1
|
Azzalini E, Bonin S. Molecular diagnostics of prostate cancer: impact of molecular tests. Asian J Androl 2024; 26:562-566. [PMID: 38738960 DOI: 10.4103/aja202411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/29/2024] [Indexed: 05/14/2024] Open
Abstract
ABSTRACT Prostate cancer (PCa) is the second leading cause of cancer-related death among men. Prostate-specific antigen (PSA) testing is used in screening programs for early detection with a consequent reduction of PCa-specific mortality at the cost of overdiagnosis and overtreatment of the nonaggressive PCa. Recently, several assays have been commercially developed to implement PCa diagnosis, but they have not been included in both screening and diagnosis of PCa. This review aims to describe the actual and novel commercially available molecular biomarkers that can be used in PCa management to implement and tailor the screening and diagnosis of PCa.
Collapse
Affiliation(s)
- Eros Azzalini
- DSM, Department of Medical Sciences, University of Trieste, Trieste 34149, Italy
| | | |
Collapse
|
2
|
Dahiya V, Hans S, Kumari R, Bagchi G. Prostate cancer biomarkers: from early diagnosis to precision treatment. Clin Transl Oncol 2024; 26:2444-2456. [PMID: 38744755 DOI: 10.1007/s12094-024-03508-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Prostate cancer (PCa) is the second most prevalent cancer in men. In 2020, approximately 1,414,259 new cases were reported that accounted for 3,75,324 deaths (Sung et al. in CA 71:209-249, 2021). PCa is often asymptomatic at early stages; hence, routine screening and monitoring based on reliable biomarkers is crucial for early detection and assessment of cancer progression. Early diagnosis of disease is key step in reducing PCa-induced mortality. Biomarkers such as PSA have played vital role in reducing recent PCa deaths. Recent research has identified many other biomarkers and also refined PSA-based tests for non-invasive diagnosis of PCa in patients. Despite progress in screening methods, an important issue that influences treatment is heterogeneity of the cancer in different individuals, necessitating personalized treatment. Currently, focus is to identify biomarkers that can accurately diagnose PCa at early stage, indicate the stage of the disease, metastatic nature and chances of survival based on individual patient profile (Fig. 1). Fig. 1 Graphical abstract.
Collapse
Affiliation(s)
- Versha Dahiya
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Sanjana Hans
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Ruchi Kumari
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413
| | - Gargi Bagchi
- Amity Institute of Biotechnology, Amity University Haryana, Gurgaon, India, 122413.
| |
Collapse
|
3
|
De Lazzari G, Opattova A, Arena S. Novel frontiers in urogenital cancers: from molecular bases to preclinical models to tailor personalized treatments in ovarian and prostate cancer patients. J Exp Clin Cancer Res 2024; 43:146. [PMID: 38750579 PMCID: PMC11094891 DOI: 10.1186/s13046-024-03065-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Over the last few decades, the incidence of urogenital cancers has exhibited diverse trends influenced by screening programs and geographical variations. Among women, there has been a consistent or even increased occurrence of endometrial and ovarian cancers; conversely, prostate cancer remains one of the most diagnosed malignancies, with a rise in reported cases, partly due to enhanced and improved screening efforts.Simultaneously, the landscape of cancer therapeutics has undergone a remarkable evolution, encompassing the introduction of targeted therapies and significant advancements in traditional chemotherapy. Modern targeted treatments aim to selectively address the molecular aberrations driving cancer, minimizing adverse effects on normal cells. However, traditional chemotherapy retains its crucial role, offering a broad-spectrum approach that, despite its wider range of side effects, remains indispensable in the treatment of various cancers, often working synergistically with targeted therapies to enhance overall efficacy.For urogenital cancers, especially ovarian and prostate cancers, DNA damage response inhibitors, such as PARP inhibitors, have emerged as promising therapeutic avenues. In BRCA-mutated ovarian cancer, PARP inhibitors like olaparib and niraparib have demonstrated efficacy, leading to their approval for specific indications. Similarly, patients with DNA damage response mutations have shown sensitivity to these agents in prostate cancer, heralding a new frontier in disease management. Furthermore, the progression of ovarian and prostate cancer is intricately linked to hormonal regulation. Ovarian cancer development has also been associated with prolonged exposure to estrogen, while testosterone and its metabolite dihydrotestosterone, can fuel the growth of prostate cancer cells. Thus, understanding the interplay between hormones, DNA damage and repair mechanisms can hold promise for exploring novel targeted therapies for ovarian and prostate tumors.In addition, it is of primary importance the use of preclinical models that mirror as close as possible the biological and genetic features of patients' tumors in order to effectively translate novel therapeutic findings "from the bench to the bedside".In summary, the complex landscape of urogenital cancers underscores the need for innovative approaches. Targeted therapy tailored to DNA repair mechanisms and hormone regulation might offer promising avenues for improving the management and outcomes for patients affected by ovarian and prostate cancers.
Collapse
Affiliation(s)
- Giada De Lazzari
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Alena Opattova
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy
| | - Sabrina Arena
- Candiolo Cancer Institute, FPO - IRCCS, Laboratory of Translational Cancer Genetics, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
- Department of Oncology, University of Torino, Strada Provinciale 142, Km 3.95, Candiolo, TO, ZIP 10060, Italy.
| |
Collapse
|
4
|
Wong CHM, Ko ICH, Ng CF. Liquid biomarkers in prostate cancer: recent advancements and future directions. Curr Opin Urol 2024:00042307-990000000-00158. [PMID: 38712633 DOI: 10.1097/mou.0000000000001188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
PURPOSE OF REVIEW Traditional diagnostic approaches of prostate cancer like PSA are limited by high false-positive rates and insufficient capture of tumour heterogeneity, necessitating the development of more precise tools. This review examines the latest advancements in liquid biomarkers for prostate cancer, focusing on their potential to refine diagnostic accuracy and monitor disease progression. RECENT FINDINGS Liquid biomarkers have gained prominence because of their minimally invasive nature and ability to reflect the molecular characteristics of prostate cancer. Circulating tumour cells provide insight into tumour cell dissemination and are indicative of aggressive disease phenotypes, with single-cell analyses revealing genomic instability and treatment resistance. Circulating tumour DNA offers real-time tumour genomic information, aiding in treatment decision-making in advanced prostate cancer, where it has been associated with clinical progression. MicroRNAs act as oncogenes or tumour suppressors and exhibit diagnostic and prognostic potential; however, their clinical utility is constrained by the lack of consistent validation. Extracellular vesicles contain tumour-derived biomolecules, with specific proteins demonstrating prognostic relevance. Applications of these markers to urinary testing have been demonstrated. SUMMARY Liquid biomarkers show potential in refining prostate cancer management. Future research should aim to integrate these biomarkers into a cohesive framework in line with precision medicine principles.
Collapse
Affiliation(s)
- Chris Ho-Ming Wong
- SH Ho Urology Centre, Department of Surgery, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | | | |
Collapse
|
5
|
Mikami H, Noguchi S, Akatsuka J, Hasegawa H, Obayashi K, Takeda H, Endo Y, Toyama Y, Takei H, Kimura G, Kondo Y, Takizawa T. snRNAs from Radical Prostatectomy Specimens Have the Potential to Serve as Prognostic Factors for Clinical Recurrence after Biochemical Recurrence in Patients with High-Risk Prostate Cancer. Cancers (Basel) 2024; 16:1757. [PMID: 38730709 PMCID: PMC11083327 DOI: 10.3390/cancers16091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
In patients with high-risk prostate cancer (HRPC) after radical prostatectomy (RP), biochemical recurrence (BCR) increases the risk of distant metastasis. Accordingly, additional prognostic biomarkers are required to identify the subpopulation of patients with HRPC who develop clinical recurrence (CR) after BCR. The objective of this study was to identify biomarkers in formalin-fixed paraffin-embedded (FFPE) RP samples that are prognostic for CR in patients with HRPC who experience BCR after RP (post-RP BCR). First, we performed a preliminary RNA sequencing analysis to comprehensively profile RNA expression in FFPE RP samples obtained from patients with HRPC who developed CR after post-RP BCR and found that many snRNAs were very abundant in preserved FFPE samples. Subsequently, we used quantitative polymerase chain reaction (qPCR) to compare the expression levels of highly abundant snRNAs in FFPE RP samples from patients with HRPC with and without CR after post-RP BCR (21 CR patients and 46 non-CR patients who had more than 5 years of follow-up after BCR). The qPCR analysis revealed that the expression levels of snRNA RNU1-1/1-2 and RNU4-1 were significantly higher in patients with CR than in patients without CR. These snRNAs were significantly correlated with clinical recurrence-free survival (RFS) in patients with HRPC who experienced post-RP BCR. Furthermore, snRNA RNU1-1/1-2 could serve as an independent prognostic factor for clinical RFS in post-RP BCR of HRPC cases where known prognostic factors (e.g., Gleason score) cannot distinguish between CR and non-CR patients. Our findings provide new insights into the involvement of snRNAs in prostate cancer progression.
