1
|
Review of Artificial Nacre for Oil–Water Separation. SEPARATIONS 2023. [DOI: 10.3390/separations10030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Due to their extraordinary prospective uses, particularly in the areas of oil–water separation, underwater superoleophobic materials have gained increasing attention. Thus, artificial nacre has become an attractive candidate for oil–water separation due to its superhydrophilicity and underwater superoleophobicity properties. Synthesized artificial nacre has successfully achieved a high mechanical strength that is close to or even surpasses the mechanical strength of natural nacre. This can be attributed to suitable synthesis methods, the selection of inorganic fillers and polymer matrices, and the enhancement of the mechanical properties through cross-linking, covalent group modification, or mineralization. The utilization of nacre-inspired composite membranes for emerging applications, i.e., is oily wastewater treatment, is highlighted in this review. The membranes show that full separation of oil and water can be achieved, which enables their applications in seawater environments. The self-cleaning mechanism’s basic functioning and antifouling tips are also concluded in this review.
Collapse
|
2
|
Valorization of Albedo Orange Peel Waste to Develop Electrode Materials in Supercapacitors for the Electric Industry. J CHEM-NY 2021. [DOI: 10.1155/2021/3022815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This work proposes the use of albedo of orange peel in generation of carbon for applications in supercapacitors. For this, a comparison of compositional and electrochemical properties present in the carbons obtained of albedo, flavedo, and the complete orange peel was carried out. The morphology and composition of carbons obtained were analyzed by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray (EDX), X-Ray Diffraction (XRD), and Fourier-transform infrared spectroscopy (FT-IR). The synthetized carbons were not subjected to the activation process by chemical compounds to relate only the properties of orange peel parts with their electrochemical behaviour. All samples were tested by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The carbon obtained of albedo presented a superior specific capacitance (210 F/g) of the rest samples. The value of albedo-based carbon capacitance is comparable with works presented in the literature that used a whole orange peel with chemical activators. In this way, it is possible to obtain large capacitances using only a part of orange peel (albedo). Thus, the importance of this study is that the albedo can be proposed as a material applied to electrodes for supercapacitors while the flavedo can be used in food industry or for oil extraction.
Collapse
|
3
|
Adorna J, Ventura RL, Dang VD, Doong R, Ventura J. Biodegradable polyhydroxybutyrate/cellulose/calcium carbonate bioplastic composites prepared by heat‐assisted solution casting method. J Appl Polym Sci 2021. [DOI: 10.1002/app.51645] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Joemer Adorna
- Biomaterials and Environmental Engineering Laboratory, Department of Engineering Science, College of Engineering and Agro‐Industrial Technology University of the Philippines Los Baños Los Baños Laguna Philippines
| | - Ruby Lynn Ventura
- University of the Philippines Rural High School, College of Arts and Sciences University of the Philippines Los Baños Bay Laguna Philippines
| | - Van Dien Dang
- Faculty of Environment – Natural Resources and Climate Change Ho Chi Minh City University of Food Industry Ho Chi Minh Vietnam
| | - Ruey‐An Doong
- Institute of Analytical and Environmental Sciences National Tsing Hua University Taiwan
- Environmental Engineering Program, Department of Biology, Faculty of Science and Technology Airlangga University Surabaya Indonesia
| | - Jey‐R Ventura
- Biomaterials and Environmental Engineering Laboratory, Department of Engineering Science, College of Engineering and Agro‐Industrial Technology University of the Philippines Los Baños Los Baños Laguna Philippines
| |
Collapse
|
5
|
Li N, Cui W, Cong P, Tang J, Guan Y, Huang C, Liu Y, Yu C, Yang R, Zhang X. Biomimetic inorganic-organic hybrid nanoparticles from magnesium-substituted amorphous calcium phosphate clusters and polyacrylic acid molecules. Bioact Mater 2021; 6:2303-2314. [PMID: 33553817 PMCID: PMC7841502 DOI: 10.1016/j.bioactmat.2021.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/09/2020] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
Amorphous calcium phosphate (ACP) has been widely found during bone and tooth biomineralization, but the meta-stability and labile nature limit further biomedical applications. The present study found that the chelation of polyacrylic acid (PAA) molecules with Ca2+ ions in Mg-ACP clusters (~2.1 ± 0.5 nm) using a biomineralization strategy produced inorganic-organic Mg-ACP/PAA hybrid nanoparticles with better thermal stability. Mg-ACP/PAA hybrid nanoparticles (~24.0 ± 4.8 nm) were pH-responsive and could be efficiently digested under weak acidic conditions (pH 5.0–5.5). The internalization of assembled Mg-ACP/PAA nanoparticles by MC3T3-E1 cells occurred through endocytosis, indicated by laser scanning confocal microscopy and cryo-soft X-ray tomography. Our results showed that cellular lipid membranes remained intact without pore formation after Mg-ACP/PAA particle penetration. The assembled Mg-ACP/PAA particles could be digested in cell lysosomes within 24 h under weak acidic conditions, thereby indicating the potential to efficiently deliver encapsulated functional molecules. Both the in vitro and in vivo results preliminarily demonstrated good biosafety of the inorganic-organic Mg-ACP/PAA hybrid nanoparticles, which may have potential for biomedical applications. Mg-ACP/PAA hybrid nanoparticles have been synthesized following a biomineralization strategy. The chelation of PAA molecules in synergy with Mg2+ substitution improves thermal stability of Mg-ACP/PAA nanoparticles. The Mg-ACP/PAA nanoparticles are pH sensitive and can be digested in cell lysosomes within 24 h.
