study. PLoS One 2023; 18:e0280905. [PMID: 36706149 PMCID: PMC9882957 DOI: 10.1371/journal.pone.0280905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/10/2023] [Indexed: 01/28/2023] Open
Abstract
Matrine, an alkaloid derived from herbal medicine, has a wide range of biological activities, including antibacterial. Matrine was toxic to multiple cells at high concentrations. Bovine mammary epithelial cells (MAC-T) could be used as model cells for cow breast. Matrine was a feasible option to replace antibiotics in the prevention or treatment of mastitis against the background of prohibiting antibiotics, but the safe concentration of matrine on MAC-T cells and the mechanism of action for matrine at different concentrations were still unclear. In this study, different concentrations of matrine (0.5, 1, 1.5, 2, 2.5 and 3 mg/mL) were used to treat MAC-T cells for various time periods (4, 8, 12, 16 and 24 h) and measure their lactic dehydrogenase (LDH). And then the optimal doses (2 mg/mL) were chosen to detect the apoptosis at various time periods by flow cytometry and transcriptome analysis was performed between the control and 2 mg/mL matrine-treated MAC-T cells for 8 hours. The results showed that matrine was not cytotoxic at 0.5 mg/mL, but it was cytotoxic at 1~3 mg/mL. In addition, matrine induced apoptosis in MAC-T cells at 2 mg/mL and the proportion of apoptosis cells increases with time by flow cytometry. RNA-seq analysis identified 1645 DEGs, 676 of which were expressed up-regulated and 969 were expressed down-regulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated the following pathways were linked to matrine-induced toxicity and apoptosis, including cytokine-cytokine receptor interaction pathway, viral protein interaction with cytokine and cytokine receptor, P53 and PPAR pathway. We found 7 DEGs associated with matrine toxicity and apoptosis. This study would provide a basis for the safety of matrine in the prevention or treatment of mastitis.
Collapse
Affiliation(s)
- Zhao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yuze Yang
- Beijing Animal Husbandry Station, Beijing, China
| | - Lijiao Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xuerui Wan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Kangyongjie Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Huitian Gou
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jucai Ding
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Jie Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Guo Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Chuan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
10
|
Magann NL, Westley E, Sowden MJ, Gardiner MG, Sherburn MS. Total Synthesis of Matrine Alkaloids. J Am Chem Soc 2022; 144:19695-19699. [PMID: 36260032 DOI: 10.1021/jacs.2c09804] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The total synthesis of three diastereomeric matrine natural products is reported. The 8-step synthesis commences with simple acyclic precursors, forms all 4 rings of the tetracyclic natural product framework, and forges 10 of the 20 covalent bonds of the target structure. A cross-conjugated triene is positioned at the core of an acyclic branched structure. This precursor collapses to the tetracyclic natural product framework through an orchestrated sequence of two separate intramolecular cycloadditions. A subsequent, late-stage hydrogenation is accompanied by strain-release redox epimerizations to deliver the three natural products. An unprecedented carba-analogue is prepared in the same way. Semisynthetic manipulations of matrine provide access to 10 additional natural products.
Collapse
Affiliation(s)
- Nicholas L Magann
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Erin Westley
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Madison J Sowden
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
11
|
Chen D, Kang H, Tuo T, Wang L, Xia Y, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. Astragalus polysaccharide alleviated the inhibition of CSFV C-strain replication caused by PRRSV via the TLRs/NF‑κB/TNF-α pathways. Virus Res 2022; 319:198854. [PMID: 35788015 DOI: 10.1016/j.virusres.2022.198854] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 12/22/2022]
Abstract
It is a common phenomenon that PRRSV infection can interfere with the protective efficacy of the CSFV vaccine in clinical settings, and no effective treatment is available. In our previous study, we found that PRRSV infection could inhibit the replication of CSFV-C by promoting the high expression of inflammatory cytokines. In order to further investigate whether Chinese medicine could alleviate the inhibition effect, the PAM39 cells model, which was co-infected with PRRSV and CSFV-C, was established. The effects of Chinese medicine on this co-infection model, as well as the effect of astragalus polysaccharide on the TLRs/NF-κB/TNF-α pathways, were investigated. Our results demonstrated that PAM39 cells inoculated with different pathogenic PRRSV significantly inhibited the replication of CSFV-C and up-regulated the major inflammatory mediators, including TNF-α. For the following studies, 50 µM of astragalus polysaccharide was selected from six kinds of representative Chinese medicine based on their cytotoxicity, viral titers, and inflammatory mediators. Further experiments indicated that astragalus polysaccharide could alleviate the inhibition of CSFV-C replication in the co-infection group with no influence on cell viability. In addition, astragalus polysaccharide treatment clearly reduced P65 phosphorylation and down-regulated the expression of TLR7, TLR9, and TNF-α in co-infection group, implying that the TLRs/NF-κB/TNF-α pathways may play an important role in astragalus polysaccharide's anti-inflammatory response. In conclusion, astragalus polysaccharide treatment alleviated PRRSV-mediated inhibition of CSFV-C replication via the TLRs/NF-κB/TNF-α pathways, and the molecular mechanism of PRRSV co-infection leading to the failure of CSFV vaccine immunization was partially elucidated, providing a scientific basis for effective CSF prevention and control in pig farms.
Collapse
Affiliation(s)
- Dengjin Chen
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Haoran Kang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Tianbei Tuo
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Lihong Wang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Yidan Xia
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Jun Han
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| | - Xin Guo
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Department of Preventive Veterinary Medicine, Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, People's Republic of China
| |
Collapse
|
12
|
Zhang H, Cao Z, Sun P, Khan A, Guo J, Sun Y, Yu X, Fan K, Yin W, Li E, Sun N, Li H. A novel strategy for optimal component formula of anti-PRRSV from natural compounds using tandem mass tag labeled proteomic analyses. BMC Vet Res 2022; 18:179. [PMID: 35568854 PMCID: PMC9106989 DOI: 10.1186/s12917-022-03184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine Reproductive and Respiratory Syndrome (PRRS) is one of the most important porcine viral diseases which have been threatening the pig industry in China. At present, most commercial vaccines fail to provide complete protection because of highly genetic diversity of PRRSV strains. This study aimed to optimize a component formula from traditional Chinese medicine(TCM)compounds with defined chemical characteristics and clear mechanism of action against PRRSV. METHODS A total of 13 natural compounds were screened for the anti-PRRSV activity using porcine alveolar macrophages (PAMs). Three compounds with strong anti-PRRSV activity were selected to identify their potential protein targets by proteomic analysis. The optimal compound formula was determined by orthogonal design based on the results of proteomics. MTT assay was used to determine the maximum non-cytotoxic concentration (MNTC) of each compound using PAMs. QPCR and western blot were used to investigate the PRRSV N gene and protein expression, respectively. The Tandem Mass Tag (TMT) technique of relative quantitative proteomics was used to detect the differential protein expression of PAMs treated with PRRSV, matrine (MT), glycyrrhizic acid (GA) and tea saponin (TS), respectively. The three concentrations of these compounds with anti-PRRSV activity were used for orthogonal design. Four formulas with high safety were screened by MTT assay and their anti-PRRSV effects were evaluated. RESULTS MT, GA and TS inhibited PRRSV replication in a dose-dependent manner. CCL8, IFIT3, IFIH1 and ISG15 were the top four proteins in expression level change in cells treated with MT, GA or TS. The relative expression of IFIT3, IFIH1, ISG15 and IFN-β mRNAs were consistent with the results of proteomics. The component formula (0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS) showed synergistic anti-PRRSV effect. CONCLUSIONS The component formula possessed anti-PRRSV activity in vitro, in which the optimal dosage on PAMs was 0.4 mg/mL MT + 0.25 mg/mL GA + 1.95 μg/mL TS. Compatibility of the formula was superposition of the same target with GA and TS, while different targets of MT. IFN-β may be one of the targets of the component formula possessed anti-PRRSV activity.
Collapse
Affiliation(s)
- Hua Zhang
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Zhigang Cao
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Panpan Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.,Laboratory Animal Center, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Ajab Khan
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, TX, 77843, College Station, USA
| | - Yaogui Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Xiuju Yu
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Kuohai Fan
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.,Laboratory Animal Center, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Wei Yin
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - E Li
- Haowei Biotechnology Co., Ltd, Tianjin, 300000, China
| | - Na Sun
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China
| | - Hongquan Li
- Shanxi key lab. for modernization of TCVM, College of Veterinary Medicine, Shanxi Agricultural University, Shanxi, 030801, Taigu, China.