Collapse
Affiliation(s)
- Hikaru Mikami
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Jun Akatsuka
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Hiroya Hasegawa
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Kotaro Obayashi
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Hayato Takeda
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Yuki Endo
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Yuka Toyama
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Hiroyuki Takei
- Department of Breast Surgical Oncology, Nippon Medical School, Tokyo 113-8602, Japan;
| | - Go Kimura
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School Hospital, Tokyo 113-8603, Japan; (H.M.); (J.A.); (H.H.); (K.O.); (H.T.); (Y.E.); (Y.T.); (G.K.); (Y.K.)
| | - Toshihiro Takizawa
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Tokyo 113-8602, Japan;
| |
Collapse
|
6
|
Elkahwagy DM, Kiriacos CJ, Sobeih ME, Khorshid OMR, Mansour M. The lncRNAs Gas5, MALAT1 and SNHG8 as diagnostic biomarkers for epithelial malignant pleural mesothelioma in Egyptian patients. Sci Rep 2024; 14:4823. [PMID: 38413635 PMCID: PMC10899637 DOI: 10.1038/s41598-024-55083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
Long noncoding RNAs have been shown to be involved in a myriad of physiological and pathological pathways. To date, malignant pleural mesothelioma (MPM) is considered an extremely aggressive cancer. One reason for this is the late diagnosis of the disease, which can occur within 30-40 years of asbestos exposure. There is an immense need for the development of new, sensitive, inexpensive and easy methods for the early detection of this disease other than invasive methods such as biopsy. The aim of this study was to determine the expression of circulating lncRNAs in mesothelioma patient plasma to identify potential biomarkers. Ten previously identified lncRNAs that were shown to be aberrantly expressed in mesothelioma tissues were selected as candidates for subsequent validation. The expression of the ten selected candidate lncRNAs was verified via quantitative PCR (qPCR) in human plasma samples from mesothelioma patients versus healthy controls. The expression levels of circulating GAS5, SNHG8 and MALAT1 were significantly greater in plasma samples from patients than in those from controls. The ROC analysis of both MALAT1 and SNHG8 revealed 88.89% sensitivity and 66.67% specificity. The sensitivity of these markers was greater than that of GAS5 (sensitivity 72.22% and specificity 66.67%). The regression model for GAS5 was statistically significant, while that for SNHG8 and MALAT1 was not significant due to the small sample size. The area under the curve (AUC) of the three ROC curves was acceptable and significant: 0.7519 for GAS5, 0.7352 for SNHG8 and 0.7185 for MALAT1. This finding confirmed their ability to be used as markers. The three lncRNAs were not affected by age, sex or smoking status. The three lncRNAs showed great potential as independent predictive diagnostic biomarkers. Although the prediction model for MALAT1 did not significantly differ, MALAT1 was significantly expressed in patients more than in controls (p = 0.0266), and the recorded sensitivity and specificity were greater than those of GAS5.
Collapse
Affiliation(s)
- Dina Mohamed Elkahwagy
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Caroline Joseph Kiriacos
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Mohamed Emam Sobeih
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Ola M Reda Khorshid
- Department of Medical Oncology, National Cancer Institute, NCI, Cairo University, Cairo, Egypt
| | - Manar Mansour
- Pharmaceutical Biology and Microbiology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| |
Collapse
|
7
|
Baston C, Preda A, Iordache A, Olaru V, Surcel C, Sinescu I, Gingu C. How to Integrate Prostate Cancer Biomarkers in Urology Clinical Practice: An Update. Cancers (Basel) 2024; 16:316. [PMID: 38254807 PMCID: PMC10813985 DOI: 10.3390/cancers16020316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/24/2024] Open
Abstract
Nowadays, the management of prostate cancer has become more and more challenging due to the increasing number of available treatment options, therapeutic agents, and our understanding of its carcinogenesis and disease progression. Moreover, currently available risk stratification systems used to facilitate clinical decision-making have limitations, particularly in providing a personalized and patient-centered management strategy. Although prognosis and prostate cancer-specific survival have improved in recent years, the heterogenous behavior of the disease among patients included in the same risk prognostic group negatively impacts not only our clinical decision-making but also oncological outcomes, irrespective of the treatment strategy. Several biomarkers, along with available tests, have been developed to help clinicians in difficult decision-making scenarios and guide management strategies. In this review article, we focus on the scientific evidence that supports the clinical use of several biomarkers considered by professional urological societies (and included in uro-oncological guidelines) in the diagnosis process and specific difficult management strategies for clinically localized or advanced prostate cancer.
Collapse
Affiliation(s)
- Catalin Baston
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Adrian Preda
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Alexandru Iordache
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Vlad Olaru
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Cristian Surcel
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Ioanel Sinescu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| | - Constantin Gingu
- Department of Nephrology, Urology, Immunology and Immunology of Transplant, Dermatology, Allergology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.B.); (V.O.); (C.S.); (I.S.); (C.G.)
- Center of Uronephrology and Kidney Transplantation, Fundeni Clinical Institute, 258 Fundeni Street, 022328 Bucharest, Romania;
| |
Collapse
|
8
|
Jiang H, Wang J, Song Y, Chen J, Dong L, Xu Q, Cao R, Wang Y, Xu X, Zhang X, Kong F, Guan M, Deng X. Identification of three lncRNA-related prognostic signatures in gastric cancer by integrated multi-omics analysis. Epigenomics 2023; 15:1293-1308. [PMID: 38126139 DOI: 10.2217/epi-2023-0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Aims: The systematic identification of molecular features correlated with the clinical status of gastric cancer (GC) in patients is significant, although such investigation remains insufficient. Methods: GC subtyping based on RNA sequencing, copy number variation and DNA methylation data were derived from The Cancer Genome Atlas program. Prognostics lncRNA biomarkers for GC were identified by univariate Cox, LASSO and SVM-RFE analysis. Results: Three molecular subtypes with significant survival discrepancies, and their specific DEmRNAs and DElncRNAs were identified. Three reliable prognostic-associated lncRNA, including LINC00670, LINC00452 and LINC00160, were selected for GC. Conclusion: Our findings expanded the understanding on the regulatory network of lncRNAs in GC, providing potential targets for prognosis and treatment of GC patients.
Collapse
Affiliation(s)
- Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Jun Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingxiao Song
- Department of Gastroenterology, Changhai Hospital, The Naval Medical University, Shanghai, 222300, China
| | - Jian Chen
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Liu Dong
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Qianqian Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Ruoshui Cao
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Yuting Wang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xiao Xu
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xinju Zhang
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Fanyang Kong
- Department of Gastroenterology, Changhai Hospital, The Naval Medical University, Shanghai, 222300, China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| | - Xuan Deng
- Department of Laboratory Medicine, Huashan Hospital Fudan University, Shanghai, 200040, China
| |
Collapse
|
9
|
Chen JY, Wang PY, Liu MZ, Lyu F, Ma MW, Ren XY, Gao XS. Biomarkers for Prostate Cancer: From Diagnosis to Treatment. Diagnostics (Basel) 2023; 13:3350. [PMID: 37958246 PMCID: PMC10649216 DOI: 10.3390/diagnostics13213350] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Prostate cancer (PCa) is a widespread malignancy with global significance, which substantially affects cancer-related mortality. Its spectrum varies widely, from slow-progressing cases to aggressive or even lethal forms. Effective patient stratification into risk groups is crucial to therapeutic decisions and clinical trials. This review examines a wide range of diagnostic and prognostic biomarkers, several of which are integrated into clinical guidelines, such as the PHI, the 4K score, PCA3, Decipher, and Prolaris. It also explores the emergence of novel biomarkers supported by robust preclinical evidence, including urinary miRNAs and isoprostanes. Genetic alterations frequently identified in PCa, including BRCA1/BRCA2, ETS gene fusions, and AR changes, are also discussed, offering insights into risk assessment and precision treatment strategies. By evaluating the latest developments and applications of PCa biomarkers, this review contributes to an enhanced understanding of their role in disease management.
