1
|
Lähteenaro M, Benda D, Straka J, Nylander JAA, Bergsten J. Phylogenomic analysis of Stylops reveals the evolutionary history of a Holarctic Strepsiptera radiation parasitizing wild bees. Mol Phylogenet Evol 2024; 195:108068. [PMID: 38554985 DOI: 10.1016/j.ympev.2024.108068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Holarctic Stylops is the largest genus of the enigmatic insect order Strepsiptera, twisted winged parasites. Members of Stylops are obligate endoparasites of Andrena mining bees and exhibit extreme sexual dimorphism typical of Strepsiptera. So far, molecular studies on Stylops have focused on questions on species delimitation. Here, we utilize the power of whole genome sequencing to infer the phylogeny of this morphologically challenging genus from thousands of loci. We use a species tree method, concatenated maximum likelihood analysis and Bayesian analysis with a relaxed clock model to reconstruct the phylogeny of 46 Stylops species, estimate divergence times, evaluate topological consistency across methods and infer the root position. Furthermore, the biogeographical history and coevolutionary patterns with host species are assessed. All methods recovered a well resolved topology with close to all nodes maximally supported and only a handful of minor topological variations. Based on the result, we find that included species can be divided into 12 species groups, seven of them including only Palaearctic species, three Nearctic and two were geographically mixed. We find a strongly supported root position between a clade formed by the spreta, thwaitesi and gwynanae species groups and the remaining species and that the sister group of Stylops is Eurystylops or Eurystylops + Kinzelbachus. Our results indicate that Stylops originated in the Western Palaearctic or Western Palaearctic and Nearctic in the early Neogene or late Paleogene, with four independent dispersal events to the Nearctic. Cophylogenetic analyses indicate that the diversification of Stylops has been shaped by both significant coevolution with the mining bee hosts and host-shifting. The well resolved and strongly supported phylogeny will provide a valuable phylogenetic basis for further studies into the fascinating world of Strepsipterans.
Collapse
Affiliation(s)
- Meri Lähteenaro
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Daniel Benda
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic; Department of Entomology, National Museum of the Czech Republic, Cirkusová 1740, CZ-19300 Prague 9, Czech Republic.
| | - Jakub Straka
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ-128 44, Prague 2, Czech Republic.
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, P.O. Box 50007, SE-106 91 Stockholm, Sweden.
| | - Johannes Bergsten
- Department of Zoology, Swedish Museum of Natural History, P. O. Box 50007, SE-104 05 Stockholm, Sweden; Department of Zoology, Faculty of Science, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
2
|
Jandausch K, Wanjura N, Escalona H, Sann M, Beutel RG, Pohl H, Niehuis O. Polyandry and sperm competition in two traumatically inseminating species of Strepsiptera (Insecta). Sci Rep 2024; 14:10447. [PMID: 38714726 PMCID: PMC11076583 DOI: 10.1038/s41598-024-61109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/02/2024] [Indexed: 05/10/2024] Open
Abstract
Polyandry, the practice of females mating with multiple males, is a strategy found in many insect groups. Whether it increases the likelihood of receiving beneficial genes from male partners and other potential benefits for females is controversial. Strepsiptera are generally considered monandrous, but in a few species females have been observed copulating serially with multiple males. Here we show that the offspring of a single female can have multiple fathers in two Strepsiptera species: Stylops ovinae (Stylopidae) and Xenos vesparum (Xenidae). We studied female polyandry in natural populations of these two species by analysis of polymorphic microsatellite loci. Our results showed that several fathers can be involved in both species, in some cases up to four. Mating experiments with S. ovinae have shown that the first male to mates with a given female contributes to a higher percentage of the offspring than subsequent males. In X. vesparum, however, we found no significant correlation between mating duration and offspring contribution. The prolonged copulation observed in S. ovinae may have the advantage of reducing competition with sperm from other males. Our results show that monandry may not be the general pattern of reproduction in the insect order Strepsiptera.
Collapse
Affiliation(s)
- Kenny Jandausch
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany.
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany.
- Institute for Anatomie I, Jena University Hospital, Teichgraben 7, 07743, Jena, Germany.