| |
Collapse
|
13
|
Gan F, Hou L, Xu H, Liu Y, Chen X, Huang K. PCV2 infection aggravates OTA-induced immunotoxicity in vivo and in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 235:113447. [PMID: 35358920 DOI: 10.1016/j.ecoenv.2022.113447] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Ochratoxin A (OTA), frequently existing in the food and feeds, could induce immunotoxicity. Porcine circovirus type 2 (PCV2), as a primary causative agent of porcine circovirus-associated disease, also could induce immunosuppression. However, it is still unknown whether PCV2 infection impacts OTA-induced immunotoxicity. The pigs and porcine alveolar macrophages (PAMs) were used as the model in the present experiment. The results in vivo indicated that PCV2 infection exacerbated OTA-induced immunotoxicity, NF-κB p65 phosphorylation, and TLR4 and MyD88 mRNA and protein expression in spleen. The results in vitro showed that OTA at 7.0 and 9.0 μM decreased cell viability and increased LDH release of PAMs without PCV2 infection. However, with PCV2 infection, OTA at 5.0, 7.0 and 9.0 μM significantly decreased cell viability and increased LDH release compared with absence of PCV2 infection. In addition, OTA at 5.0 and 7.0 μM significantly increased Annexin V/PI-positive rate, apoptosis of nuclear, γ-H2AX foci, IL-1α and TNF-α expression in PAMs with PCV2 infection compared with absence of PCV2 infection. In addition, PCV2 infection enhanced OTA-induced TLR4 and MyD88 mRNA and protein expression and NF-κB p65 phosphorylation. Knockdown of TLR4 alleviated the exacerbating effects of PCV2 infection on OTA-induced cytotoxicity, apoptosis and DNA damage in PAMs. These results indicated that PCV2 infection aggravated OTA-induced immunotoxicity and reduced the dose of OTA-induced immunotoxicity via TLR4/NF-κB p65 signaling pathway, which could provide basis for establishing limits for OTA.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine,Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Lili Hou
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine,Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Haibin Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine,Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine,Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine,Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine,Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
14
|
Feng H, Fu J, Zhang B, Xue T, Liu C. A Novel Virus-Like Agent Originated From Genome Rearrangement of Porcine Circovirus Type 2 (PCV2) Enhances PCV2 Replication and Regulates Intracellular Redox Status In Vitro. Front Cell Infect Microbiol 2022; 12:855920. [PMID: 35493731 PMCID: PMC9043654 DOI: 10.3389/fcimb.2022.855920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 01/31/2023] Open
Abstract
Genome rearrangement occurs to porcine circovirus type 2 (PCV2) during in vitro and in vivo infections, and a number of rearranged PCV2 genomes have been isolated and characterized. This study was conducted to investigate the role of the rearranged PCV2 (rPCV2) in PCV2 replication and the biological effect of rPCV2 in host cells. Two whole rPCV2 genome sequences (358 nt and 1125 nt in length) were synthesized and recombinant plasmids pBSK(+)-rPCV2 (pBSK(+)-1125 and pBSK(+)-358) were constructed. A novel virus-like agent (rPCV2-1125) was rescued by in vitro transfection of porcine kidney cell line (PK-15) and porcine alveolar macrophage 3D4/21 cells. The data indicate that rPCV2-1125 significantly enhanced PCV2 replication in vitro. Furthermore, rPCV2-1125 led to oxidative stress in host cells, as indicated by decreased intracellular glutathione (GSH) and total superoxide dismutase (SOD) activities, as well as increased malondialdehyde (MDA) levels. These results provide new insights into genome rearrangement of PCV2 and will contribute to future studies of PCV2 replication and associated mechanisms.
Collapse
Affiliation(s)
- Huicheng Feng
- School of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Jinping Fu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Bo Zhang
- School of Pharmacy, Linyi University, Linyi, Shandong, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, Shandong, China
- *Correspondence: Chuanmin Liu, ; Tao Xue,
| | - Chuanmin Liu
- School of Pharmacy, Linyi University, Linyi, Shandong, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Chuanmin Liu, ; Tao Xue,
| |
Collapse
|
15
|
Lin Y, He F, Wu L, Xu Y, Du Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des Devel Ther 2022; 16:533-569. [PMID: 35256842 PMCID: PMC8898013 DOI: 10.2147/dddt.s349678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
As The main effective monomer of the traditional Chinese medicine Sophora flavescens Ait, matrine has a broad scope of pharmacological activities such as anti-tumor, anti-inflammatory, analgesic, anti-fibrotic, anti-viral, anti-arrhythmia, and improving immune function. These actions explain its therapeutic effects in various types of tumors, cardiopathy, encephalomyelitis, allergic asthma, rheumatoid arthritis (RA), osteoporosis, and central nervous system (CNS) inflammation. Evidence has shown that the mechanism responsible for the pharmacological actions of matrine may be via the activation or inhibition of certain key molecules in several cellular signaling pathways including the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR), transforming growth factor-β/mothers against decapentaplegic homolog (TGF-β/Smad), nuclear factor kappa B (NF-κB), Wnt (wingless/ integration 1)/β-catenin, mitogen-activated protein kinases (MAPKs), and Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. This review comprehensively summarizes recent studies on the pharmacological mechanisms of matrine to provide a theoretical basis for molecular targeted therapies and further development and utilization of matrine.
Collapse
Affiliation(s)
- Yingda Lin
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Fuming He
- Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Ling Wu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Yuan Xu
- Department of Pharmacy, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| | - Qiu Du
- Department of Neurosurgery, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China.,Department of Central Laboratory, the Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225012, People's Republic of China
| |
Collapse
|
16
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
17
|
Zhao D, Yang B, Yuan X, Shen C, Zhang D, Shi X, Zhang T, Cui H, Yang J, Chen X, Hao Y, Zheng H, Zhang K, Liu X. Advanced Research in Porcine Reproductive and Respiratory Syndrome Virus Co-infection With Other Pathogens in Swine. Front Vet Sci 2021; 8:699561. [PMID: 34513970 PMCID: PMC8426627 DOI: 10.3389/fvets.2021.699561] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/02/2021] [Indexed: 01/15/2023] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen causing epidemics of porcine reproductive and respiratory syndrome (PRRS), and is present in every major swine-farming country in the world. Previous studies have demonstrated that PRRSV infection leads to a range of consequences, such as persistent infection, secondary infection, and co-infection, and is common among pigs in the field. In recent years, coinfection of PRRSV and other porcine pathogens has occurred often, making it more difficult to define and diagnose PRRSV-related diseases. The study of coinfections may be extremely suitable for the current prevention and control in the field. However, there is a limited understanding of coinfection. Therefore, in this review, we have focused on the epidemiology of PRRSV coinfection with other pathogens in swine, both in vivo and in vitro.
Collapse
Affiliation(s)
- Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, China
| |
Collapse
|
18
|
Chabowska G, Barg E, Wójcicka A. Biological Activity of Naturally Derived Naphthyridines. Molecules 2021; 26:4324. [PMID: 34299599 PMCID: PMC8306249 DOI: 10.3390/molecules26144324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Marine and terrestrial environments are rich sources of various bioactive substances, which have been used by humans since prehistoric times. Nowadays, due to advances in chemical sciences, new substances are still discovered, and their chemical structures and biological properties are constantly explored. Drugs obtained from natural sources are used commonly in medicine, particularly in cancer and infectious diseases treatment. Naphthyridines, isolated mainly from marine organisms and terrestrial plants, represent prominent examples of naturally derived agents. They are a class of heterocyclic compounds containing a fused system of two pyridine rings, possessing six isomers depending on the nitrogen atom's location. In this review, biological activity of naphthyridines obtained from various natural sources was summarized. According to previous studies, the naphthyridine alkaloids displayed multiple activities, i.a., antiinfectious, anticancer, neurological, psychotropic, affecting cardiovascular system, and immune response. Their wide range of activity makes them a fascinating object of research with prospects for use in therapeutic purposes.
Collapse
Affiliation(s)
- Gabriela Chabowska
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Ewa Barg
- Department of Basic Medical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| | - Anna Wójcicka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wrocław, Poland
| |
Collapse
|
19
|
Li X, Tang Z, Wen L, Jiang C, Feng Q. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113682. [PMID: 33307055 DOI: 10.1016/j.jep.2020.113682] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE "Dogel ebs" was known as Sophora flavescens Ait., which has been widely utilized in the clinical practice of traditional Chinese Mongolian herbal medicine for thousands of years. Shen Nong's Materia Medica (Shen Nong Ben Cao Jing in Chinese pinyin) recorded that it is bitter in taste and cold in nature with the effect of clearing heat and eliminating dampness, insecticide, diuresis. Due to its extensive application in the fields of ethnopharmacological utilization, the pharmaceutical researches of Sophora flavescens Ait.s keeps deepening. Modern pharmacological studies have exhibited that matrine, which is rich in this traditional herbal medicine, mediates its main biological properties. AIMS OF THE REVIEW This review aimed at summarizing the latest and comprehensive information of matrine on the pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches to explore the therapeutic potential of this natural ingredient. In addition, outlooks and perspective for possible future researches that related are also discussed. MATERIALS AND METHODS Related information concerning matrine was gathered from the internet database of Google scholar, Pubmed, ResearchGate, Web of Science and Wiley Online Library with the keywords including "matrine", "pharmacology", "toxicology" and "pharmacokinetics", "clinical application", etc. RESULTS: Based on literatures, matrine has a variety of pharmacological effects, including anti-cancer, anti-inflammatory, anti-microbial, detoxification and so on. Nevertheless, there are still some doubts about it due to the toxicity and questionable bioavailability that does exist. CONCLUSIONS Future researches directions probably include elucidate the mechanism of its toxicity and accurately tracing the in vivo behavior of its drug delivery system. Without doubt, integration of toxicity and efficiency and structure modification based on it are also pivotal methods to enhance pharmacological activity and bioavailability.