Collapse
Affiliation(s)
- Jia-Yan Chen
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Pei-Yan Wang
- School of Information, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Ming-Zhu Liu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China;
| | - Feng Lyu
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Ming-Wei Ma
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Xue-Ying Ren
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| | - Xian-Shu Gao
- Department of Radiation Oncology, Peking University First Hospital, Beijing 100034, China; (J.-Y.C.); (F.L.); (M.-W.M.); (X.-Y.R.)
| |
Collapse
|
10
|
Yazdani M, Saberi N, Baradaran A, Mohajeri Z. Diagnostic value of total serum/free prostate specific antigen and prostate cancer antigen-3 levels in prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:414-419. [PMID: 37941653 PMCID: PMC10628628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/16/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND The purpose of this study was to compare serum total and free prostate specific antigen (PSA) levels and serum prostate cancer antigen-3 (PCA3) levels in patients with prostate cancer in 2018 and 2019. METHODS This research was a prospective case-control study. The case group included all patients with suspected prostate cancer, and the control group included individuals without prostate disease who were referred to Ali Asghar and Nour Hospital in Isfahan, Iran, from October 2018 to October 2020. The serum total PSA, free PSA, and PCA3 levels in both groups were measured using the ELISA method with standard kits and compared between the groups. RESULTS The two groups were matched in terms of age and body mass index (BMI). The results showed that the mean free PSA level in the control group was significantly higher than that in the case group (P<0.05). Conversely, the mean total PSA level in the case group was significantly higher than that in the control group (P<0.05). However, no significant difference was observed in the mean PCA3 levels between the case and control groups. In addition, the total PSA variable with a cutoff of ≤3.14 exhibited 93% sensitivity and 82% specificity, demonstrating the highest diagnostic accuracy in distinguishing between prostate cancer and healthy individuals. Similarly, the PCA3 value with a cutoff of ≤3.5 had a sensitivity and specificity of 70% and 72%, respectively. CONCLUSION Overall, the study results indicated that total PSA and PCA3 levels have higher diagnostic accuracy in distinguishing patients with suspected prostate cancer from healthy individuals.
Collapse
Affiliation(s)
- Mohammad Yazdani
- Department of Urology, School of Medicine, Kidney Transplantation Research Center, Khorshid Hospital, Isfahan University of Medical SciencesIsfahan, Iran
| | - Narjes Saberi
- Department of Urology, School of Medicine, Kidney Transplantation Research Center, Khorshid Hospital, Isfahan University of Medical SciencesIsfahan, Iran
| | - Azar Baradaran
- Department of Pathology, School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Zahra Mohajeri
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| |
Collapse
|
11
|
Roy-García IA, Paredes-Manjarrez C, Moreno-Palacios J, Rivas-Ruiz R, Flores-Pulido AA. [ROC curves: general characteristics and their usefulness in clinical practice]. REVISTA MEDICA DEL INSTITUTO MEXICANO DEL SEGURO SOCIAL 2023; 61:S497-S502. [PMID: 37935015 PMCID: PMC10754459 DOI: 10.5281/zenodo.8319791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/15/2023] [Indexed: 11/09/2023]
Abstract
The use of diagnostic tests to determine the presence or absence of a disease is essential in clinical practice. The results of a diagnostic test may correspond to numerical estimates that require quantitative reference parameters to be transferred to a dichotomous interpretation as normal or abnormal and thus implement actions for the care of a condition or disease. For example, in the diagnosis of anemia it is necessary to define a cut-off point for the hemoglobin variable and create two categories that distinguish the presence or absence of anemia. The method used for this process is the preparation of diagnostic performance curves, better known by their acronym in English as ROC (Receiver Operating Characteristic). The ROC curve is also useful as a prognostic marker, since it allows defining the cut-off point of a quantitative variable that is associated with greater mortality or risk of complications. They have been used in different prognostic markers in COVID-19, such as the neutrophil/lymphocyte ratio and D-dimer, in which cut-off points associated with mortality and/or risk of mechanical ventilation were identified. The ROC curve is used to evaluate the diagnostic performance of a test in isolation, but it can also be used to compare the performance of two or more diagnostic tests and define which one is more accurate. This article describes the basic concepts for the use and interpretation of the ROC curve, the interpretation of an area under the curve (AUC) and the comparison of two or more diagnostic tests.
Collapse
Affiliation(s)
- Ivonne Analí Roy-García
- Instituto Mexicano del Seguro Social, Coordinación de Investigación en Salud, Centro de Adiestramiento e Investigación Clínica. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Posgrado. Ciudad de México, MéxicoInstituto Politécnico NacionalMéxico
| | - Carlos Paredes-Manjarrez
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Departamento de Imagenología. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Jorge Moreno-Palacios
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI, Hospital de Especialidades, Departamento de Urología. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Rodolfo Rivas-Ruiz
- Instituto Mexicano del Seguro Social, Coordinación de Investigación en Salud, Centro de Adiestramiento e Investigación Clínica. Ciudad de México, MéxicoInstituto Mexicano del Seguro SocialMéxico
| | - Andrey Arturo Flores-Pulido
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Posgrado. Ciudad de México, MéxicoInstituto Politécnico NacionalMéxico
- Secretaría de Salud, Centro Regional de Alta Especialidad, Hospital de Especialidades Pediátricas. Tuxtla Gutiérrez, Chiapas, MéxicoSecretaría de SaludMéxico
| |
Collapse
|
12
|
Silva JMC, Teixeira EB, Mourão RMDS, Ferraz RS, Moreira FC, de Assumpção PP, Calcagno DQ. The landscape of lncRNAs in gastric cancer: from molecular mechanisms to potential clinical applications. Front Pharmacol 2023; 14:1237723. [PMID: 37670949 PMCID: PMC10476871 DOI: 10.3389/fphar.2023.1237723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/07/2023] Open
Abstract
Gastric cancer (GC) is a highly prevalent and deadly malignant neoplasm worldwide. Currently, long non-coding RNAs (lncRNAs) have recently been identified as crucial regulators implicated in GC development and progression. Dysregulated expression of lncRNAs is commonly associated with enhanced tumor migration, invasiveness, and therapy resistance, highlighting their potential as promising targets for clinical applications. This review offers a comprehensive historical overview of lncRNAs in GC, describes the molecular mechanisms, and discusses the prospects and challenges of establishing lncRNAs as precision biomarkers.