| | - Nico Wanjura
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| | - Hermes Escalona
- Australian National Insect Collection, CSIRO, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Manuela Sann
- Institute for Biology (190T), University of Hohenheim, Garbenstraße 30, 70599, Stuttgart, Germany
| | - Rolf G Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, University of Freiburg, Hauptstraße 1, 79104, Freiburg, Germany
| |
Collapse
|
3
|
Matsumura Y, Krings W, Kovalev A, Gorb SN. The puncture mechanics: an example from the bed bug Cimex lectularius showing traumatic insemination using the paramere. J R Soc Interface 2024; 21:20240108. [PMID: 38807525 DOI: 10.1098/rsif.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/09/2024] [Indexed: 05/30/2024] Open
Abstract
Cimicidae are well-known for traumatic insemination, and males pierce females with their parameres and transfer sperm through them. The shape of parameres is relatively stable in the family, but in some genera, the paramere is elongated, appearing less resistant against lateral deflection. To understand the mechanical limitations of the paramere, we studied its penetration mechanics of the common bed bug, Cimex lectularius. We examined the post-abdominal morphology, paramere geometry and material properties and conducted breaking stress experiments on the paramere under wet and dry conditions. Mechanical property gradients are present with the paramere tip as the stiffest region and the base as the most flexible one. These mechanical properties relate to the presence of Ca, Zn and Si. The basal wing-shaped structure is flexible, enabling it to interlock with the anal region during mating. The paramere is slightly twisted; the tip region is circular in cross-section, and the geometry of the rest is rather complex. In the mechanical tests, wet parameres mainly buckled, while dried parameres broke off. The level of structural failures depended on directions from which the compression forces were applied. Structural, material and mechanical strengthening mechanisms preventing the paramere from mechanical failure are discussed.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
- Systematic Entomology, Graduate School of Agriculture, Hokkaido University , Sapporo 060-8589, Japan
- General and Systematic Zoology, Zoological Institute and Museum, University of Greifswald , Greifswald, Germany
| | - Wencke Krings
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
- Department of Cariology, Endodontology and Periodontology, Universität Leipzig , Leipzig 04103, Germany
- Department of Mammalogy and Paleoanthropology, Leibniz Institute for the Analysis of Biodiversity Change , Hamburg 20146, Germany
- Department of Electron Microscopy, Institute of Cell and Systems Biology of Animals, Universität Hamburg , Hamburg 20146, Germany
| | - Alexander Kovalev
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University , Kiel, Germany
| |
Collapse
|
4
|
Hoffmann M, Gardein H, Greil H, Erler S. Anatomical, phenological and genetic aspects of the host-parasite relationship between Andrena vaga (Hymenoptera) and Stylops ater (Strepsiptera). Parasitology 2023; 150:744-753. [PMID: 37157059 PMCID: PMC10410535 DOI: 10.1017/s0031182023000483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
Stylops ater is an endoparasite of the mining bee Andrena vaga with extreme sexual dimorphism and hypermetamorphosis. Its population structure, parasitization mode, genetic diversity and impact on host morphology were examined in nesting sites in Germany to better understand this highly specialized host–parasite interaction. The shift in host emergence due to stylopization was proven to be especially strong in A. vaga. Around 10% of bees hosted more than 1 Stylops, with at maximum 4. A trend in Stylops' preference for hosts of their own sex and a sex-specific position of extrusion from the host abdomen was found. Invasion of Andrena eggs by Stylops primary larvae was depicted for the first time. Cephalothoraces of female Stylops were smaller in male and pluristylopized hosts, likely due to lower nutrient supply. The genes H3, 18S and cytochrome c oxidase subunit 1 were highly conserved, revealing near-absence of local variation within Stylops. Ovaries of hosts with male Stylops contained poorly developed eggs while those of hosts with female Stylops were devoid of visible eggs, which might be due to a higher protein demand of female Stylops. Male Stylops, which might have a more energy-consuming development, led to a reduction in head width of their hosts. Host masculinization was present in the leaner shape of the metabasitarsus of stylopized females and is interpreted as a by-product of manipulation of the host's endocrine system to shift its emergence. Stylopization intensified tergal hairiness, most strongly in hosts with female Stylops, near the point of parasite extrusion, hinting towards substance-induced host manipulation.
Collapse
Affiliation(s)
- Marc Hoffmann
- Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
- Institute for Bee Protection, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Hanna Gardein
- Institute for Bee Protection, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Henri Greil
- Institute for Bee Protection, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Jandausch K, Michels J, Kovalev A, Gorb SN, van de Kamp T, Beutel RG, Niehuis O, Pohl H. Have female twisted-wing parasites (Insecta: Strepsiptera) evolved tolerance traits as response to traumatic penetration? PeerJ 2022; 10:e13655. [PMID: 35990910 PMCID: PMC9390352 DOI: 10.7717/peerj.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Traumatic insemination describes an unusual form of mating during which a male penetrates the body wall of its female partner to inject sperm. Females unable to prevent traumatic insemination have been predicted to develop either traits of tolerance or of resistance, both reducing the fitness costs associated with the male-inflicted injury. The evolution of tolerance traits has previously been suggested for the bed bug. Here we present data suggesting that tolerance traits also evolved in females of the twisted-wing parasite species Stylops ovinae and Xenos vesparum. Using micro-indentation experiments and confocal laser scanning microscopy, we found that females of both investigated species possess a uniform resilin-rich integument that is notably thicker at penetration sites than at control sites. As the thickened cuticle does not seem to hamper penetration by males, we hypothesise that thickening of the cuticle resulted in reduced penetration damage and loss of haemolymph and in improved wound sealing. To evaluate the evolutionary relevance of the Stylops-specific paragenital organ and penis shape variation in the context of inter- and intraspecific competition, we conducted attraction and interspecific mating experiments, as well as a geometric-morphometric analysis of S. ovinae and X. vesparum penises. We found that S. ovinae females indeed attract sympatrically distributed congeneric males. However, only conspecific males were able to mate. In contrast, we did not observe any heterospecific male attraction by Xenos females. We therefore hypothesise that the paragenital organ in the genus Stylops represents a prezygotic mating barrier that prevents heterospecific matings.