Collapse
Affiliation(s)
- Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ziwei Tang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China; Beibei Traditional Chinese Medical Hospital, Chongqing, 400700, China
| | - Li Wen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cen Jiang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Quansheng Feng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
20
|
Ti H, Zhuang Z, Yu Q, Wang S. Progress of Plant Medicine Derived Extracts and Alkaloids on Modulating Viral Infections and Inflammation. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1385-1408. [PMID: 33833499 PMCID: PMC8020337 DOI: 10.2147/dddt.s299120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022]
Abstract
Viral infectious diseases are serious threats to human health in both developing and developed countries. Although there is the continued development of new drugs from synthetic sources as antiviral agents, medicinal plants continue to provide the basic raw materials for some of the most important antiviral drugs. Alkaloids are a class of pharmacologically active plant compounds that are usually alkaline in nature. In this review, we tried to summarize recent progress in herb-based antiviral research, the advantages of using active plant compounds as antiviral agents, and the inflammatory responses initiated by alkaloids, based on the literature from 2009 to 2019, for the treatment of conditions, including influenza, human immunodeficiency virus, herpes simplex virus, hepatitis, and coxsackievirus infections. Articles are retrieved from PubMed, Google Scholar, and Web of Science using relevant keywords. In particular, the alkaloids from medicinal plants responsible for the molecular mechanisms of anti-inflammatory actions are identified and discussed. This review can provide a theoretical basis and approaches for using various alkaloids as antiviral treatments. More research is needed to develop alkaloidal compounds as antiviral therapeutic agents and potential regulators of the anti-inflammatory response.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Zixi Zhuang
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.,Guangdong Institute of Analysis (China National Analytical Center, Guangzhou), Guangzhou, 510070, People's Republic of China
| | - Qian Yu
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| | - Shumei Wang
- Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
21
|
Ma QH, Ren MY, Luo JB. San Wu Huangqin decoction regulates inflammation and immune dysfunction induced by influenza virus by regulating the NF-κB signaling pathway in H1N1-infected mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:112800. [PMID: 32224195 DOI: 10.1016/j.jep.2020.112800] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The San Wu Huangqin Decoction (SWHD), which is made from the dried root of Sophora flavescens Aiton (Kushen in Chinese), the dried root of Scutellaria baicalensis Georgi (Huangqin in Chinese), and the dried root tuber of Rehmannia glutinosa (Gaertn.) DC. (Dihuang in Chinese), is a traditional Chinese formula used to treat prolonged fever and inflammatory diseases in clinics and proven to inhibit influenza virus effectively in our previous study. AIM OF THE STUDY This work was performed to study the regulation of SWHD on inflammation and immune dysfunction induced by the influenza virus and the underlying mechanism in the treatment of SWHD. METHODS In this study, the influenza virus A/PR/8/34 (H1N1)-infected mouse model was used to investigate the regulation of SWHD on inflammation and immune dysfunction induced by H1N1. The pathological changes, the capacity of proliferation of T and B lymphocytes, the cytotoxicity of natural killer (NK) cells, and the levels of IL-6, TNF-α, IL-1β, IL-4, and IFN-γ in the serum, bronchoalveolar lavage fluid (BALF), and lung were analyzed. The effects of type 1 T helper cell (Th1) and type 2 T helper cell (Th2) immune responses were discussed indirectly. In addition, the expression levels of p-p65, p65, IKKα/β, p-IκBα, and IκBα in relation to the NF-κB pathway were measured using Western blot analysis, or immunohistochemical assay. RESULTS SWHD decreased the pathological changes in lung tissues, promoted the proliferation of T and B lymphocytes, enhanced NK cell activity, and accelerated the phagocytic function of macrophages in H1N1-infected mice. At the same time, SWHD decreased the levels of IL-6, TNF-α, IL-1β, IFN-γ, and increased the level of IL-4 in the serum, BALF, and lung of model mice. Moreover, the p-p65, p65, and IκBα protein expression levels were inhibited, whereas the p-IκBα protein expression levels were improved in the lungs of H1N1-infected mice. CONCLUSIONS SWHD can inhibit the replication of the H1N1 virus and reduced the excessive inflammation and immune dysfunction induced by the H1N1 virus in the body. This work provides rich experimental basis for further anti-inflammation research of SWHD and sets the foundation for the development of a viral inflammation drug of traditional Chinese medicine.
Collapse
Affiliation(s)
- Qin-Hai Ma
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510515, Guangdong, PR China.
| | - Meng-Yue Ren
- College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, PR China.
| | - Jia-Bo Luo
- School of Traditional Chinese Medical, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
22
|
Dai LS, Tian HF, Hang Y, Wen CW, Huang YH, Wang BF, Hu JW, Xu JP, Deng MJ. 1 H NMR-based metabonomic evaluation of the pesticides camptothecin and matrine against larvae of Spodoptera litura. PEST MANAGEMENT SCIENCE 2021; 77:208-216. [PMID: 32677739 DOI: 10.1002/ps.6009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Camptothecin (CPT) and matrine (MAT) have potential as botanical pesticides against several pest species. However, the mechanisms of metabolic and physiological changes in pests induced by CPT and MAT are unknown. In this study, a toxicological test, an NMR-based metabolomic study, an enzymatic test, and an RT quantitative PCR (RT-qPCR) experiment were all conducted to examine the effect of CPT and MAT on Spodoptera litura. RESULTS CPT (0.5-1%) exerted high toxicity against larvae of S. litura and caused growth stagnation and high mortality of larvae. A variety of metabolites were significantly influenced by 0.5% CPT, including several energy-related metabolites such as trehalose, lactate, succinate, citrate, malate, and fumarate. In contrast, MAT showed low toxicity against larvae and induced almost no changes in hemolymph metabolites of S. litura. Enzymatic tests showed that trehalase activity was significantly decreased in larvae after feeding with 0.5% CPT. RT-qPCR showed that the transcription levels of alanine aminotransferase, malate dehydrogenase, and isocitrate dehydrogenase were decreased while lactate dehydrogenase was increased in the 0.5% CPT-treated group. CONCLUSIONS These data indicate that one of the important mechanisms of CPT against S. litura larvae is via the inhibition of trehalose hydrolysis and glycolysis. Our findings also suggest that CPT exhibits a stronger toxicological effect than MAT against S. litura, which provides basic information for the application of CPT in the control of S. litura or other lepidoptera pests.
Collapse
Affiliation(s)
- Li-Shang Dai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui-Fei Tian
- School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yang Hang
- Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, China
| | - Chao-Wei Wen
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ying-Hao Huang
- Renji College, Wenzhou Medical University, Wenzhou, China
| | - Bin-Feng Wang
- School of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Jing-Wei Hu
- Biotechnology Center of Anhui Agricultural University, Anhui Agricultural University, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ming-Jie Deng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
23
|
Choudhry N, Zhao X, Xu D, Zanin M, Chen W, Yang Z, Chen J. Chinese Therapeutic Strategy for Fighting COVID-19 and Potential Small-Molecule Inhibitors against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). J Med Chem 2020; 63:13205-13227. [PMID: 32845145 PMCID: PMC7489051 DOI: 10.1021/acs.jmedchem.0c00626] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Indexed: 02/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to more than 20 million people infected worldwide with an average mortality rate of 3.6%. This virus poses major challenges to public health, as it not only is highly contagious but also can be transmitted by asymptomatic infected individuals. COVID-19 is clinically difficult to manage due to a lack of specific antiviral drugs or vaccines. In this article, Chinese therapy strategies for treating COVID-19 patients, including current applications of traditional Chinese medicine (TCM), are comprehensively reviewed. Furthermore, 72 small molecules from natural products and TCM with reported antiviral activity against human coronaviruses (CoVs) are identified from published literature, and their potential applications in combating SARS-CoV-2 are discussed. Among these, the clinical efficacies of some accessible drugs such as remdesivir (RDV) and favipiravir (FPV) for COVID-19 are emphatically summarized. We hope this review provides a foundation for managing the worsening pandemic and developing antivirals against SARS-CoV-2.