Collapse
Affiliation(s)
| | | | | | - Rafaella Sousa Ferraz
- Laboratório de Genética Humana e Médica, Universidade Federal do Pará, Belem, Pará, Brazil
| | | | | | | |
Collapse
|
13
|
Ferro M, Rocco B, Maggi M, Lucarelli G, Falagario UG, Del Giudice F, Crocetto F, Barone B, La Civita E, Lasorsa F, Brescia A, Catellani M, Busetto GM, Tataru OS, Terracciano D. Beyond blood biomarkers: the role of SelectMDX in clinically significant prostate cancer identification. Expert Rev Mol Diagn 2023; 23:1061-1070. [PMID: 37897252 DOI: 10.1080/14737159.2023.2277366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
INTRODUCTION New potential biomarkers to pre-intervention identification of a clinically significant prostate cancer (csPCa) will prevent overdiagnosis and overtreatment and limit quality of life impairment of PCa patients. AREAS COVERED We have developed a comprehensive review focusing our research on the increasing knowledge of the role of SelectMDX® in csPCa detection. Areas identified as clinically relevant are the ability of SelectMDX® to predict csPCa in active surveillance setting, its predictive ability when combined with multiparametric MRI and the role of SelectMDX® in the landscape of urinary biomarkers. EXPERT OPINION Several PCa biomarkers have been developed either alone or in combination with clinical variables to improve csPCa detection. SelectMDX® score includes genomic markers, age, PSA, prostate volume, and digital rectal examination. Several studies have shown consistency in the ability to improve detection of csPCa, avoidance of unnecessary prostate biopsies, helpful in decision-making for clinical benefit of PCa patients with future well designed, and impactful studies.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Bernardo Rocco
- Unit of Urology, Department of Health Science, University of Milan, ASST Santi Paolo and Carlo, Via A. Di Rudini 8, Milan 20142, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza Umberto I - 70121, Bari, Italy
| | - Ugo Giovanni Falagario
- Department of Urology and Organ Transplantation, University of Foggia, Via A.Gramsci 89/91, 71122 Foggia, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, Via Pansini, 5 - 80131, Naples, Italy
| | - Biagio Barone
- Department of Surgical Sciences, Urology Unit, AORN Sant'Anna e San Sebastiano, Caserta, Via Ferdinando Palasciano, 81100 Caserta , Italy
| | - Evelina La Civita
- Department of Translational Medical Sciences, University of Naples "Federico II", Corso Umberto I 40 - 80138 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Emergency and Organ Transplantation, University of Bari, Piazza Umberto I - 70121, Bari, Italy
| | - Antonio Brescia
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Michele Catellani
- Department of Urology, IEO - European Institute of Oncology, IRCCS - Istituto di Ricovero e Cura a Carattere Scientifico, via Ripamonti 435, Milan 20141, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Via A.Gramsci 89/91, 71122 Foggia, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, Gh Marinescu 35, 540142 Târgu Mures, Romania
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples "Federico II", Corso Umberto I 40 - 80138 Naples, Italy
| |
Collapse
|
14
|
Segal D, Dostie J. The Talented LncRNAs: Meshing into Transcriptional Regulatory Networks in Cancer. Cancers (Basel) 2023; 15:3433. [PMID: 37444543 DOI: 10.3390/cancers15133433] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
As a group of diseases characterized by uncontrollable cell growth, cancer is highly multifaceted in how it overrides checkpoints controlling proliferation. Amongst the regulators of these checkpoints, long non-coding RNAs (lncRNAs) can have key roles in why natural biological processes go haywire. LncRNAs represent a large class of regulatory transcripts that can localize anywhere in cells. They were found to affect gene expression on many levels from transcription to mRNA translation and even protein stability. LncRNA participation in such control mechanisms can depend on cell context, with given transcripts sometimes acting as oncogenes or tumor suppressors. Importantly, the tissue-specificity and low expression levels of lncRNAs make them attractive therapeutic targets or biomarkers. Here, we review the various cellular processes affected by lncRNAs and outline molecular strategies they use to control gene expression, particularly in cancer and in relation to transcription factors.
Collapse
Affiliation(s)
- Dana Segal
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Josée Dostie
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
15
|
Boehm BE, York ME, Petrovics G, Kohaar I, Chesnut GT. Biomarkers of Aggressive Prostate Cancer at Diagnosis. Int J Mol Sci 2023; 24:2185. [PMID: 36768533 PMCID: PMC9916581 DOI: 10.3390/ijms24032185] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
In the United States, prostate cancer (CaP) remains the second leading cause of cancer deaths in men. CaP is predominantly indolent at diagnosis, with a small fraction (25-30%) representing an aggressive subtype (Gleason score 7-10) that is prone to metastatic progression. This fact, coupled with the criticism surrounding the role of prostate specific antigen in prostate cancer screening, demonstrates the current need for a biomarker(s) that can identify clinically significant CaP and avoid unnecessary biopsy procedures and psychological implications of being diagnosed with low-risk prostate cancer. Although several diagnostic biomarkers are available to clinicians, very few comparative trials have been performed to assess the clinical effectiveness of these biomarkers. It is of note, however, that a majority of these clinical trials have been over-represented by men of Caucasian origin, despite the fact that African American men have a 1.7 times higher incidence and 2.1 times higher rate of mortality from prostate cancer. Biomarkers for CaP diagnosis based on the tissue of origin include urine-based gene expression assays (PCA3, Select MDx, ExoDx Prostate IntelliScore, Mi-Prostate Score, PCA3-PCGEM1 gene panel), blood-based protein biomarkers (4K, PHI), and tissue-based DNA biomarker (Confirm MDx). Another potential direction that has emerged to aid in the CaP diagnosis include multi-parametric magnetic resonance imaging (mpMRI) and bi-parametric magnetic resonance imaging (bpMRI), which in conjunction with clinically validated biomarkers may provide a better approach to predict clinically significant CaP at diagnosis. In this review, we discuss some of the adjunctive biomarker tests along with newer imaging modalities that are currently available to help clinicians decide which patients are at risk of having high-grade CaP on prostate biopsy with the emphasis on clinical utility of the tests across African American (AA) and Caucasian (CA) men.
Collapse
Affiliation(s)
- Brock E. Boehm
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | - Monica E. York
- School of Medicine, Uniformed Services University of Health Science, Bethesda, MD 20814, USA
| | - Gyorgy Petrovics
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD 20817, USA
| | - Indu Kohaar
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- Henry Jackson Foundation for the Advancement of Military Medicine (HJF), Bethesda, MD 20817, USA
| | - Gregory T. Chesnut
- Urology Service, Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
- Center for Prostate Disease Research, Department of Surgery, Uniformed Services University of the Health Sciences and the Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| |
Collapse
|
16
|
Liu P, Wang W, Wang F, Fan J, Guo J, Wu T, Lu D, Zhou Q, Liu Z, Wang Y, Shang Z, Chan FL, Yang W, Li X, Zhao SC, Zheng Q, Wang F, Wu D. Alterations of plasma exosomal proteins and motabolies are associated with the progression of castration-resistant prostate cancer. J Transl Med 2023; 21:40. [PMID: 36681849 PMCID: PMC9867857 DOI: 10.1186/s12967-022-03860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/28/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Current diagnosis tools for prostate cancer (PCa) such as serum PSA detection and prostate biopsy cannot distinguish dormant tumors from invasive malignancies, either be used as prognosis marker for castration resistant prostate cancer (CRPC), the lethal stage of PCa patients. Exosomes have been widely investigated as promising biomarkers for various diseases. We aim to characterize the proteomic and metabolomic profile of exosomes and to evaluate their potential value for the diagnosis of PCa, especially CRPC. We also investigate the functions of some specific exosome biomarkers in the progression of CRPC. METHODS Integrated proteomics and metabolomics analysis were performed for plasma-derived exosomes collected from tumor-free controls (TFC), PCa and CRPC patients. Expression of specific exosomal proteins were further validated by targeted 4D-parallel reaction monitoring (PRM) mass spectrometry among the three cohorts. Tissue distribution and functional role of exosomal protein LRG1 was studied in clinical PCa tissue samples and cell line models. RESULTS Three potential exosomal protein markers were identified. The apolipoprotein E level in PCa samples was 1.7-fold higher than that in TFC (receiver operating characteristic value, 0.74). Similarly, the levels of exosome-derived leucine-rich alpha2-glycoprotein 1 (LRG1) and inter-alpha-trypsin inhibitor heavy chain H3 (ITIH3) in the CRPC group were 1.7 and 2.04 times, respectively, higher than those in the PCa group (ROC values, 0.84 and 0.85, respectively), indicating that LRG1 and ITIH3 could serve as predictive markers for CRPC. For metabolomic evaluation of exosomes, a series of differentially expressed metabolites were identified, and a combined metabolite panel showed ROC value of 0.94 for distinguishing PCa from TFC and 0.97 for distinguishing CRPC from PCa. Immunohistochemistry of tissue microarray showed that LRG1 protein was significantly upregulated in advanced prostate cancer and functional assay revealed that ectopic expression of LRG1 can significantly enhance the malignant phenotype of prostate cancer cells. More importantly, PCa cell derived LRG1-overexpressed exosomes remarkably promoted angiogenesis. CONCLUSION Integration of proteomics and metabolomics data generated proteomic and metabolic signatures of plasma exosomes that may facilitate discrimination of CRPC from PCa and TFC patients, suggesting the potential of exosomal proteins and metabolites as CRPC markers. The study also confirmed the important role of exosomal protein LRG1 in PCa malignant progression.