Collapse
Affiliation(s)
- Kenny Jandausch
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany,Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Jan Michels
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Alexander Kovalev
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany,Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Rolf Georg Beutel
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany
| | - Oliver Niehuis
- Department of Evolutionary Biology and Ecology, Albert Ludwig University Freiburg, Freiburg, Germany
| | - Hans Pohl
- Institute of Zoology and Evolutionary Research, Friedrich Schiller University Jena, Jena, Thuringia, Germany
| |
Collapse
|
6
|
Benda D, Pohl H, Nakase Y, Beutel R, Straka J. A generic classification of Xenidae (Strepsiptera) based on the morphology of the female cephalothorax and male cephalotheca with a preliminary checklist of species. Zookeys 2022; 1093:1-134. [PMID: 35586542 PMCID: PMC9010403 DOI: 10.3897/zookeys.1093.72339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 01/08/2022] [Indexed: 11/12/2022] Open
Abstract
The generic taxonomy and host specialization of Xenidae have been understood differently by previous authors. Although the recent generic classification has implied a specialization on the level of host families or subfamilies, the hypothesis that each xenid genus is specialized to a single host genus was also previously postulated. A critical evaluation of the classification of the genera of Xenidae is provided here based on morphology in accordance with results of recent molecular phylogenetic studies. External features of the female cephalothoraces and male cephalothecae were documented in detail with different techniques. Diagnoses and descriptions are presented for all 13 delimited genera. The earliest diverging genera are usually well characterized by unique features, whereas deeply nested genera are usually characterized by combinations of characters. Three new genera are described: Sphecixenosgen. nov., Tuberoxenosgen. nov., and Deltoxenosgen. nov. Five previously described genera are removed from synonymy: Tachytixenos Pierce, 1911, stat. res.; Brasixenos Kogan & Oliveira, 1966, stat. res.; Leionotoxenos Pierce, 1909, stat. res.; Eupathocera Pierce, 1908, stat. res.; and Macroxenos Schultze, 1925, stat. res. One former subgenus is elevated to generic rank: Nipponoxenos Kifune & Maeta, 1975, stat. res.Monobiaphila Pierce, 1909, syn. nov. and Montezumiaphila Brèthes, 1923, syn. nov. are recognized as junior synonyms of Leionotoxenos Pierce, 1909, stat. res.Ophthalmochlus Pierce, 1908, syn. nov., Homilops Pierce, 1908, syn. nov., Sceliphronechthrus Pierce, 1909, syn. nov., and Ophthalmochlus (Isodontiphila) Pierce, 1919, syn. nov. are recognized as junior synonyms of Eupathocera Pierce, 1908, stat. res. A preliminary checklist of 119 described species of Xenidae with information on their hosts and distribution is provided. The following 14 species are recognized as valid and restituted from synonymy: Tachytixenos indicus Pierce, 1911, stat. res.; Brasixenos acinctus Kogan & Oliveira, 1966, stat. res.; Brasixenos araujoi (Oliveira & Kogan, 1962), stat. res.; Brasixenos bahiensis Kogan & Oliveira, 1966, stat. res.; Brasixenos brasiliensis Kogan & Oliveira, 1966, stat. res.; Brasixenos fluminensis Kogan & Oliveria, 1966, stat. res.; Brasixenos myrapetrus Trois, 1988, stat. res.; Brasixenos zikani Kogan & Oliveira, 1966, stat. res.; Leionotoxenos hookeri Pierce, 1909, stat. res.; Leionotoxenos jonesi Pierce, 1909, stat. res.; Leionotoxenos louisianae Pierce, 1909, stat. res.; Eupathocera luctuosae Pierce, 1911, stat. res.; Eupathocera lugubris Pierce, 1909, stat. res.; Macroxenos piercei Schultze, 1925, stat. res. New generic combinations are proposed for 51 species: Leionotoxenos arvensidis (Pierce, 1911), comb. nov.; Leionotoxenos bishoppi (Pierce, 1909), comb. nov.; Leionotoxenos foraminati (Pierce, 1911), comb. nov.; Leionotoxenos fundati (Pierce, 1911), comb. nov.; Leionotoxenos huastecae (Székessy, 1965), comb. nov.; Leionotoxenos itatiaiae (Trois, 1984), comb. nov.; Leionotoxenos neomexicanus (Pierce, 1919), comb. nov.; Leionotoxenos prolificum (Teson & Remes Lenicov, 1979), comb. nov.; Leionotoxenos robertsoni (Pierce, 1911), comb. nov.; Leionotoxenos