Collapse
Affiliation(s)
- Namrta Choudhry
- Guangdong Provincial Key Laboratory of
Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong
Laboratory for Lingnan Modern Agriculture, College of Veterinary
Medicine, South China Agricultural
University, Guangzhou 510642,
China
| | - Xin Zhao
- Guangdong Institute of
Analysis (China National Analytical Center,
Guangzhou), Guangzhou 510070,
China
| | - Dan Xu
- Guangdong Provincial Key Laboratory of
Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong
Laboratory for Lingnan Modern Agriculture, College of Veterinary
Medicine, South China Agricultural
University, Guangzhou 510642,
China
| | - Mark Zanin
- State Key Laboratory of Respiratory
Disease, National Clinical Research Center for Respiratory Disease,
Guangzhou Institute of Respiratory Health, First
Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510120,
China
- School of Public Health,
The University of Hong Kong, 7
Sassoon Road, Pokfulam, Hong Kong, SAR, China
| | - Weisan Chen
- Department of Biochemistry and
Genetics, La Trobe Institute for Molecular Science, La
Trobe University, Melbourne, Victoria 3086,
Australia
| | - Zifeng Yang
- State Key Laboratory of Respiratory
Disease, National Clinical Research Center for Respiratory Disease,
Guangzhou Institute of Respiratory Health, First
Affiliated Hospital of Guangzhou Medical
University, Guangzhou 510120,
China
| | - Jianxin Chen
- Guangdong Provincial Key Laboratory of
Veterinary Pharmaceutics Development and Safety Evaluation, Guangdong
Laboratory for Lingnan Modern Agriculture, College of Veterinary
Medicine, South China Agricultural
University, Guangzhou 510642,
China
| |
Collapse
|
24
|
Sun N, Zhang H, Sun P, Khan A, Guo J, Zheng X, Sun Y, Fan K, Yin W, Li H. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153289. [PMID: 32771536 DOI: 10.1016/j.phymed.2020.153289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND PRRSV and PCV2 co-infection is very common in swine industry which results in huge economic losses worldwide. Although vaccination is used to prevent viral diseases, immunosuppression induced by PRRSV and PCV2 leads to vaccine failure. PURPOSE Our previous results have demonstrated that Matrine possess antiviral activities against PRRSV/PCV2 co-infection in vitro. This study aims to establish a PRRSV/PCV2 co-infected KM mouse model and evaluate the antiviral activities of Matrine against PRRSV/PCV2 co-infection. STUDY DESIGN A total of 144 KM mice were randomly divided into six groups with 24 mice in each group, named as: normal control, PRRSV/PCV2 co-infected group (PRRSV/PCV2 group), Ribavirin treatment positive control (Ribavirin control) and Matrine treatment groups (Matrine 40 mg/kg, Matrine 20 mg/kg and Matrine 10 mg/kg). METHODS Except normal control group, all mice in other five groups were inoculated with PRRSV, followed by PCV2 at 2 h later. At 7 days post-infection (dpi), mice in the treatment groups were intraperitoneally administered with various doses of Matrine and Ribavirin, twice a day for 5 consecutive days. RESULTS PRRSV N and PCV2 CAP genes were detected by PCR in multiple tissues including heart, liver, spleen, lungs, kidneys, thymus and inguinal lymph nodes. The viral load of PCV2 was the highest in liver followed by thymus and spleen. Although PRRSV were detected in most of tissues, but the replication of PRRSV was not significantly increased, as shown by qPCR analysis. Comparing with PCV2 infection alone, PRRSV infection significantly elevated PCV2 replication and exacerbated PCV2 induced interstitial pneumonia. qPCR analysis demonstrated 40 mg/kg Matrine significantly attenuated PCV2 replication in liver and alleviated virus induced interstitial pneumonia, suggesting Matrine could directly inhibit virus replication. In addition, Matrine treatment enhanced peritoneal macrophages phagocytosis at 13 and 16 dpi, and 40 mg/kg of Matrine increased the proliferation activity of lymphocytes. Body weight gain was continuously promoted by administrating Matrine at 10 mg/kg. CONCLUSION Matrine possessed antiviral activities via inhibiting virus replication and regulating immune functions in mice co-infected by PRRSV/PCV2. These data provide new insight into controlling PRRSV and PCV2 infection and support further research for developing Matrine as a new possible veterinary medicine.
Collapse
Affiliation(s)
- Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Panpan Sun
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, Texas, TX 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
25
|
You X, Qu Y, Zhang Y, Huang J, Gao X, Huang C, Luo G, Liu Q, Liu M, Xu D. Mir-331-3p Inhibits PRRSV-2 Replication and Lung Injury by Targeting PRRSV-2 ORF1b and Porcine TNF-α. Front Immunol 2020; 11:547144. [PMID: 33072088 PMCID: PMC7544944 DOI: 10.3389/fimmu.2020.547144] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by a single-stranded RNA virus (PRRSV) is a highly infectious respiratory disease and leads to huge economic losses to the swine industry worldwide. To investigate the role of miRNAs in the infection and lung injury induced by PRRSV, the differentially expressed miRNAs (DE-miRs) were isolated from PRRSV-2 infected/mock-infected PAMs of Meishan, Landrace, Pietrain, and Qingping pigs at 9, 36, and 60 hpi. Mir-331-3p was the only common DE-miR in each set of miRNA expression profile at 36 hpi. Mir-210 was one of 7 common DE-miRs between PRRSV infected and mock-infected PAMs of Meishan, Pietrain, and Qingping pigs at 60 hpi. Mir-331-3p/mir-210 could target PRRSV-2 ORF1b, bind and downregulate porcine TNF-α/STAT1 expression, and inhibit PRRSV-2 replication, respectively. Furthermore, STAT1 and TNF-α could mediate the transcriptional activation of MCP-1, VCAM-1, and ICAM-1. STAT1 could also upregulate the expression of TNF-α by binding to its promoter region. In vivo, pEGFP-N1-mir-331-3p could significantly reduce viral replication and pathological changes in PRRSV-2 infected piglets. Taken together, Mir-331-3p/mir-210 have significant roles in the infection and lung injury caused by PRRSV-2, and they may be promising therapeutic targets for PRRS and lung injury/inflammation.
Collapse
Affiliation(s)
- Xiangbin You
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yilin Qu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yue Zhang
- Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jingshu Huang
- Agricultural Development Center of Hubei Province, Wuhan, China
| | - Xiaoxiao Gao
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Chengyu Huang
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gan Luo
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Qian Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Min Liu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dequan Xu
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.,Colleges of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
26
|
Hu G, Do DN, Gray J, Miar Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals (Basel) 2020; 10:E1717. [PMID: 32971980 PMCID: PMC7552752 DOI: 10.3390/ani10091717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Disease is a global problem for animal farming industries causing tremendous economic losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment, eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically, and permanently eliminate the adverse influences of disease in the farm animals. These limitations and deficiencies drive animal breeders to be more concerned and committed to dealing with health problems in farm animals by selecting animals with favorable health traits. Both genetic selection and genomic selection contribute to improving the health of farm animals by selecting certain health traits (e.g., disease tolerance, disease resistance, and immune response), although both of them face some challenges. The objective of this review was to comprehensively review the potential of selecting health traits in coping with issues caused by diseases in farm animals. Within this review, we highlighted that selecting health traits can be applied as a method of disease control to help animal agriculture industries to cope with the adverse influences caused by diseases in farm animals. Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm animals. Therefore, management, vaccination, culling, medical treatment, and other measures must accompany selection solution to reduce the adverse impact of farm animal diseases on profitability and animal welfare.
Collapse
Affiliation(s)
| | | | | | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (G.H.); (D.N.D.); (J.G.)
| |
Collapse
|
27
|
Xu Y, Zheng J, Sun P, Guo J, Zheng X, Sun Y, Fan K, Yin W, Li H, Sun N. Cepharanthine and Curcumin inhibited mitochondrial apoptosis induced by PCV2. BMC Vet Res 2020; 16:345. [PMID: 32948186 PMCID: PMC7499946 DOI: 10.1186/s12917-020-02568-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is an immunosuppressive pathogen with high prevalence rate in pig farms. It has caused serious economic losses to the global pig industry. Due to the rapid mutation of PCV2 strain and co-infection of different genotypes, vaccination could not eradicate the infection of PCV2. It is necessary to screen and develop effective new compounds and explore their anti-apoptotic mechanism. The 13 natural compounds were purchased, with a clear plant origin, chemical structure and content and specific biological activities. Results The maximum no-cytotoxic concentration (MNTC) and 50% cytotoxic concentration (CC50) of 13 tested compounds were obtained by the cytopathologic effect (CPE) assay and (3-(4,5-dimethyithiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method in PK-15 cells. The results of qPCR and Western blot showed that, compared with the PCV2 infected group, the expression of Cap in Paeonol (0.4 mg/mL and 0.2 mg/mL), Cepharanthine (0.003 mg/mL, 0.0015 mg/mL and 0.00075 mg/mL) and Curcumin (0.02 mg/mL, 0.001 mg/mL and 0.005 mg/mL) treated groups were significantly lowered in a dose-dependent manner. The results of Annexin V-FITC/PI, JC-1, Western blot and ROS analysis showed that the expression of cleaved caspase-3 and Bax were up-regulated Bcl-2 was down-regulated in Cepharanthine or Curcumin treated groups, while ROS and MMP value were decreased at different degrees and the apoptosis rate was reduced. In this study, Ribavirin was used as a positive control. Conclusions Paeonol, Cepharanthine and Curcumin have significant antiviral effect. And the PCV2-induced Mitochondrial apoptosis was mainly remitted by Cepharanthine and Curcumin.
Collapse
Affiliation(s)
- Yinlan Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiangang Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Panpan Sun
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Wei Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
28
|
You L, Yang C, Du Y, Wang W, Sun M, Liu J, Ma B, Pang L, Zeng Y, Zhang Z, Dong X, Yin X, Ni J. A Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front Pharmacol 2020; 11:01067. [PMID: 33041782 PMCID: PMC7526649 DOI: 10.3389/fphar.2020.01067] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Matrine (MT) is a naturally occurring alkaloid and an bioactive component of Chinese herbs, such as Sophora flavescens and Radix Sophorae tonkinensis. Emerging evidence suggests that MT possesses anti-cancer, anti-inflammatory, anti-oxidant, antiviral, antimicrobial, anti-fibrotic, anti-allergic, antinociceptive, hepatoprotective, cardioprotective, and neuroprotective properties. These pharmacological properties form the foundation for its application in the treatment of various diseases, such as multiple types of cancers, hepatitis, skin diseases, allergic asthma, diabetic cardiomyopathy, pain, Alzheimer's disease (AD), Parkinson's disease (PD), and central nervous system (CNS) inflammation. However, an increasing number of published studies indicate that MT has serious adverse effects, the most obvious being liver toxicity and neurotoxicity, which are major factors limiting its clinical use. Pharmacokinetic studies have shown that MT has low oral bioavailability and short half-life in vivo. This review summarizes the latest advances in research on the pharmacology, toxicology, and pharmacokinetics of MT, with a focus on its biological properties and mechanism of action. The review provides insight into the future of research on traditional Chinese medicine.