Collapse
Affiliation(s)
- Pengyu Liu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
- Department of Medical Genetics and Developmental Biology, School of Medicine, Southeast University, Nanjing, China
| | - Wenxuan Wang
- Department of Urology, Guangdong Hospital of Traditional Chinese Medicine, Zhuhai, Guangdong Province, 519015, China
| | - Fei Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Jiaqi Fan
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Jinan Guo
- Department of Urology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong Province, China
| | - Tao Wu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Dongliang Lu
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Qingchun Zhou
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Zhuohao Liu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Yuliang Wang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Zhiqun Shang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Franky Leung Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Endocrinology and Metabolism, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China
| | - Shan-Chao Zhao
- Department of Urology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510500, China.
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Qingyou Zheng
- Department of Urology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China.
| | - Fei Wang
- Department of Urology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China.
| | - Dinglan Wu
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Center (CIRC), Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong Province, China.
| |
Collapse
|
17
|
Wu JC, Wu GJ. METCAM Is a Potential Biomarker for Predicting the Malignant Propensity of and as a Therapeutic Target for Prostate Cancer. Biomedicines 2023; 11:biomedicines11010205. [PMID: 36672713 PMCID: PMC9855335 DOI: 10.3390/biomedicines11010205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death worldwide. This is because it is still unknown why indolent prostate cancer becomes an aggressive one, though many risk factors for this type of cancer have been suggested. Currently, many diagnostic markers have been suggested for predicting malignant prostatic carcinoma cancer; however, only a few, such as PSA (prostate-specific antigen), Prostate Health Index (PHI), and PCA3, have been approved by the FDA. However, each biomarker has its merits as well as shortcomings. The serum PSA test is incapable of differentiating prostate cancer from BPH and also has an about 25% false-positive prediction rate for the malignant status of cancer. The PHI test has the potential to replace the PSA test for the discrimination of BPH from prostate cancer and for the prediction of high-grade cancer avoiding unnecessary biopsies; however, the free form of PSA is unstable and expensive. PCA3 is not associated with locally advanced disease and is limited in terms of its prediction of aggressive cancer. Currently, several urine biomarkers have shown high potential in terms of being used to replace circulating biomarkers, which require a more invasive method of sample collection, such as via serum. Currently, the combined multiple tumor biomarkers may turn out to be a major trend in the diagnosis and assessment of the treatment effectiveness of prostate cancer. Thus, there is still a need to search for more novel biomarkers to develop a perfect cocktail, which consists of multiple biomarkers, in order to predict malignant prostate cancer and follow the efficacy of the treatment. We have discovered that METCAM, a cell adhesion molecule in the Ig-like superfamily, has great potential regarding its use as a biomarker for differentiating prostate cancer from BPH, predicting the malignant propensity of prostate cancer at the early premalignant stage, and differentiating indolent prostate cancers from aggressive cancers. Since METCAM has also been shown to be able to initiate the spread of prostate cancer cell lines to multiple organs, we suggest that it may be used as a therapeutic target for the clinical treatment of patients with malignant prostate cancer.
Collapse
Affiliation(s)
- Jui-Chuang Wu
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Research Center for Circular Economy, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
| | - Guang-Jer Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Correspondence:
| |
Collapse
|
18
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Blood-derived lncRNAs as biomarkers for cancer diagnosis: the Good, the Bad and the Beauty. NPJ Precis Oncol 2022; 6:40. [PMID: 35729321 PMCID: PMC9213432 DOI: 10.1038/s41698-022-00283-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer ranks as one of the deadliest diseases worldwide. The high mortality rate associated with cancer is partially due to the lack of reliable early detection methods and/or inaccurate diagnostic tools such as certain protein biomarkers. Cell-free nucleic acids (cfNA) such as circulating long noncoding RNAs (lncRNAs) have been proposed as a new class of potential biomarkers for cancer diagnosis. The reported correlation between the presence of tumors and abnormal levels of lncRNAs in the blood of cancer patients has notably triggered a worldwide interest among clinicians and oncologists who have been actively investigating their potentials as reliable cancer biomarkers. In this report, we review the progress achieved (“the Good”) and challenges encountered (“the Bad”) in the development of circulating lncRNAs as potential biomarkers for early cancer diagnosis. We report and discuss the diagnostic performance of more than 50 different circulating lncRNAs and emphasize their numerous potential clinical applications (“the Beauty”) including therapeutic targets and agents, on top of diagnostic and prognostic capabilities. This review also summarizes the best methods of investigation and provides useful guidelines for clinicians and scientists who desire conducting their own clinical studies on circulating lncRNAs in cancer patients via RT-qPCR or Next Generation Sequencing (NGS).
Collapse
|
20
|
Gan J, Zeng X, Wang X, Wu Y, Lei P, Wang Z, Yang C, Hu Z. Effective Diagnosis of Prostate Cancer Based on mRNAs From Urinary Exosomes. Front Med (Lausanne) 2022; 9:736110. [PMID: 35402423 PMCID: PMC8983915 DOI: 10.3389/fmed.2022.736110] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Background Novel non-invasive biomarkers are urgently required to improve the diagnostic sensitivity and specificity of prostate cancer (PCa). Therefore, the diagnostic value of following candidate genes (ERG, PCA3, ARV7, PSMA, CK19, and EpCAM) were estimated by testing mRNAs from urinary exosomes of patients with primary PCa. Methods Exosomes were obtained using size-exclusion chromatography (SEC), out of which RNAs were extracted, then analyzed by quantitative reverse transcription-polymerase chain reaction according to manufacturer's protocol. Results The expression of urinary exosomal ERG, PCA3, PSMA, CK19, and EpCAM were significantly increased in patients with PCa compared with healthy males. In addition, the levels of urinary exosomal ERG, ARV7, and PSMA were intimately correlated with the Gleason score in PCa patients (P < 0.05). The receiver operating characteristic curves (ROCs) showed that urinary exosomal ERG, PCA3, PSMA, CK19, and EpCAM were able to distinguish patients with PCa from healthy individuals with the area under the curve (AUC) of 0.782, 0.783, 0.772, 0.731, and 0.739, respectively. Urinary exosomal PCA3 and PSMA distinguished PCa patients from healthy individuals with an AUC of 0.870. Combination of urinary exosomal PCA3, PSMA with serum PSA and PI-RADS achieved higher AUC compared with PSA alone (0.914 and 0.846, respectively). Kaplan-Meier curves demonstrated that PCA3, ARV7, and EpCAM were associated in androgen-deprivation therapy (ADT) failure time which is defined as from the initiation of ADT in hormone-sensitive stage to the development of castration-resistant prostate cancer. Conclusion These findings suggested that mRNAs from urinary exosomes have the potential in serving as novel and non-invasive indicators for PCa diagnosis and prediction.
Collapse
Affiliation(s)
- Jiahua Gan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiong Wang
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wu
- Wuhan YZY Medical Science and Technology Co., Ltd., Wuhan, China
| | - Ping Lei
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Wen TH, Cheng A, Andreason C, Zahiri J, Xiao Y, Xu R, Bao B, Courchesne E, Barnes CC, Arias SJ, Pierce K. Large scale validation of an early-age eye-tracking biomarker of an autism spectrum disorder subtype. Sci Rep 2022; 12:4253. [PMID: 35277549 PMCID: PMC8917231 DOI: 10.1038/s41598-022-08102-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/28/2022] [Indexed: 01/07/2023] Open
Abstract
Few clinically validated biomarkers of ASD exist which can rapidly, accurately, and objectively identify autism during the first years of life and be used to support optimized treatment outcomes and advances in precision medicine. As such, the goal of the present study was to leverage both simple and computationally-advanced approaches to validate an eye-tracking measure of social attention preference, the GeoPref Test, among 1,863 ASD, delayed, or typical toddlers (12-48 months) referred from the community or general population via a primary care universal screening program. Toddlers participated in diagnostic and psychometric evaluations and the GeoPref Test: a 1-min movie containing side-by-side dynamic social and geometric images. Following testing, diagnosis was denoted as ASD, ASD features, LD, GDD, Other, typical sibling of ASD proband, or typical. Relative to other diagnostic groups, ASD toddlers exhibited the highest levels of visual attention towards geometric images and those with especially high fixation levels exhibited poor clinical profiles. Using the 69% fixation threshold, the GeoPref Test had 98% specificity, 17% sensitivity, 81% PPV, and 65% NPV. Sensitivity increased to 33% when saccades were included, with comparable validity across sex, ethnicity, or race. The GeoPref Test was also highly reliable up to 24 months following the initial test. Finally, fixation levels among twins concordant for ASD were significantly correlated, indicating that GeoPref Test performance may be genetically driven. As the GeoPref Test yields few false positives (~ 2%) and is equally valid across demographic categories, the current findings highlight the ability of the GeoPref Test to rapidly and accurately detect autism before the 2nd birthday in a subset of children and serve as a biomarker for a unique ASD subtype in clinical trials.