tigridis (Pierce, 1911), comb. nov.; Leionotoxenos vigili (Brèthes, 1923), comb. nov.; Eupathocera argentina (Brèthes, 1923), comb. nov.; Eupathocera auripedis (Pierce, 1911), comb. nov.; Eupathocera bucki (Trois, 1984), comb. nov.; Eupathocera duryi (Pierce, 1909), comb. nov.; Eupathocera erynnidis (Pierce, 1911), comb. nov.; Eupathocera fasciati (Pierce, 1909), comb. nov.; Eupathocera fuliginosi (Brèthes, 1923), comb. nov.; Eupathocera inclusa (Oliveira & Kogan, 1963), comb. nov.; Eupathocera insularis (Kifune, 1983), comb. nov.; Eupathocera mendozae (Brèthes, 1923), comb. nov.; Eupathocera piercei (Brèthes, 1923), comb. nov.; Eupathocera striati (Brèthes, 1923), comb. nov.; Eupathocera taschenbergi (Brèthes, 1923), comb. nov.; Eupathocera westwoodii (Templeton, 1841), comb. nov.; Macroxenos papuanus (Székessy, 1956), comb. nov.; Sphecixenos abbotti (Pierce, 1909), comb. nov.; Sphecixenos astrolabensis (Székessy, 1956), comb. nov.; Sphecixenos dorae (Luna de Carvalho, 1956), comb. nov.; Sphecixenos erimae (Székessy, 1956), comb. nov.; Sphecixenos esakii (Hirashima & Kifune, 1962), comb. nov.; Sphecixenos gigas (Pasteels, 1950), comb. nov.; Sphecixenos kurosawai (Kifune, 1984), comb. nov.; Sphecixenos laetum (Ogloblin, 1926), comb. nov.; Sphecixenos orientalis (Kifune, 1985), comb. nov.; Sphecixenos reticulatus (Luna de Carvalho, 1972), comb. nov.; Sphecixenos simplex (Székessy, 1956), comb. nov.; Sphecixenos vanderiisti (Pasteels, 1952), comb. nov.; Tuberoxenos altozambeziensis (Luna de Carvalho, 1959), comb. nov.; Tuberoxenos sinuatus (Pasteels, 1956), comb. nov.; Tuberoxenos sphecidarum (Siebold, 1839), comb. nov.; Tuberoxenos teres (Pasteels, 1950), comb. nov.; Tuberoxenos tibetanus (Yang, 1981), comb. nov.; Deltoxenos bequaerti (Luna de Carvalho, 1956), comb. nov.; Deltoxenos bidentatus (Pasteels, 1950), comb. nov.; Deltoxenos hirokoae (Kifune & Yamane, 1992), comb. nov.; Deltoxenos iwatai (Esaki, 1931), comb. nov.; Deltoxenos lusitanicus (Luna de Carvalho, 1960), comb. nov.; Deltoxenos minor (Kifune & Maeta, 1978), comb. nov.; Deltoxenos rueppelli (Kinzelbach, 1971a), comb. nov.; Xenos ropalidiae (Kinzelbach, 1975), comb. nov.Xenos minor Kinzelbach, 1971a, syn. nov. is recognized as a junior synonym of X. vesparum Rossi, 1793. Ophthalmochlus duryi Pierce, 1908, nomen nudum and Eupathocera lugubris Pierce, 1908, nomen nudum are recognized as nomina nuda and therefore unavailable in zoological nomenclature. The species diversity of Xenidae probably remains poorly known: the expected number of species is at least twice as high as the number presently described.
Collapse
|
7
|
Brand JN, Harmon LJ, Schärer L. Frequent origins of traumatic insemination involve convergent shifts in sperm and genital morphology. Evol Lett 2022; 6:63-82. [PMID: 35127138 PMCID: PMC8802240 DOI: 10.1002/evl3.268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/18/2022] Open
Abstract
Traumatic insemination is a mating behavior during which the (sperm) donor uses a traumatic intromittent organ to inject an ejaculate through the epidermis of the (sperm) recipient, thereby frequently circumventing the female genitalia. Traumatic insemination occurs widely across animals, but the frequency of its evolution, the intermediate stages via which it originates, and the morphological changes that such shifts involve remain poorly understood. Based on observations in 145 species of the free-living flatworm genus Macrostomum, we identify at least nine independent evolutionary origins of traumatic insemination from reciprocal copulation, but no clear indication of reversals. These origins involve convergent shifts in multivariate morphospace of male and female reproductive traits, suggesting that traumatic insemination has a canalizing effect on morphology. We also observed sperm in both the sperm receiving organ and within the body tissue of two species. These species had intermediate trait values indicating that traumatic insemination evolves through initial internal wounding during copulation. Finally, signatures of male-female coevolution of genitalia across the genus indicate that sexual selection and sexual conflict drive the evolution of traumatic insemination, because it allows donors to bypass postcopulatory control mechanisms of recipients.