Collapse
Affiliation(s)
- Longtai You
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chunjing Yang
- Department of Pharmacy, Beijing Shijitan Hospital Affiliated to Capital University of Medical Sciences, Beijing, China
| | - Yuanyuan Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wenping Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyi Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Baorui Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Linnuo Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yawen Zeng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoxv Dong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingbin Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
29
|
Li J, Wang X, Yang F, Yuan J, Cui Q, Nie F, Zhang J. Matrine enhances osteogenic differentiation of bone marrow-derived mesenchymal stem cells and promotes bone regeneration in rapid maxillary expansion. Arch Oral Biol 2020; 118:104862. [PMID: 32810708 DOI: 10.1016/j.archoralbio.2020.104862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the influence of matrine on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BMSCs) as well as on bone metabolism in a rat rapid maxillary expansion (RME) model. METHODS In in vitro experiments, rat BMSCs were adopted and cell proliferation of BMSCs was measured. Meanwhile, the osteogenic differentiation of BMSCs was detected by alkaline phosphatase (ALP) activity assay, Alizarin red S staining and gene expression. In vivo bone regeneration was analyzed in a rat RME model. Eighteen rats were divided into 3 groups: one group without any treatment, one group receiving only RME, and a group with RME and matrine treatment. After 2 weeks, new bone formation was detected by Micro-CT and histology. Immunohistochemical staining was used to evaluate ALP and BMP2 expression. RESULTS Overall, we found that matrine upregulated cell proliferation dose-dependently. Also, ALP activity and mineralized matrix generation were enhanced. Moreover, the osteoblast-related gene expression (ALP, bone sialoprotein and osteocalcin) by BMSCs was also promoted. Micro-CT revealed that matrine significantly promoted in vivo bone formation after 2 weeks. Concomitantly, histological examination of haematoxylin-eosin, safranin-O and toluidine blue staining confirmed these findings. In addition, the levels of ALP and BMP2 in the palatal suture tissues of rats with matrine treatment were the highest among three groups. CONCLUSION This work suggests that matrine regulates osteogenesis and enhances bone regeneration. Matrine treatment may be beneficial in improving the stability of maxillary expansion.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Xuxia Wang
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Fan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Jiakan Yuan
- Department of Stomatology, Heze Municipal Hospital, Heze, Shandong Province, China
| | - Qun Cui
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Fujiao Nie
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, China.
| |
Collapse
|
30
|
Jung BK, Kim HR, Jang H, Chang KS. Replacing the decoy epitope of PCV2 capsid protein with epitopes of GP3 and/or GP5 of PRRSV enhances the immunogenicity of bivalent vaccines in mice. J Virol Methods 2020; 284:113928. [PMID: 32650038 DOI: 10.1016/j.jviromet.2020.113928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 04/15/2020] [Accepted: 07/04/2020] [Indexed: 11/18/2022]
Abstract
Porcine circovirus type 2 (PCV2) is the causative agent of postweaning multisystemic wasting syndrome (PMWS), porcine dermatitis and nephropathy syndrome (PDNS), and reproductive failure and causes economic losses in the domestic swine industry. The decoy epitope (169-180 amino acid (aa)) of the PCV2 capsid (Cap) protein is an immunodominant epitope and diverts the immune response away from protective epitopes. The mixed infection of PCV2 and porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most common co-infections in the pig industry and shows more severe clinical symptoms. Linear B-cell antigenic epitopes of PRRSV GP3 epitope Ⅰ (61-72aa) and PRRSV GP5 epitope Ⅳ (187-200aa) efficiently elicited neutralizing antibodies against PRRSV. The recombinant baculovirus expressing the Cap protein (Bac-Cap) was modified by replacing the decoy epitope of the Cap protein with either the PRRSV GP3 epitope Ⅰ, the PRRSV GP5 epitope Ⅳ, or the PRRSV GP3 epitope Ⅰ- GP5 epitope Ⅳ to produce the recombinant baculoviruses Bac-Cap-GP3, Bac-Cap-GP5 and Bac-Cap-GP35. The four recombinant baculoviruses were successfully established and characterized as demonstrated with western blot analysis and immunofluorescence assay. Immunogenicities of the four recombinant baculoviruses in mice were tested in sera harvested at 21 and 42 days post-primary immunization. The titers of antibodies in the sera were determined by a PCV2-specific enzyme-linked immunosorbent assay (ELISA) and a serum neutralization assay. The serum IFN-γ levels were measured by indirect ELISA. The results showed that Bac-Cap-GP3, Bac-Cap-GP5, and Bac-Cap-GP35 elicited higher GP3/GP5 and Cap antibody titers than the Bac-Cap. Virus neutralization test also confirmed that the serum from the Bac-Cap-GP3 immunized mice had high levels of the both PCV2 and PRRSV neutralization antibodies. These findings collectively demonstrated that substituting the decoy epitope of the PCV2 capsid substituted with PRRSV epitopes could be developed into an effective vaccine against PCV2.
Collapse
Affiliation(s)
- Bo-Kyoung Jung
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, 48513, Republic of Korea; Libentech Co. LTD, C-722 Daedeok BIZ Center, Techno 4-ro, 17 Yuseong-gu, Daejeon, 34013, Republic of Korea.
| | - Hye-Ran Kim
- Department of Clinical Laboratory Science, College of Medical Sciences, Daegu Haany University, Daegu, 38610, Republic of Korea.
| | - Huyn Jang
- Libentech Co. LTD, C-722 Daedeok BIZ Center, Techno 4-ro, 17 Yuseong-gu, Daejeon, 34013, Republic of Korea.
| | - Kyung-Soo Chang
- Department of Clinical Laboratory Science, Catholic University of Pusan, Busan, 48513, Republic of Korea.
| |
Collapse
|
31
|
Coinfections and their molecular consequences in the porcine respiratory tract. Vet Res 2020; 51:80. [PMID: 32546263 PMCID: PMC7296899 DOI: 10.1186/s13567-020-00807-8] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/02/2020] [Indexed: 01/15/2023] Open
Abstract
Understudied, coinfections are more frequent in pig farms than single infections. In pigs, the term “Porcine Respiratory Disease Complex” (PRDC) is often used to describe coinfections involving viruses such as swine Influenza A Virus (swIAV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV), and Porcine CircoVirus type 2 (PCV2) as well as bacteria like Actinobacillus pleuropneumoniae, Mycoplasma hyopneumoniae and Bordetella bronchiseptica. The clinical outcome of the various coinfection or superinfection situations is usually assessed in the studies while in most of cases there is no clear elucidation of the fine mechanisms shaping the complex interactions occurring between microorganisms. In this comprehensive review, we aimed at identifying the studies dealing with coinfections or superinfections in the pig respiratory tract and at presenting the interactions between pathogens and, when possible, the mechanisms controlling them. Coinfections and superinfections involving viruses and bacteria were considered while research articles including protozoan and fungi were excluded. We discuss the main limitations complicating the interpretation of coinfection/superinfection studies, and the high potential perspectives in this fascinating research field, which is expecting to gain more and more interest in the next years for the obvious benefit of animal health.
Collapse
|
32
|
Zheng J, Xu Y, Khan A, Wang S, Li H, Sun N. In vitro Screening of Traditional Chinese Medicines Compounds Derived with Anti-encephalomyocarditis Virus Activities. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0354-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Yang C, Lan R, Wang X, Zhao Q, Li X, Bi J, Wang J, Yang G, Lin Y, Liu J, Yin G. Integrin β3, a RACK1 interacting protein, is critical for porcine reproductive and respiratory syndrome virus infection and NF-κB activation in Marc-145 cells. Virus Res 2020; 282:197956. [PMID: 32247758 DOI: 10.1016/j.virusres.2020.197956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/20/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is the pathogen of porcine reproductive and respiratory syndrome (PRRS), which is one of the most economically harmful diseases in modern pig production worldwide. Receptor of activated protein C kinase 1 (RACK1) was previously shown to be indispensable for the PRRSV replication and NF-κB activation in Marc-145 cells. Here we identified a membrane protein, integrin β3 (ITGB3), as a RACK1-interacting protein. PRRSV infection in Marc-145 cells upregulated the ITGB3 expression. Abrogation of ITGB3 by siRNA knockdown or antibody blocking inhibited PRRSV infection and NF-κB activation, while on the other hand, overexpression of ITGB3 enhanced PRRSV infection and NF-κB activation. Furthermore, inhibition of ITGB3 alleviated the cytopathic effects and reduced the TCID50 titer in Marc-145 cells. We also showed that RACK1 and ITGB3 were NF-κB target genes during PRRSV infection, and that they regulated each other. Our data indicated that ITGB3, presumably as a co-receptor, played an imperative role during PRRSV infection and NF-κB activation in Marc-145 cells. PRRSV infection activates a positive feedback loop involving the activation of NF-κB and upregulation of ITGB3 and RACK1 in Marc-145 cells. The findings would advance our elaborated understanding of the molecular host-pathogen interaction mechanisms underlying PRRSV infection in swine and suggest ITGB3 and NF-κB signaling pathway as potential therapeutic targets for PRRS control.