Collapse
Affiliation(s)
- Teresa H Wen
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| | - Amanda Cheng
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Charlene Andreason
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Javad Zahiri
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Yaqiong Xiao
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Ronghui Xu
- Herbert Wertheim School of Public Health and Department of Mathematics, University of California, San Diego, La Jolla, CA, USA
| | - Bokan Bao
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
- Department of Bioinformatics and Systems Biology, University of California, San Diego, La Jolla, CA, USA
| | - Eric Courchesne
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Cynthia Carter Barnes
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Steven J Arias
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA
| | - Karen Pierce
- Autism Center of Excellence, Department of Neurosciences, University of California, San Diego, 8110 La Jolla Shores Dr., La Jolla, CA, 92037, USA.
| |
Collapse
|
22
|
Yao ZT, Yang YM, Sun MM, He Y, Liao L, Chen KS, Li B. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer. Cancer Commun (Lond) 2022; 42:117-140. [PMID: 35019235 PMCID: PMC8822594 DOI: 10.1002/cac2.12254] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
With the development of proteomics and epigenetics, a large number of RNA‐binding proteins (RBPs) have been discovered in recent years, and the interaction between long non‐coding RNAs (lncRNAs) and RBPs has also received increasing attention. It is extremely important to conduct in‐depth research on the lncRNA‐RBP interaction network, especially in the context of its role in the occurrence and development of cancer. Increasing evidence has demonstrated that lncRNA‐RBP interactions play a vital role in cancer progression; therefore, targeting these interactions could provide new insights for cancer drug discovery. In this review, we discussed how lncRNAs can interact with RBPs to regulate their localization, modification, stability, and activity and discussed the effects of RBPs on the stability, transport, transcription, and localization of lncRNAs. Moreover, we explored the regulation and influence of these interactions on lncRNAs, RBPs, and downstream pathways that are related to cancer development, such as N6‐methyladenosine (m6A) modification of lncRNAs. In addition, we discussed how the lncRNA‐RBP interaction network regulates cancer cell phenotypes, such as proliferation, apoptosis, metastasis, drug resistance, immunity, tumor environment, and metabolism. Furthermore, we summarized the therapeutic strategies that target the lncRNA‐RBP interaction network. Although these treatments are still in the experimental stage and various theories and processes are still being studied, we believe that these strategies may provide new ideas for cancer treatment.
Collapse
Affiliation(s)
- Zi-Ting Yao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Yan-Ming Yang
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Miao-Miao Sun
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Yan He
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Long Liao
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| | - Kui-Sheng Chen
- Department of Pathology, Henan Key Laboratory of Tumor Pathology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Bin Li
- Ministry of Education Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, Guangdong, 510632, P. R. China.,Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, the Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510700, P. R. China
| |
Collapse
|
23
|
Selective Microfluidic Capture and Detection of Prostate Cancer Cells from Urine without Digital Rectal Examination. Cancers (Basel) 2021; 13:cancers13215544. [PMID: 34771706 PMCID: PMC8583121 DOI: 10.3390/cancers13215544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Prostate cancer is the second most common cancer and the fifth leading cause of cancer death in men worldwide. The current diagnosis methods for prostate cancer are invasive and costly. In particular, digital rectal examination (DRE) or prostate massage adds considerable discomfort to patients, reduces compliance to cancer screening schedules, and raises the cost of the diagnostic procedure. New technologies are urgently needed for the effective and yet noninvasive detection of these conditions. This manuscript describes streamlined biotechnology for the noninvasive detection of prostate cancer from malignant cells shed in urine. For the first time, a whole-cell immunocapture approach combined with photodynamic diagnostic principles is used in a device to detect whole cancer cells from unprocessed patient urine samples collected without prior DRE. Abstract Urine-based biomarkers have shown suitable diagnostic potential for prostate cancer (PCa) detection. Yet, until now, prostatic massage remains required prior to urine sampling. Here, we test a potential diagnostic approach using voided urine collected without prior digital rectal examination (DRE). In this study, we evaluated the diagnostic performance of a microfluidic-based platform that combines the principle of photodynamic diagnostic with immunocapture for the detection of PCa cells. The functionality and sensitivity of this platform were validated using both cultured cells and PCa patient urine samples. Quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) demonstrated this platform had a detection limit of fewer than 10 cells per 60 µL and successfully validated the presence of a PCa biomarker in the urine of cancer patients without prior DRE. This biosensing platform exhibits a sensitivity of 72.4% and a specificity of 71.4%, in suitable agreement with qRT-PCR data. The results of this study constitute a stepping stone in the future development of noninvasive prostate cancer diagnostic technologies that do not require DRE.
Collapse
|
24
|
Manceau C, Fromont G, Beauval JB, Barret E, Brureau L, Créhange G, Dariane C, Fiard G, Gauthé M, Mathieu R, Renard-Penna R, Roubaud G, Ruffion A, Sargos P, Rouprêt M, Ploussard G. Biomarker in Active Surveillance for Prostate Cancer: A Systematic Review. Cancers (Basel) 2021; 13:4251. [PMID: 34503059 PMCID: PMC8428218 DOI: 10.3390/cancers13174251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Active surveillance (AS) in prostate cancer (PCa) represents a curative alternative for men with localised low-risk PCa. Continuous improvement of AS patient's selection and surveillance modalities aims at reducing misclassification, simplifying modalities of surveillance and decreasing need for invasive procedures such repeated biopsies. Biomarkers represent interesting tools to evaluate PCa diagnosis and prognosis, of which many are readily available or under evaluation. The aim of this review is to investigate the biomarker performance for AS selection and patient outcome prediction. Blood, urinary and tissue biomarkers were studied and a brief description of use was proposed along with a summary of major findings. Biomarkers represent promising tools which could be part of a more tailored risk AS strategy aiming to offer personalized medicine and to individualize the treatment and monitoring of each patient. The usefulness of biomarkers has mainly been suggested for AS selection, whereas few studies have investigated their role during the monitoring phase. Randomized prospective studies dealing with imaging are needed as well as larger prospective studies with long-term follow-up and strong oncologic endpoints.
Collapse
Affiliation(s)
- Cécile Manceau
- Department of Urology, CHU-IUC Toulouse, F-31000 Toulouse, France
| | - Gaëlle Fromont
- Department of Pathology, CHRU Tours, F-37000 Tours, France;
| | - Jean-Baptiste Beauval
- Department of Urology, La Croix du Sud Hospital, F-31130 Quint Fonsegrives, France; (J.-B.B.); (G.P.)
| | - Eric Barret
- Department of Urology, Institut Mutualiste Montsouris, F-75014 Paris, France;
| | - Laurent Brureau
- Department of Urology, CHU de Pointe-à-Pitre, University of Antilles, University of Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)–UMR_S 1085, F-97110 Pointe-à-Pitre, France;
| | - Gilles Créhange
- Department of Radiation Oncology, Curie Institute, F-75005 Paris, France;
| | - Charles Dariane
- Department of Urology, Hôpital Européen Georges-Pompidou, APHP, Paris–Paris University–U1151 Inserm-INEM, Necker, F-75015 Paris, France;
| | - Gaëlle Fiard
- Department of Urology, Grenoble Alpes University Hospital, Université Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France;
| | - Mathieu Gauthé
- AP-HP Health Economics Research Unit, INSERM-UMR1153, F-75004 Paris, France;
| | - Romain Mathieu
- Department of Urology, CHU Rennes, F-35033 Rennes, France;
| | - Raphaële Renard-Penna
- Department of Radiology, Sorbonne University, AP-HP, Pitie-Salpetriere Hospital, F-75013 Paris, France;
| | - Guilhem Roubaud
- Department of Medical Oncology, Institut Bergonié, F-33000 Bordeaux, France;
| | - Alain Ruffion
- Service d’Urologie Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, F-69002 Lyon, France;
- Equipe 2–Centre d’Innovation en Cancérologie de Lyon (EA 3738 CICLY)–Faculté de Médecine Lyon Sud–Université Lyon 1, F-69002 Lyon, France
| | - Paul Sargos
- Department of Radiotherapy, Institut Bergonié, 33000 Bordeaux, France;
| | - Morgan Rouprêt
- Department of Urology, Sorbonne University, GRC 5 Predictive Onco-Uro, AP-HP, Pitie-Salpetriere Hospital, F-75013 Paris, France;
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, F-31130 Quint Fonsegrives, France; (J.-B.B.); (G.P.)