Collapse
Affiliation(s)
- Jeremias N. Brand
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
- Department of Tissue Dynamics and RegenerationMax Planck Institute for Biophysical ChemistryGöttingenDE‐37077Germany
| | - Luke J. Harmon
- Department of Biological SciencesUniversity of IdahoMoscowIdaho83843
| | - Lukas Schärer
- Department of Environmental Sciences, Zoological InstituteUniversity of BaselBaselCH‐4051Switzerland
| |
Collapse
|
8
|
Tong X, Wang PY, Jia MZ, Thornhill R, Hua BZ. Traumatic mating increases anchorage of mating male and reduces female remating duration and fecundity in a scorpionfly species. Proc Biol Sci 2021; 288:20210235. [PMID: 34074125 PMCID: PMC8170191 DOI: 10.1098/rspb.2021.0235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 05/10/2021] [Indexed: 11/12/2022] Open
Abstract
Traumatic mating is the male wounding his mate during mating using specialized anatomy. However, why males have evolved to injure their mates during mating remains poorly understood. We studied traumatic mating in Dicerapanorpa magna to determine its effects on male and female fitness. The sharp teeth on male gonostyli penetrate the female genitalia and cause copulatory wounds, and the number of scars on the female genitals is positively related to the number of times females mated. When the injurious teeth were encased with low-temperature wax, preventing their penetration of the female's genitalia during mating, male mating success and copulation duration were reduced significantly, indicating the importance of the teeth in allowing the male to secure copulation, remain in copula and effectively inseminate his mate. The remating experiments showed that traumatic mating had little effect on the female mating refractory period, but significantly reduced female remating duration with subsequent males, probably benefiting the first-mating male with longer copulation duration and transferring more sperm into the female's spermatheca. The copulatory wounds reduced female fecundity, but did not accelerate the timing of egg deposition. This is probably the first report that traumatic mating reduces female remating duration through successive remating experiments in animals. Overall, our results provide evidence that traumatic mating in the scorpionfly helps increase the male's anchoring control during mating and provides him advantage in sperm competition, but at the expense of lowering female fecundity.
Collapse
Affiliation(s)
- Xin Tong
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Peng-Yang Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Mei-Zhuo Jia
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Randy Thornhill
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
9
|
Fischer S, Laue M, Müller CHG, Meinertzhagen IA, Pohl H. Ultrastructural 3D reconstruction of the smallest known insect photoreceptors: The stemmata of a first instar larva of Strepsiptera (Hexapoda). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101055. [PMID: 33975098 DOI: 10.1016/j.asd.2021.101055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Stemmata of strepsipteran insects represent the smallest arthropod eyes known, having photoreceptors which form fused rhabdoms measuring an average size of 1.69 × 1.21 × 1.04 μm and each occupying a volume of only 0.97-1.16 μm3. The morphology of the stemmata of the extremely miniaturized first instar larva of Stylops ovinae (Strepsiptera, Stylopidae) was investigated using serial-sectioning transmission electron microscopy (ssTEM). Our 3D reconstruction revealed that, despite different proportions, all three stemmata maintain the same organization: a biconvex corneal lens, four corneagenous cells and five photoreceptor (retinula) cells. No pigment-containing cell-types were found to adjoin the corneagenous cells. Whereas the retinula cells are adapted to the limited space by having laterally bulged median regions, containing mitochondria and the smallest nuclei yet reported for arthropods (1.37 μm3), special adaptations are found in the corneagenous cells which have cell volumes down to 1 μm3. The corneagenous cells lack nuclei and pigment granules and bear only a few mitochondria (up to three) or none at all. Morphological adaptations due to miniaturization are discussed in the context of photoreceptor function and the visual needs of the larva.
Collapse
Affiliation(s)
- Stefan Fischer
- Tübingen Structural Microscopy Core Facility, Center for Applied Geoscience, Eberhard-Karls-University Tübingen, Schnarrenbergstrasse 94-96, 72076 Tübingen, Germany; Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4R2.