Collapse
Affiliation(s)
- Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Qian Zhao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Center for Animal Disease Control and Prevention, Chuxiong City, 675000, Yunnan, China
| | - Xidan Li
- Karolinska Institute, Integrated Cardio Metabolic Centre (ICMC), Stockholm, SE-14157, Sweden
| | - Junlong Bi
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China; Center for Animal Disease Control and Prevention, Chuxiong City, 675000, Yunnan, China
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China
| | - Guishu Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali, 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, Yunnan, China.
| |
Collapse
|
34
|
Sun N, Sun P, Yao M, Khan A, Sun Y, Fan K, Yin W, Li H. Autophagy involved in antiviral activity of sodium tanshinone IIA sulfonate against porcine reproductive and respiratory syndrome virus infection in vitro. Antivir Ther 2020; 24:27-33. [PMID: 30272564 DOI: 10.3851/imp3268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2018] [Indexed: 12/09/2022]
Abstract
BACKGROUND In previous research, we have demonstrated that sodium tanshinone IIA sulfonate (STS) has anti-porcine reproductive and respiratory syndrome virus (PRRSV) activity, but whether autophagy is involved in this process is still unknown. In this study, the autophagy effect of STS against PRRSV infection was investigated in vitro. METHODS Quantitative real-time PCR (qRT-PCR) and western blot was used to evaluate the inhibition ability of STS on the mRNA expression levels on cell autophagy genes, that is Beclin1, ATG5 and ATG7. Simultaneously, the effect of STS on N protein/gene expression was assessed by indirect immuno-fluorescence assay (IFA), qRT-PCR and western blot. RESULTS The results indicated that STS inhibits autophagy induced by PRRSV. In addition, STS effectively suppresses PRRSV's N protein replication and N gene expression in Marc-145 cells infected with PRRSV in a time-dependent manner. CONCLUSIONS Our results suggest that STS exhibits anti-PRRSV activity in vitro by suppressing autophagy-related genes, which may provide a theoretical basis for further pharmacological agent development regarding PRRSV infection.
Collapse
Affiliation(s)
- Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Panpan Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Mingjie Yao
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Yaogui Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Kuohai Fan
- Experimental Teaching Center, Shanxi Agricultural University, Taigu, PR China
| | - Wei Yin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, PR China
| |
Collapse
|
35
|
Hu Y, Zhang B, Wang W, Zhou J, Li B, He K. Therapeutic effects of saponin components on porcine reproductive and respiratory syndrome virus-infected piglets. J Anim Physiol Anim Nutr (Berl) 2020; 104:637-644. [PMID: 31898833 DOI: 10.1111/jpn.13302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
The present study aimed to evaluate the potential therapeutic effects of Anemoside B4 (AB4), Panax notoginseng saponins (PNS), Notoginsenoside R1 (SR1), Saikosaponin A (SSA) and Saikosaponin D (SSD) on piglets infected with porcine reproductive and respiratory syndrome virus (PRRSV). A total of 132 completely healthy piglets were randomly divided into 22 groups consisting of six animals each. Control piglets were intramuscularly injected with 2 ml of PRRSV (NJGC strain) solution containing 106 TCID50 virus/ml. For low-, middle- and high-dose saponin treatment groups, the piglets were initially administrated with the same volume of PRRSV solution, followed by intraperitoneal injection with AB4, PNS, SR1, SSA or SSD at 1, 5 or 10 mg/kg b.w. on day 3. The piglets in drug control group were intraperitoneally injected with 10 mg/kg b.w. of each saponin without prior PRRS challenge, while those in blank control group were injected with the same amount of normal saline. The results indicated that all the five saponin components could decrease the incidence and severity of PRRSV-induced immunopathological damages, including the elevated body temperature, weight loss, anaemia and internal inflammation. Moreover, the saponin components could enhance protein absorption and immune responses. Taken together, this study reveals that the saponin components are effective against PRRSV infection and strengthen the immune system and thus may serve as potential antiviral therapeutic agents.
Collapse
Affiliation(s)
- Yiyi Hu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Bicheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Wei Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jinzhu Zhou
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Bin Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Kongwang He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| |
Collapse
|
36
|
Abstract
Phytotherapy, or herbalism, is defined as the usage of plants or herbs as medication to treat or prevent diseases in human and animals. The usage is gaining more attention among medical practitioners as well as large-scale livestock producers. A number of reports have shown the positive effects of herbal extracts as an antiviral agent used in animal feed or as a prophylaxis and remedy. Besides being a cheaper and safer alternative, the use of herbs may reduce the incidence of drug resistance and may modulate the immune system in preventing viral-related diseases. In this chapter, the antiviral effects of several herbs and their extracts against viruses in terms of the mechanism of action in targeting viral replication steps, the effects in the host and the application in animals will be discussed. The information given may aid in improving the health and increase the production of animals.
Collapse
|
37
|
Xu H, Xu M, Sun Z, Li S. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12182-12190. [PMID: 31609606 DOI: 10.1021/acs.jafc.9b05092] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In continuation of our program to develop natural-product-based pesticidal candidates, matrinic/oxymatrinic amides were obtained through structural optimization of matrine. N'-(4-Fluoro)phenyl-N-(4-bromo)phenylsulfonyloxymatrinic amide (IIm) showed potent insecticidal activity against Mythimna separata. N-(Un)substituted phenylsulfonylmatrinic acids (3a-c) exhibited promising acaricidal activity against Tetranychus cinnabarinus. By qRT-PCR analysis of nAChR subunits and AChE genes and determination of AChE activity of (un)treated T. cinnabarinus, it suggested that the open lactam ring of matrine and carboxyl group and (4-methyl)phenylsulfonyl of N-(4-methyl)phenylsulfonylmatrinic acid (3b) were necessary for action with α2, α4, α5, and β3 nAChR subunits; compound 3b was an inhibitor of AChE in T. cinnabarinus, and AChE was one possible target of action in T. cinnabarinus against 3b; and compound 3b may be an antagonist of nAChR and AChE in T. cinnabarinus.
Collapse
Affiliation(s)
- Hui Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
- School of Pharmacy , Liaocheng University , Liaocheng , Shandong Province 252059 , China
| | - Ming Xu
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Zhiqiang Sun
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| | - Shaochen Li
- Research Institute of Pesticidal Design & Synthesis, College of Plant Protection/Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi Province 712100 , China
| |
Collapse
|
38
|
Matrine Protects Cardiomyocytes From Ischemia/Reperfusion Injury by Regulating HSP70 Expression Via Activation of the JAK2/STAT3 Pathway. Shock 2019; 50:664-670. [PMID: 29394239 DOI: 10.1097/shk.0000000000001108] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies have shown that matrine showed cardiovascular protective effects; however, its role and mechanism in myocardial ischemia/reperfusion (I/R) injury remain unknown. The Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway activation and elevated heat shock protein (HSP) 70 are closely related to the prevention of myocardial I/R injury. The cardioprotective effects of matrine were determined in hypoxia/reoxygenation (H/R)-treated primary rat cardiomyocytes and left anterior descending coronary artery ligation and reperfusion animal models. The molecular mechanisms of matrine in myocardial I/R injury were focused on JAK2/STAT3 pathway activation and HSP70 expression. We found that matrine significantly increased H/R-induced the suppression of cell viability, decreased lactate dehydrogenase release, creatine kinase activity, and cardiomyocytes apoptosis in vitro. Moreover, matrine notably reduced the serum levels of creatine kinase-myocardial band (CK-MB) and cardiac troponin I, lessened the infarcted area of the heart, and decreased the apoptotic index of cardiomyocytes induced by I/R in vivo. Matrine activated the JAK2/STAT3 signaling, upregulated HSP70 expression both in vitro and in vivo. The cardioprotective effects of matrine were abrogated by AG490, a JAK2 inhibitor, and HSP70 siRNA. In addition, AG490 reduced HSP70 expression increased by matrine. In conclusion, matrine attenuates myocardial I/R injury by upregulating HSP70 expression via the activation of the JAK2/STAT3 pathway.
Collapse
|
39
|
Sun P, Sun N, Yin W, Sun Y, Fan K, Guo J, Khan A, He Y, Li H. Matrine inhibits IL-1β secretion in primary porcine alveolar macrophages through the MyD88/NF-κB pathway and NLRP3 inflammasome. Vet Res 2019; 50:53. [PMID: 31300043 PMCID: PMC6626430 DOI: 10.1186/s13567-019-0671-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/22/2019] [Indexed: 01/15/2023] Open
Abstract
Our previous studies demonstrated that matrine directly acts on the replication process of porcine reproductive and respiratory syndrome virus (PRRSV). Matrine inhibits viral replication and is also associated with the NF-κB signalling pathway. These results suggest that matrine has antiviral and anti-inflammatory effects. However, the specific anti-inflammatory mechanism of matrine is still unclear. In this study, we investigated the anti-IL-1β mechanism of matrine, as IL-1β is a major inflammatory cytokine, in porcine alveolar macrophages (PAMs) stimulated with 4 μg PRRSV 5′-untranslated region (UTR) RNA and 1 μg/mL LPS. After 5′UTR RNA and LPS co-stimulation of PAMs for 12 h, the expression of IL-1β, IL-6, IL-8 and TNF-α was significantly increased. The results also showed that co-stimulation induced the expression of MyD88, and activated the NF-κB signalling pathway and NLRP3 inflammasome. Furthermore, matrine treatment downregulated MyD88, NLRP3 and caspase-1 expression, inhibited ASC speck formation, suppressed IκBα phosphorylation, and interfered with the translocation of NF-κB from the cytoplasm to the nucleus. These results suggest that matrine plays an important role in PAMs co-stimulated with PRRSV 5′UTR RNA and LPS via its effect on NF-κB and the NLRP3 inflammasome. These findings lay the foundation for the exploration of the clinical application of matrine in PRRSV disease.
Collapse
Affiliation(s)
- Panpan Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.,School of Life Science and Engineering, Foshan University, Foshan, 528000, Guangdong, People's Republic of China
| | - Na Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Wei Yin
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Yaogui Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, TX, 77843, USA
| | - Ajab Khan
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China
| | - Yongming He
- School of Life Science and Engineering, Foshan University, Foshan, 528000, Guangdong, People's Republic of China.