- Institut Universitaire du Cancer Oncopole, F-31000 Toulouse, France
| | | |
Collapse
|
25
|
Low Levels of Urinary PSA Better Identify Prostate Cancer Patients. Cancers (Basel) 2021; 13:cancers13143570. [PMID: 34298784 PMCID: PMC8303247 DOI: 10.3390/cancers13143570] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary Elevated PSA levels in blood tests are the gold standard for early prostate cancer detection, but its lack of specificity limits its clinical use as a mass screening test. The paradox is that it has long been known that advanced prostate cancers can lose PSA expression. We have observed that in the presence of tumors, the prostate produces and secretes less PSA than in healthy or benign conditions. Therefore, the PSA evaluation in urine provided more accurate information on the presence of prostate tumors than the blood test, representing a new method for the screening of prostate cancer. Abstract Serum prostatic specific antigen (PSA) has proven to have limited accuracy in early diagnosis and in making clinical decisions about different therapies for prostate cancer (PCa). This is partially due to the fact that an increase in PSA in the blood is due to the compromised architecture of the prostate, which is only observed in advanced cancer. On the contrary, PSA observed in the urine (uPSA) reflects the quantity produced by the prostate, and therefore can give more information about the presence of disease. We enrolled 574 men scheduled for prostate biopsy at the urology clinic, and levels of uPSA were evaluated. uPSA levels resulted lower among subjects with PCa when compared to patients with negative biopsies. An indirect correlation was observed between uPSA amount and the stage of disease. Loss of expression of PSA appears as a characteristic of prostate cancer development and its evaluation in urine represents an interesting approach for the early detection of the disease and the stratification of patients.
Collapse
|
26
|
Pina F, Ferro A, Botelho F, Manso M, Dias N, Figueiredo G, Pereira P, Dinis P, Barros H, Lunet N. Can serum endoglin be used to improve the diagnostic performance in prostate cancer? World J Urol 2021; 39:4135-4142. [PMID: 34009416 DOI: 10.1007/s00345-021-03714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/26/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE New biomarkers may contribute to avoid unnecessary biopsies resulting from the suboptimal performance of prostate-specific antigen (PSA) testing. This study aimed to assess serum endoglin as a prostate cancer (PCa) diagnostic tool among biopsy candidates. METHODS A total of 262 consecutive patients referred for prostate biopsy based on abnormal digital rectal examination and/or elevated total PSA (tPSA) who had serum endoglin assessed by solid-phase enzyme-linked immunosorbent assay were selected. Receiver operating characteristic curves were used to compare the predictive accuracy of different combinations of biomarkers to distinguish between PCa and benign prostatic conditions, and to identify cut-offs that maximize the ability of endoglin to rule out patients for biopsy (highest sensitivities). RESULTS Serum endoglin levels were higher in patients with PCa (median: 7.86 vs. 5.88 pg/mL, P < 0.001). Among patients with baseline tPSA ≤ 10 ng/mL the area under the curve was 0.69 for endoglin. Approximately one-quarter of the patients had serum endoglin < 4.92 ng/mL (sensitivity: 90.3%; specificity: 32.8%), and the probability of PCa varied from 37.7% before testing to 15.2% among those with low endoglin levels [negative predictive value (NPV) = 84.8%]. When restricting the analyses to patients with free/total PSA ratio > 0.25, the probability of cancer was less than 5% among those with serum endoglin < 6.04 ng/mL (sensitivity: 93.8%; specificity: 56.1%), corresponding to a NPV of 95.8%; this could allow sparing approximately 40% of patients from biopsy. CONCLUSIONS Serum endoglin may be useful in clinical practice to distinguish between PCa and non-cancer patients among prostatic biopsy candidates.
Collapse
Affiliation(s)
- Francisco Pina
- S. João University and Hospital Center-Urology, Porto, Portugal
- Lapa Hospital-Urology, Porto, Portugal
| | - Ana Ferro
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | | | - Margarida Manso
- S. João University and Hospital Center-Urology, Porto, Portugal
- Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
| | - Nuno Dias
- S. João University and Hospital Center-Urology, Porto, Portugal
- Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
| | | | - Pedro Pereira
- S. João University and Hospital Center-Pathology, Porto, Portugal
| | - Paulo Dinis
- S. João University and Hospital Center-Urology, Porto, Portugal
- Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
| | - Henrique Barros
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Nuno Lunet
- Departamento de Ciências da Saúde Pública e Forenses e Educação Médica, Faculdade de Medicina da Universidade do Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal.
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
27
|
Duffy MJ. Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clin Chem Lab Med 2021; 58:326-339. [PMID: 31714881 DOI: 10.1515/cclm-2019-0693] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/19/2019] [Indexed: 12/21/2022]
Abstract
In recent years, several new biomarkers supplementing the role of prostate-specific antigen (PSA) have become available for men with prostate cancer. Although widely used in an ad hoc manner, the role of PSA in screening asymptomatic men for prostate cancer is controversial. Several expert panels, however, have recently recommended limited PSA screening following informed consent in average-risk men, aged 55-69 years. As a screening test for prostate cancer however, PSA has limited specificity and leads to overdiagnosis which in turn results in overtreatment. To increase specificity and reduce the number of unnecessary biopsies, biomarkers such as percent free PSA, prostate health index (PHI) or the 4K score may be used, while Progensa PCA3 may be measured to reduce the number of repeat biopsies in men with a previously negative biopsy. In addition to its role in screening, PSA is also widely used in the management of patients with diagnosed prostate cancer such as in surveillance following diagnosis, monitoring response to therapy and in combination with both clinical and histological criteria in risk stratification for recurrence. For determining aggressiveness and predicting outcome, especially in low- or intermediate-risk men, tissue-based multigene tests such as Decipher, Oncotype DX (Prostate), Prolaris and ProMark, may be used. Emerging therapy predictive biomarkers include AR-V7 for predicting lack of response to specific anti-androgens (enzalutamide, abiraterone), BRAC1/2 mutations for predicting benefit from PARP inhibitor and PORTOS for predicting benefit from radiotherapy. With the increased availability of multiple biomarkers, personalised treatment for men with prostate cancer is finally on the horizon.
Collapse
Affiliation(s)
- Michael J Duffy
- UCD Clinical Research Centre, St. Vincent's University Hospital, Dublin 4, Ireland.,UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
28
|
Jia W, Wu B, Shao Y, Cao X, Wang D. Diagnostic performance of prostate cancer antigen 3 and the Prostate Health Index in detecting overall and clinically significant prostate cancer in men at first biopsy: A meta-analysis. Int J Urol 2021; 28:315-325. [PMID: 33336418 DOI: 10.1111/iju.14464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To evaluate the diagnostic value of prostate cancer antigen 3 and the Prostate Health Index for the detection of overall and clinically significant prostate cancer at initial biopsy. METHODS A search was conducted in the online databases PubMed, Embase and the Cochrane database, and relevant articles published up to 23 February 2020 were extracted. RESULTS Twenty studies including 10 376 patients were included in the meta-analysis. The pooled sensitivity and specificity were 0.55 (95% confidence interval 0.53-0.57) and 0.74 (95% confidence interval 0.72-0.75) for prostate cancer antigen 3 and 0.88 (95% confidence interval 0.86-0.90) and 0.36 (95% confidence interval 0.34-0.38) for the Prostate Health Index. The area under the curve was 0.72 for prostate cancer antigen 3 and 0.76 for the Prostate Health Index. The combination of prostate cancer antigen 3 and the Prostate Health Index had a higher area under the curve (0.79) and diagnostic odds ratio (5.83) than the use of Prostate Health Index (area under the curve 0.75, diagnostic odds ratio 4.69) or prostate cancer antigen 3 (area under the curve 0.77, diagnostic odds ratio 4.84) alone. For clinically significant prostate cancer detection, the pooled sensitivity and specificity were 0.80 (95% confidence interval 0.76-0.84) and 0.53 (95% confidence interval 0.50-0.55), respectively, for prostate cancer antigen 3, and 0.77 (95% confidence interval 0.71-0.82) and 0.64 (95% confidence interval 0.61-0.67), respectively, for the Prostate Health Index. The area under the curve was 0.71 for prostate cancer antigen 3 and 0.77 for the Prostate Health Index. CONCLUSION Both the Prostate Health Index and prostate cancer antigen 3 showed acceptable and similar results for the detection of overall and clinically significant prostate cancer at first biopsy. A combination of these two diagnostic tests may be more helpful than the use of either test alone in prostate cancer management.