| | - Michael Laue
- Advanced Light and Electron Microscopy (ZBS 4), Robert Koch-Institut, Seestr. 10, 13353 Berlin, Germany
| | - Carsten H G Müller
- Zoological Institute and Museum, Department of General and Systematic Zoology, University of Greifswald, Loitzer Str. 26, 17489 Greifswald, Germany
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Life Sciences Centre, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
| |
Collapse
|
10
|
Molecular identification of Stylops advarians (Strepsiptera: Stylopidae) in western Canada. Parasitol Res 2020; 119:4255-4258. [PMID: 33146777 DOI: 10.1007/s00436-020-06946-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 10/23/2022]
Abstract
Strepsiptera are an enigmatic order of insects with extreme sexual dimorphism which makes it difficult to "match-up" free-living adult males with parasitic conspecific females of the Stylopidia, and free-living females of the Mengenillidae using morphological characters. Species identification is further complicated for the Stylopidia because adult females are endoparasitic and neotenic. Therefore, we used DNA sequencing of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) to confirm the species identity of adult strepsipterans that were morphologically identified as Stylops advarians. These specimens, collected from Saskatoon (Saskatchewan, Canada), included one adult male, and eight females, the latter of which had been collected from solitary bees (Andrena milwaukeensis). Also included in the analyses were three pools of first-instar larvae that had emerged from three of the females. The results of the molecular analyses revealed that all specimens had an identical cox1 sequence, and belonged to a clade, with total statistical support (bootstrap value of 100%), that contained specimens of S. advarians from New York and Maine (USA). Hence, the results were consistent with the morphological identification of S. advarians. This study demonstrates the usefulness of a molecular approach for the identification of endoparasitic adult female and larval strepsipterans, life cycle stages that lack significant morphological characters for species identification.
Collapse
|
11
|
Pohl H, Gorb EV, Gorb SN. Traction force measurements on male Strepsiptera (Insecta) revealed higher forces on smooth compared with hairy substrates. J Exp Biol 2020; 223:jeb223784. [PMID: 32719048 DOI: 10.1242/jeb.223784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022]
Abstract
The aim of this study was to find out how strongly the parasitic insect Stylopsovinae, which has tarsi equipped with tenent hairs and lacking claws, attaches to different substrates. We investigated adhesion of male S. ovinae to the abdomen of its hymenopteran host (Andrena vaga), the hairier abdomen of a Bombus sp. and two artificial smooth reference surfaces with different degrees of hydrophilicity. In our experiments, the male S. ovinae developed significantly higher forces on smooth surfaces. However, the forces were significantly lower on all the hymenopteran surfaces used in the experiment. The absence of anisotropy in the force grip in cranial/caudal direction relative to the host might indirectly indicate that S. ovinae generate forces by adhesion rather than mechanical interlocking with the host hairs. The tolerance of the attachment system of S. ovinae to the substrate chemistry might be explained by the primary contribution of van der Waals interactions and not capillary forces to adhesion in S. ovinae.
Collapse
Affiliation(s)
- Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstrasse 1, 07743 Jena, Germany
| | - Elena V Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrecht-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute of the Christian-Albrecht-Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| |
Collapse
|
12
|
Tröger D, Grabe V, Beutel RG, Pohl H. The endoparasitic larval stages of Eoxenos laboulbenei: An atypical holometabolan development (Strepsiptera, Mengenillidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 56:100932. [PMID: 32375099 DOI: 10.1016/j.asd.2020.100932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/11/2023]
Abstract
Endoparasitic larval stages of Eoxenos laboulbenei were documented with different techniques, with a main focus on the male tertiary larva. Two discrete endoparasitic stages occur, the secondary and the tertiary larva. The presence of large compound eyes and externally visible wing buds in the tertiary larva is a unique feature within Holometabola. The brain with large optic lobes is followed by a single postcephalic ganglionic complex. The cephalic musculature is greatly reduced but pharyngeal dilators and muscles associated with the mouth field are present. Postcephalic sclerites are absent except for the pronotum. The segmented legs bear filiform pretarsal claws. The indirect flight muscles fill up a large part of the metathorax. The 10-segmented abdomen lacks appendages. Pleural folds are present on the thorax and abdomen. The digestive tract is characterized by a very short oesophagus. The large midgut and the narrow hindgut are disconnected. Six short Malpighian tubules are present. Large testes fill out almost the entire abdomen. In contrast to the tertiary larva, the muscles of the secondary larva are not fully differentiated. Cephalic appendages are present as bud-shaped anlagen. The legs lack a pretarsal claw. The developmental transformations are outlined and discussed, also with respect to phylogenetic implications.