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.
| |
Collapse
|
40
|
Mahzari A, Li S, Zhou X, Li D, Fouda S, Alhomrani M, Alzahrani W, Robinson SR, Ye JM. Matrine Protects Against MCD-Induced Development of NASH via Upregulating HSP72 and Downregulating mTOR in a Manner Distinctive From Metformin. Front Pharmacol 2019; 10:405. [PMID: 31068812 PMCID: PMC6491841 DOI: 10.3389/fphar.2019.00405] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/01/2019] [Indexed: 12/14/2022] Open
Abstract
The present study investigated the effects of matrine on non-alcoholic steatohepatitis (NASH) in mice induced by a methionine choline-deficient (MCD) diet and the mechanism involved. The study was performed in C57B/6J mice fed a MCD diet for 6 weeks to induce NASH with or without the treatment of matrine (100 mg/kg/day in diet). Metformin was used (250 mg/kg/day in diet) as a comparator for mechanistic investigation. Administration of matrine significantly reduced MCD-induced elevations in plasma ALT and AST but without changing body or liver fat content. Along with alleviating liver injury, matrine suppressed MCD-induced hepatic inflammation (indicated by TNFα, CD68, MCP-1, and NLRP3) and fibrosis (indicated by collagen 1, TGFβ, Smad3, and sirius-red staining). In comparison, metformin treatment did not show any clear sign of effects on these parameters indicative of NASH. Further examination of the liver showed that matrine treatment rescued the suppressed HSP72 (a chaperon protein against cytotoxicity) and blocked the induction of mTOR (a key protein in a stress pathway). In keeping with the lack of the improvement of the NASH features, metformin did not show any significant effect against MCD-induced changes in HSP72 and mTOR. Matrine protects against MCD-induced development of NASH which is refractory to metformin treatment. Its anti-NASH effects involve enhancing HSP72 and downregulating mTOR but do not rely on amelioration of hepatosteatosis.
Collapse
Affiliation(s)
- Ali Mahzari
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Songpei Li
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiu Zhou
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| | - Sherouk Fouda
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Majid Alhomrani
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Wala Alzahrani
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stephen R Robinson
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| | - Ji-Ming Ye
- Lipid Biology and Metabolic Disease Laboratory, School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China
| |
Collapse
|
41
|
Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. Int Immunopharmacol 2019; 70:201-207. [PMID: 30822611 DOI: 10.1016/j.intimp.2019.02.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 12/28/2022]
Abstract
Endometritis is one of the main diseases that causes great economic losses in the dairy industry. Recent studies have shown that matrine extracted from the traditional Chinese herb Sophora flavescens is an alkaloid with a broad range of bioactivities. Here, we aimed to investigate the protective effects of matrine on Staphylococcus aureus lipoteichoic acid (LTA)-induced endometritis in mice and elucidate the possible molecular mechanisms in vitro. Histopathological changes showed that matrine remarkably attenuated the uterus injury in a mouse model of LTA-induced endometritis. qPCR and ELISA results showed that matrine dose-dependently reduced the expression of pro-inflammatory cytokines (TNF-α and IL-1β). To further elucidate the underlying mechanisms of this protective effect of matrine, LTA-stimulated bovine endometrial epithelial cells (bEECs) were employed in this study. The results demonstrated that TLR2 expression and its downstream nuclear factor (NF)-κB activation were both suppressed by matrine treatment. Furthermore, a small interference RNA targeting TLR2 gene mimicked matrine in its inhibition on LTA-induced activation of TLR2 and NF-κB. In conclusion, these findings suggest the protective effect of matrine against LTA-induced endometritis through negative regulation of TLR2-mediated NF-κB pathway.
Collapse
|
42
|
Li P, Lei J, Hu G, Chen X, Liu Z, Yang J. Matrine Mediates Inflammatory Response via Gut Microbiota in TNBS-Induced Murine Colitis. Front Physiol 2019; 10:28. [PMID: 30800071 PMCID: PMC6376167 DOI: 10.3389/fphys.2019.00028] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 01/11/2019] [Indexed: 12/21/2022] Open
Abstract
This study mainly investigated the effect of matrine on TNBS-induced intestinal inflammation in mice. TNBS treatment caused colonic injury and gut inflammation. Matrine (1, 5, and 10 mg/kg) treatment alleviated colonic injury and gut inflammation via reducing bleeding and diarrhea and downregulating cytokines expression (IL-1β and TNF-α). Meanwhile, serum immunoglobulin G (IgG) was markedly reduced in TNBS treated mice, while 5 and 10 mg/kg matrine alleviated IgG reduction. Fecal microbiota was tested using 16S sequencing and the results showed that TNBS caused gut microbiota dysbiosis, while matrine treatment markedly improved gut microbiota communities (i.e., Bacilli and Mollicutes). Functional analysis showed that cell motility, nucleotide metabolism, and replication and repair were markedly altered in the TNBS group, while matrine treatment significantly affected cell growth and death, membrane transport, nucleotide metabolism, and replication and repair. In conclusion, matrine may serve as a protective mechanism in TNBS-induced colonic inflammation and the beneficial effect may be associated with gut microbiota.
Collapse
Affiliation(s)
- Peiyuan Li
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jiajun Lei
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Guangsheng Hu
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xuanmin Chen
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Zhifeng Liu
- Department of Otorhinolaryngology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
43
|
Xue T, Li J, Liu C. A radical form of nitric oxide inhibits porcine circovirus type 2 replication in vitro. BMC Vet Res 2019; 15:47. [PMID: 30709350 PMCID: PMC6359798 DOI: 10.1186/s12917-019-1796-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/24/2019] [Indexed: 11/29/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2) is the causal agent of postweaning multisystemic wasting syndrome (PMWS), causing large economical losses of the global swine industry. Nitric oxide (NO), as an important signaling molecule, has antiviral activity on some viruses. To date, there is little information on the role of NO during PCV2 infection. Results We used indirect fluorescence assay (IFA), TCID50, real-time RT-qPCR and western blot assay to reveal the role of NO in restricting PCV2 replication. PCV2 replication was inhibited by a form of NO, NO•, whereas PCV2 was not susceptible to another form of NO, NO+. Conclusion Our findings indicate that the form of NO• has a potential role in the fight against PCV2 infection.
Collapse
Affiliation(s)
- Tao Xue
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Jizong Li
- School of Pharmacy, Linyi University, Linyi, 276000, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences,Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences,Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China.
| |
Collapse
|
44
|
Liu P, Zhu L, Zou G, Ke H. Matrine Suppresses Pancreatic Fibrosis by Regulating TGF-β/Smad Signaling in Rats. Yonsei Med J 2019; 60:79-87. [PMID: 30554494 PMCID: PMC6298897 DOI: 10.3349/ymj.2019.60.1.79] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 08/23/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
PURPOSE This study aimed to elucidate the molecular mechanisms of the anti-pancreatic fibrosis effects of matrine in rats. MATERIALS AND METHODS Trinitrobenzene sulfonic acid was administrated to rats to establish a pancreatic fibrosis model. Rats were divided into four groups: Control, Sham, Model, and Matrine (n=8). Hematoxylin-eosin staining, Masson staining, and Azan staining were performed to evaluate pancreatic fibrosis. Expression of transforming growth factor-β1 (TGF-β1), α-smooth muscle actin (α-SMA), and collagen I in pancreatic tissues was evaluated by immunohistochemical staining. mRNA and protein levels of TGF-β receptor 1 (TβR1), TβR2, and Smad2 in pancreatic tissues were determined by RT-PCR and Western blot, respectively. RESULTS In the model group, hyperplasia of glandules around the glandular ducts, mitochondrial swelling of acinous cells, and severe fibrosis were found. Interestingly, in the Matrine group, mitochondrial swelling was only found in a small number of acinous cells, and the fundamental structures of pancreatic tissues were intact. Moreover, pancreatic fibrosis was markedly alleviated. Comparing to the Sham group, expression of α-SMA, TGF-β1, and collagen I was sharply elevated in the Model group (p<0.05); however, their expressions were much lower in the Matrine group, compared to the Model group (p<0.05). Compared with the Sham group, mRNA and protein levels of Smad2, TβR1, and TβR2 in the Model group were notably raised (p<0.05). However, their high expression was significantly downregulated in the Matrine group (p<0.05). CONCLUSION Matrine suppressed pancreatic fibrosis by regulating TGF-β/Smad signaling in rats.