Collapse
Affiliation(s)
- Na Li
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Cui
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Peifang Cong
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Caihao Huang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yunen Liu
- Department of Emergency Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, 110016, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rui Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning, 110016, China.,School of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
6
|
El-Naggar NEA, Hussein MH, Shaaban-Dessuuki SA, Dalal SR. Production, extraction and characterization of Chlorella vulgaris soluble polysaccharides and their applications in AgNPs biosynthesis and biostimulation of plant growth. Sci Rep 2020; 10:3011. [PMID: 32080302 PMCID: PMC7033187 DOI: 10.1038/s41598-020-59945-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/31/2020] [Indexed: 11/09/2022] Open
Abstract
Chlorella vulgaris, like a wide range of other microalgae, are able to grow mixotrophically. This maximizes its growth and production of polysaccharides (PS). The extracted polysaccharides have a complex monosaccharide composition (fructose, maltose, lactose and glucose), sulphate (210.65 ± 10.5 mg g-1 PS), uronic acids (171.97 ± 5.7 mg g-1 PS), total protein content (32.99 ± 2.1 mg g-1 PS), and total carbohydrate (495.44 ± 8.4 mg g-1 PS). Fourier Transform infrared spectroscopy (FT-IR) analysis of the extracted polysaccharides showed the presence of N-H, O-H, C-H, -CH3, >CH2, COO-1, S=O and the C=O functional groups. UV-Visible spectral analysis shows the presence of proteins, nucleic acids and chemical groups (ester, carbonyl, carboxyl and amine). Purified polysaccharides were light green in color and in a form of odorless powder. It was soluble in water but insoluble in other organic solvents. Thermogravimetric analysis demonstrates that Chlorella vulgaris soluble polysaccharide is thermostable until 240°C and degradation occurs in three distinct phases. Differential scanning calorimetry (DSC) analysis showed the characteristic exothermic transition of Chlorella vulgaris soluble polysaccharides with crystallization temperature peaks at 144.1°C, 162.3°C and 227.7°C. The X-ray diffractogram illustrated the semicrystalline nature of these polysaccharides. Silver nanoparticles (AgNPs) had been biosynthesized using a solution of Chlorella vulgaris soluble polysaccharides. The pale green color solution of soluble polysaccharides was turned brown when it was incubated for 24 hours with 100 mM silver nitrate in the dark, it showed peak maximum located at 430 nm. FT-IR analysis for the biosynthesized AgNPs reported the presence of carbonyl, -CH3, >CH2, C-H,-OH and -NH functional groups. Scanning and transmission electron microscopy show that AgNPs have spherical shape with an average particle size of 5.76. Energy-dispersive X-ray (EDX) analysis showed the dominance of silver. The biosynthesized silver nanoparticles were tested for its antimicrobial activity and have positive effects against Bacillus sp., Erwinia sp., Candida sp. Priming seeds of Triticum vulgare and Phaseolus vulgaris with polysaccharides solutions (3 and 5 mg mL-1) resulted in significant enhancement of seedling growth. Increased root length, leaf area, shoot length, photosynthetic pigments, protein content, carbohydrate content, fresh and dry biomass were observed, in addition these growth increments may be attributed to the increase of antioxidant activities.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt.
| | - Mervat H Hussein
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | | - Shimaa R Dalal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Rabizadeh T, Morgan DJ, Peacock CL, Benning LG. Effectiveness of Green Additives vs Poly(acrylic acid) in Inhibiting Calcium Sulfate Dihydrate Crystallization. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b02904] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taher Rabizadeh
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, 51666-16471 Tabriz, Iran
| | - David J. Morgan
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Caroline L. Peacock
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Liane G. Benning
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
- GFZ, German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
- Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany
| |
Collapse
|