Collapse
Affiliation(s)
- Daniel Tröger
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Veit Grabe
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rolf G Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany.
| |
Collapse
|
13
|
Vacacela Ajila HE, Michaud JP, Abdelwahab AH, Kuchta SV, Stowe HE. How Efficient Is Fertilization by Traumatic Insemination in Orius insidiosus (Hemiptera: Anthocoridae)? JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1618-1622. [PMID: 30893437 DOI: 10.1093/jee/toz061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Traumatic insemination (TI) can be injurious to females, and females have evolved various paragenital structures to mitigate these impacts. We examined the mating behavior of Orius insidiosus (Say) and the consequences of single and double matings for female fitness. A total of 100 virgin females (4-6-d old) were directly observed while they mated with virgin males. Some of these females were mated a second time with a different, nonvirgin male 3-5 d later, after they oviposited in sunflower stems. Females were held in isolation, fed eggs of Ephestia kuehniella Zeller, and reproductive success was tracked for 30 d. Six females died during their first copulation (6%), and another within 48 h, without laying eggs. Four percent of the females died during their second copulations. Copulations lasting less than 90 s usually did not result in successful fertilization, and duration of copula was positively correlated with egg fertility in singly-mated females. Duration of copula was more than halved in second matings, twice as variable, and negatively correlated with 30 d fecundity. Thirty-seven percent of singly-mated females and 31% of twice-mated females were infertile, with fewer than half of all females producing 88% of all eggs. We conclude that O. insidiosus females are likely monandrous in the wild, and that TI in this species is inefficient, contributing to high variation in female fitness. Thus, mating involves a significant mortality risk for females, despite their possession of complex paragenital structures that ostensibly mitigate copulatory injury.
Collapse
Affiliation(s)
- Henry E Vacacela Ajila
- Department of Entomology, Section Acarology, Federal University of Viçosa, Viçosa, MG, Brazil
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS
| | - J P Michaud
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS
| | - Ahmed H Abdelwahab
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS
- Plant Protection Research Institute, ARC, Giza, Egypt
| | - Sara V Kuchta
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS
- Department of Plant Protection, Entomology Section, São Paulo State University "Júlio de Mesquita Filho", Botucatu, SP, Brazil
| | - Hannah E Stowe
- Department of Entomology, Agricultural Research Center-Hays, Kansas State University, Hays, KS
| |
Collapse
|
14
|
Tröger D, Beutel RG, Pohl H. The abdomen of a free-living female of Strepsiptera and the evolution of the birth organs. J Morphol 2019; 280:739-755. [PMID: 30892750 DOI: 10.1002/jmor.20981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 02/01/2023]
Abstract
Mengenillidae is a small, basal family of Strepsiptera, mainly characterized by free-living females in contrast to the endoparasitic females of Stylopidia. Here, we describe external and internal structures of the female abdomen of Eoxenos laboulbenei (Mengenillidae). The external morphology was examined and documented using microphotography. Internal structures were reconstructed three-dimensionally using a μCT-data set. The morphologically simplified abdomen comprises 10 segments. The integument is weakly sclerotized and flexible. Spiracles are present dorsolaterally on segments I-VII. Segment VII bears the posteroventral birth opening and the small abdominal segment X carries the anus at its apex. Numerous eggs float freely in the hemolymph. The musculature of segments I-IV is composed of ventral and dorsal longitudinal muscle bundles, strongly developed paramedial dorsoventral muscles and a complex meshwork of small pleural muscles, with minimal differences between the segments. Segments V-X contain more than 50 individual muscles, even though the musculature as a whole is weakly developed. Even though it is not involved in processing food, the digestive tract is well-developed. Its postabdominal section comprises a part of the midgut and the short hindgut. The midgut fills a large part of the postabdominal lumen. The lumina of the midgut and hindgut are not connected. Five or six nodular Malpighian tubules open into the digestive tract at the border region between the midgut and hindgut. The birth organ below the midgut releases the primary larvae after hatching via the birth opening at segment VII. It is likely derived from primary female genital ducts. The presence of six additional birth organs of segments I-VI are de novo formations and a groundplan apomorphy of Stylopidia, the large strepsipteran subgroup with endoparasitic females. The loss of the primary birth organ of segment VII is an apomorphy of Stylopiformia (Stylopidia excl. Corioxenidae).
Collapse
Affiliation(s)
- Daniel Tröger
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Rolf G Beutel
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Hans Pohl
- Entomology Group, Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
15
|
Taniai K, Arakawa T, Maeda T. Traumatic insemination is not the case in three Orius species (Heteroptera: Anthocoridae). PLoS One 2018; 13:e0206225. [PMID: 30517107 PMCID: PMC6281218 DOI: 10.1371/journal.pone.0206225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/09/2018] [Indexed: 11/29/2022] Open
Abstract
Traumatic insemination (TI) is an extraordinary style of mating behavior wherein the female integument is pierced by the male extragenital structure to transfer the spermatozoa into the female's body through wounding. Flower bugs of the genus Orius belong to the family Anthocoridae (Heteroptera), which is referred to as the "TI family". Males possess sharp shaped extragenitalia, and females receive the extragenitalia using the copulatory tubes, which are specialized extragenital structures in Orius species. Since TI is not well studied in insects possessing the copulatory tube, we examined the genital structures and copulatory processes of three species, Orius strigicollis, O. sauteri, and O. minutus. Scanning electron microscopic observations revealed the positions of male extragenital structures during copulation. A needle-like flagellum was deeply inserted into the female intersegment between the abdominal VII and VIII segments, while the curved part of a sickle-like cone forced the intersegment to expand. No scars were detected around the copulation region after copulation. The copulatory tube adhered to the interior of segment VII, and the interior integument around the copulatory tube remained intact after copulation. On the basis of these results, TI does not occur in these Orius species. A pair of seminal conceptacles, which exists in typical TI insects, was found at the base of the oviducts in O. strigicollis. The distal end of the copulatory tube connected to a closed bag with a double-membrane, termed the sperm pouch. The sperm pouch was filled with filamentous structures after copulation and structures with equivalent forms were observed in adult male testis. These structures, considered to be spermatozoa, persisted in the pouch for at least two weeks after copulation, suggesting that the pouch is a long-term spermatozoa storage organ.