Collapse
Affiliation(s)
- Pi Liu
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Luhong Zhu
- Department of Gastroenterology, Nanchang University, Nanchang, Jiangxi, China
| | - Guohui Zou
- Department of Gastroenterology, Chinese People's Liberation Army No.171 Hospital, Jiujiang, Jiangxi, China
| | - Huajing Ke
- Department of Gastroenterology, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
45
|
Li J, Wang J, Liu Y, Yang J, Guo L, Ren S, Chen Z, Liu Z, Zhang Y, Qiu W, Li Y, Zhang S, Yu J, Wu J. Porcine reproductive and respiratory syndrome virus NADC30-like strain accelerates Streptococcus suis serotype 2 infection in vivo and in vitro. Transbound Emerg Dis 2018; 66:729-742. [PMID: 30427126 DOI: 10.1111/tbed.13072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/24/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS), an economically significant pandemic disease, commonly results in increased impact of bacterial infections, including those by Streptococcus suis (S. suis). In recent years, PRRS virus (PRRSV) NADC30-like strain has emerged in different regions of China, and coinfected with S. suis and PRRSV has also gradually increased in clinical performance. However, the mechanisms involved in host innate responses towards S. suis and their implications of coinfection with NADC30-like strain remain unknown. Therefore, the pathogenicity of NADC30-like strain and S. suis serotype 2 (SS2) coinfection in vivo and in vitro was investigated in this study. The results showed that NADC30-like increased the invasion and proliferation of SS2 in blood and tissues, resulting in more severe pneumonia, myocarditis, and peritonitisas well as higher mortality rate in pigs. In vitro, NADC30-like strain increased the invasion and survival of SS2 in porcine alveolar macrophages (PAM) cells, causing more drastic expression of inflammatory cytokines and activation of NF-ĸB signalling. These results pave the way for understanding the interaction of S. suis with the swine immune system and their modulation in a viral coinfection.
Collapse
Affiliation(s)
- Jianda Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jinbao Wang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China
| | - Yueyue Liu
- School of Life Sciences, Shandong University, Jinan, China
| | - Jie Yang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lihui Guo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Sufang Ren
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhi Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Zhaoshan Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China
| | - Yuyu Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wenbin Qiu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China
| | - Yubao Li
- School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Shujin Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Liaocheng University, Liaocheng, China
| | - Jiang Yu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,School of Life Sciences, Shandong Normal University, Jinan, China.,School of Life Sciences, Shandong University, Jinan, China.,School of Life Sciences, Liaocheng University, Liaocheng, China
| |
Collapse
|
46
|
Synthesis, characterization and in vitro biological evaluation of two matrine derivatives. Sci Rep 2018; 8:15686. [PMID: 30356148 PMCID: PMC6200782 DOI: 10.1038/s41598-018-33908-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022] Open
Abstract
Matrine is a traditional Chinese medicine and botanical pesticide with broad biological activities, including pharmacological and agricultural activities. In present work, two matrine derivatives have been successfully synthesized via introducing indole and cyclohexylamino to 13 position of matrine, respectively, with sophocarpine as starting material, and structurally characterized via infrared spectroscopy(IR), MS, 1 H NMR, 13 C NMR and X-ray crystal diffraction. The results of the in vitro biological activity tests showed that these two matrine derivatives exhibited even better activities against human cancer cells Hela229 and insect cell line Sf9 from Spodoptera frugiperda (J. E. Smith) than that of parent matrine, suggesting that the heterocyclic or cyclic group can dramatically increase the biological activity of matrine. It is worth to mention that 13-indole-matrine could possibly inhibit the growth of insect cells or human cancer cells by inducing cell apoptosis. The results of the present study provide useful information for further structural modifications of these compounds and for exploring new, potent anti-cancer agents and environment friendly pesticides.
Collapse
|
47
|
Broad specificity immunoassay for detection of Bacillus thuringiensis Cry toxins through engineering of a single chain variable fragment with mutagenesis and screening. Int J Biol Macromol 2018; 107:920-928. [DOI: 10.1016/j.ijbiomac.2017.09.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 09/12/2017] [Accepted: 09/17/2017] [Indexed: 12/22/2022]
|
48
|
Yang H, Chen X, Jiang C, He K, Hu Y. Antiviral and Immunoregulatory Role Against PCV2 in Vivo of Chinese Herbal Medicinal Ingredients. J Vet Res 2017; 61:405-410. [PMID: 29978102 PMCID: PMC5937337 DOI: 10.1515/jvetres-2017-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction The aim of the research was to investigate the antiviral and immunoregulatory effects of saikosaponin A, saikosaponin D, Panax notoginseng saponins, notoginsenoside R1, and anemoside B4 saponins commonly found in Chinese herbal medicines. Material and Methods control mice were challenged intramuscularly (im) with 0.2 mL of porcine circovirus 2 (PCV2) solution containing 107 TCID50 of the virus/mL. Mice of high-, middle-, and low-dose saponin groups were initially challenged im with 0.2 mL of PCV2 solution and three days later treated intraperitoneally (ip) with one of five saponins at one of three doses (10, 5, or 1 mg/kg b.w.). In the drug control group, mice were dosed ip with 10 mg/kg b.w. of a given saponin, and mice in a blank control group were administered the same volume of normal saline. Results The results revealed that the saponins could reduce the incidence and severity of PCV2-induced immunopathological damage, e.g. body temperature elevation, weight loss, anaemia, and internal organ swelling. In addition, it was seen that the saponins could affect the immunoglobulin levels and protein absorption. Conclusion The data suggested that the saponins might effectively regulate immune responses.
Collapse
Affiliation(s)
- Haifeng Yang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Xiaolan Chen
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Chunmao Jiang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300 China
| | - Kongwang He
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| | - Yiyi Hu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009 China
| |
Collapse
|
49
|
Du R, Liu J, Sun P, Li H, Wang J. Inhibitory effect and mechanism of Tagetes erecta L. fungicide on Fusarium oxysporum f. sp. niveum. Sci Rep 2017; 7:14442. [PMID: 29089546 PMCID: PMC5663927 DOI: 10.1038/s41598-017-14937-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
Botanical fungicides comprise attractive alternatives to chemical fungicides because of their environmental compatibility. Flavonoids extracted from Tagetes erecta L. have an inhibitory effect on fusarium wilt in watermelons caused by Fusarium oxysporum f. sp. niveum (FON). In this study, we synthesized one of these flavonoids, 2,5-dicyclopentylidene cyclopentanone (Tagetes erecta L. fungicide (TEF)) and assessed its activity against FON. In vitro, TEF inhibited FON growth and killed FON cells directly. TEF also affected FON cell physiology and mycelial structure. In watermelon plants with fusarium wilt, TEF protected the leaf cell structure and improved the germination rate of infected seeds while increasing overall plant resistance. A TEF-resistant mutant (FONM) was created by chemical mutagenesis. FON and FONM were analysed using iTRAQ and RNA-Seq, which identified 422 differentially expressed proteins and 7817 differentially expressed mRNAs in the proteome and transcriptome, respectively. The FONM mutations caused changes in the cell membrane and cell wall, which may constitute the site of action of TEF. Together, these results demonstrate that TEF could effectively control the watermelon fusarium wilt caused by FON, possibly through the inhibition of sterol biosynthesis. The data presented here suggest that TEF represents a new potential botanical anti-fungal drug.
Collapse
Affiliation(s)
- Ruochen Du
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China
| | - Jiandong Liu
- College of Life Science, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China
| | - Panpan Sun
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China
| | - Hongquan Li
- College of Animal Science and Veterinary Medicine, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China.
| | - Jinsheng Wang
- College of Life Science, Shanxi Agriculture University, Taigu, Shanxi, 030801, P.R. China.
| |
Collapse
|
50
|
Zou Y, Li Q, Liu D, Li J, Cai Q, Li C, Zhao Q, Xu W. Therapeutic effects of matrine derivate MASM in mice with collagen-induced arthritis and on fibroblast-like synoviocytes. Sci Rep 2017; 7:2454. [PMID: 28550307 PMCID: PMC5446426 DOI: 10.1038/s41598-017-02423-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/11/2017] [Indexed: 12/29/2022] Open
Abstract
MASM is a matrine derivate that exhibits a number of pharmacological effects, including immunosuppressive activity and anti-inflammatory properties. In this study, the mechanisms underlying the therapeutic efficacy of MASM in the treatment of rheumatoid arthritis were investigated using DBA/1 mice with collagen-induced arthritis (CIA) and fibroblast-like synoviocytes derived from rheumatoid arthritis patients (RA-FLS). We demonstrated that MASM markedly attenuated the severity of arthritis in CIA mice. The therapeutic effects were associated with ameliorated joint swelling and reduced bone erosion and destruction. Furthermore, the administration of MASM suppressed the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6). In vitro, MASM inhibited the expression of pro-inflammatory cytokines (TNF-α, IL-6, IL-8) and matrix metalloproteinases (MMP-1, MMP-3 and MMP-13) by inhibiting both the phosphorylation of MAPKs and the activation of NF-κB in IL-1β-stimulated RA-FLS. Additionally, MASM could induce apoptosis of RA-FLS via mitochondrial and Akt signaling pathways in human RA-FLS. These findings suggest that MASM could attenuate arthritis severity in CIA mice at least partially by blocking the phosphorylation of MAPKs and the activation of NF-κB and by inducing apoptosis in RA-FLS. MASM could be a potent therapeutic agent for the treatment of RA.
Collapse
Affiliation(s)
- Yuming Zou
- Department of Orthopedics, Changhai hospital, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China
| | - Quan Li
- Department of Orthopedics, Changhai hospital, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China.,Orthopedics Department, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P.R. China
| | - Denghui Liu
- Department of Orthopedics, Changhai hospital, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China
| | - Jia Li
- Department of Orthopedics, Changhai hospital, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China
| | - Qing Cai
- Department of Rheumatology, Changhai hospital, Second Military Medical University, Shanghai, 200433, P.R. China
| | - Chao Li
- Department of Organic Chemistry, School of Pharmacy, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China
| | - Qingjie Zhao
- Department of Organic Chemistry, School of Pharmacy, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China.
| | - Weidong Xu
- Department of Orthopedics, Changhai hospital, the first affiliated hospital of the Second Military Medical University, Shanghai, 200433, P.R. China.
| |
Collapse
|