Collapse
Affiliation(s)
- Kiyoko Taniai
- Division of Insect Sciences, The National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Toru Arakawa
- Division of Insect Sciences, The National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Taro Maeda
- Division of Insect Sciences, The National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| |
Collapse
|
16
|
Boudinot BE. A general theory of genital homologies for the Hexapoda (Pancrustacea) derived from skeletomuscular correspondences, with emphasis on the Endopterygota. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:563-613. [PMID: 30419291 DOI: 10.1016/j.asd.2018.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 10/16/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
No consensus exists for the homology and terminology of the male genitalia of the Hexapoda despite over a century of debate. Based on dissections and the literature, genital skeletomusculature was compared across the Hexapoda and contrasted with the Remipedia, the closest pancrustacean outgroup. The pattern of origin and insertion for extrinsic and intrinsic genitalic musculature was found to be consistent among the Ectognatha, Protura, and the Remipedia, allowing for the inference of homologies given recent phylogenomic studies. The penis of the Hexapoda is inferred to be derived from medially-fused primary gonopods (gonopore-bearing limbs), while the genitalia of the Ectognatha are inferred to include both the tenth-segmental penis and the ninth-segmental secondary gonopods, similar to the genitalia of female insects which comprise gonopods of the eighth and ninth segments. A new nomenclatural system for hexapodan genitalic musculature is presented and applied, and a general list of anatomical concepts is provided. Novel and refined homologies are proposed for all hexapodan orders, and a series of groundplans are postulated. Emphasis is placed on the Endopterygota, for which fine-grained transition series are hypothesized given observed skeletomuscular correspondences.
Collapse
Affiliation(s)
- Brendon E Boudinot
- Department of Entomology & Nematology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA.
| |
Collapse
|
17
|
Golubović A, Arsovski D, Tomović L, Bonnet X. Is sexual brutality maladaptive under high population density? Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ana Golubović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg, Belgrade, Serbia
| | | | - Ljiljana Tomović
- Institute of Zoology, Faculty of Biology, University of Belgrade, Studentski trg, Belgrade, Serbia
| | | |
Collapse
|
18
|
Matsumura Y, Suenaga H, Kamimura Y, Gorb SN. Traumatic mating by hand saw-like spines on the internal sac in Pyrrhalta maculicollis (Coleoptera, Chrysomelidae, Galerucinae). Zookeys 2017:77-89. [PMID: 29290726 PMCID: PMC5740416 DOI: 10.3897/zookeys.720.13015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/13/2017] [Indexed: 01/10/2023] Open
Abstract
Morphology of the aedeagus and vagina of Pyrrhaltamaculicollis and its closely related species were investigated. The internal sac of P.maculicollis bears hand saw-like spines, which are arranged in a row. Healing wounds were found on the vagina of this species, whose females were collected in the field during a reproductive season. However, the number of the wounds is low in comparison to the number of the spines. In addition, males of P.tibialis bear one spinous sclerite on the internal sac, but the female of this species show no wounds on the vagina. The vaginal wall is thicker in P.maculicollis and P.tibialis in comparison to other studied species, whose males bear no spinous sclerite. This thickening in P.maculicollis is hypothesized that they prevent damaging their own internal sac during everting and withdrawing the internal sac with the spines.
Collapse
Affiliation(s)
- Yoko Matsumura
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | - Haruki Suenaga
- Sunshine A205, Nishiachi-chô 833-8, Kurashiki-shi, Okayama Pref., 710-0807, Japan
| | - Yoshitaka Kamimura
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama 223-8521, Japan
| | - Stanislav N Gorb
- Department of Functional Morphology and Biomechanics, Zoological Institute, Kiel University, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| |
Collapse
|
19
|
Gokhman VE, Kuznetsova VG. Parthenogenesis in Hexapoda: holometabolous insects. J ZOOL SYST EVOL RES 2017. [DOI: 10.1111/jzs.12183] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | - Valentina G. Kuznetsova
- Department of Karyosystematics; Zoological Institute of Russian Academy of Sciences; St. Petersburg Russia
| |
Collapse
|