Collapse
Affiliation(s)
- Wei Jia
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Bo Wu
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yuan Shao
- Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoming Cao
- Department of Urology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Dongwen Wang
- Shanxi Medical University, Taiyuan, Shanxi, China
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
McNevin CS, Baird AM, McDermott R, Finn SP. Diagnostic Strategies for Treatment Selection in Advanced Prostate Cancer. Diagnostics (Basel) 2021; 11:345. [PMID: 33669657 PMCID: PMC7922176 DOI: 10.3390/diagnostics11020345] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022] Open
Abstract
Prostate Cancer (PCa) is a leading cause of morbidity and mortality among men worldwide. For most men with PCa, their disease will follow an indolent course. However, advanced PCa is associated with poor outcomes. There has been an advent of new therapeutic options with proven efficacy for advanced PCa in the last decade which has improved survival outcomes for men with this disease. Despite this, advanced PCa continues to be associated with a high rate of death. There is a lack of strong evidence guiding the timing and sequence of these novel treatment strategies. This paper focuses on a review of the strategies for diagnostic and the current evidence available for treatment selection in advanced PCa.
Collapse
Affiliation(s)
- Ciara S. McNevin
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
- Department of Medical Oncology, St. James Hospital, D08 NHY1 Dublin, Ireland
| | - Anne-Marie Baird
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, D02 A440 Dublin, Ireland;
| | - Ray McDermott
- Department of Medical Oncology, Tallaght University Hospital, D24 NR0A Dublin, Ireland;
- Department of Medical Oncology, St. Vincent’s University Hospital, D04 YN26 Dublin, Ireland
| | - Stephen P. Finn
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 W9RT Dublin, Ireland;
- Department of Histopathology, St. James’s Hospital, P.O. Box 580, James’s Street, D08 X4RX Dublin, Ireland
| |
Collapse
|
30
|
Kim JH, Hong SK. Clinical utility of current biomarkers for prostate cancer detection. Investig Clin Urol 2021; 62:1-13. [PMID: 33381926 PMCID: PMC7801171 DOI: 10.4111/icu.20200395] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Although prostate-specific antigen (PSA) remains the most used test to detect prostate cancer (PCa), the limited specificity and an elevated rate of overdiagnosis are the main problems associated with PSA testing. Over the last three decades, a large body of evidence has indicated that PSA screening methods for PCa are problematic, although PSA screening significantly reduces PCa-specific mortality. A number of novel biomarkers have been introduced to overcome these limitations of PSA in the clinical setting. These biomarkers have demonstrated an increased ability to select patients for biopsy and identify men at risk for clinically significant PCa. Although a number of assays require further validation, initial data are promising. Forthcoming results will ultimately determine the clinical utility and commercial availability of these assays. Extensive efforts have recently been made to identify and commercialize novel PCa biomarkers for more effective detection of PCa, either alone or in combination with currently available clinical tools. This review highlights the role of existing and promising serum and urinary biomarkers for the detection and prognostication of PCa before prostate biopsy.
Collapse
Affiliation(s)
- Jeong Hyun Kim
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Sung Kyu Hong
- Department of Urology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea.
| |
Collapse
|
31
|
Gunelli R, Fragalà E, Fiori M. PCA3 in Prostate Cancer. Methods Mol Biol 2021; 2292:105-113. [PMID: 33651355 DOI: 10.1007/978-1-0716-1354-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Prostate cancer antigen 3 (PCA3) is a urinary biomarker for prostate cancer and has demonstrated a good specificity and sensitivity representing a minimally invasive test.PCA3 assay could be useful in combination with PSA to suggest an eventual rebiopsy in men who have had one or more previous negative prostate biopsies.Combination of multiple tumor biomarkers will be the trend in the near future to achieve the goal of evaluate the aggressiveness of cancer and at the same time reducing the number of unnecessary biopsies.
Collapse
Affiliation(s)
| | | | - Massimo Fiori
- Department of Urology, GB Morgagni Hospital, Forlì, Italy.
| |
Collapse
|
32
|
A review of current clinical biomarkers for prostate cancer: towards personalised and targeted therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396920001168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background:
Prostate cancer is the most commonly diagnosed cancer in men and it is responsible for about 10% of all cancer mortality in Canadian men. The current ‘gold standard’ for the diagnosis of prostate cancer is a prostate biopsy and the decision on when to biopsy a patient with non-suspicious Digital Rectal Examination (DRE) result and total prostate specific antigen (tPSA) of 4–10 ng/ml can be challenging. In order to shift the treatment paradigm of prostate cancer toward more personalised and targeted therapy, there is the need for a clear system that makes its detection binary so as to decrease the rate of inaccurate detections. Therefore in recent years, there have been several investigations into the development of various biomarkers with high sensitivity and specificity for screening, early detection and personalised patient-specific targeted medicine from diagnosis to treatment of the disease.
Materials and methods:
This paper reports on nine currently available clinical biomarkers used in screening for early detection and diagnosis, to reduce the number of unnecessary biopsies, in risk assessment of aggressive disease and in monitoring treatment response of prostate cancer.
Conclusion:
Current clinical prostate cancer biomarkers have the potential for a personalised risk assessment of aggressive disease and the risk of developing distant metastatic disease and have been proven to be useful tools to guide clinicians in personalised patient-specific targeted treatment and in the shared decision making between patients and their physicians regarding prostate biopsy and treatment. Using biomarkers to select patients with a significant probability of aggressive prostate cancer would potentially avoid premature death from the disease, while at the same time would safely preclude patients who do not require unnecessary invasive intervention.
Collapse
|
33
|
Visser WCH, de Jong H, Melchers WJG, Mulders PFA, Schalken JA. Commercialized Blood-, Urinary- and Tissue-Based Biomarker Tests for Prostate Cancer Diagnosis and Prognosis. Cancers (Basel) 2020; 12:E3790. [PMID: 33339117 PMCID: PMC7765473 DOI: 10.3390/cancers12123790] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/10/2020] [Accepted: 12/10/2020] [Indexed: 01/24/2023] Open
Abstract
In the diagnosis and prognosis of prostate cancer (PCa), the serum prostate-specific antigen test is widely used but is associated with low specificity. Therefore, blood-, urinary- and tissue-based biomarker tests have been developed, intended to be used in the diagnostic and prognostic setting of PCa. This review provides an overview of commercially available biomarker tests developed to be used in several clinical stages of PCa management. In the diagnostic setting, the following tests can help selecting the right patients for initial and/or repeat biopsy: PHI, 4K, MiPS, SelectMDx, ExoDx, Proclarix, ConfirmMDx, PCA3 and PCMT. In the prognostic setting, the Prolaris, OncotypeDx and Decipher test can help in risk-stratification of patients regarding treatment decisions. Following, an overview is provided of the studies available comparing the performance of biomarker tests. However, only a small number of recently published head-to-head comparison studies are available. In contrast, recent research has focused on the use of biomarker tests in relation to the (complementary) use of multiparametric magnetic resonance imaging in PCa diagnosis.
Collapse
Affiliation(s)
- Wieke C. H. Visser
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
| | - Hans de Jong
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
| | - Willem J. G. Melchers
- Department of Product Development, MDxHealth BV, 6534 AT Nijmegen, The Netherlands; (H.d.J.); (W.J.G.M.)
- Department of Medical Microbiology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Peter F. A. Mulders
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (P.F.A.M.); (J.A.S.)
| | - Jack A. Schalken
- Department of Urology, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands; (P.F.A.M.); (J.A.S.)
| |
Collapse
|
34
|
Qin Z, Yao J, Xu L, Xu Z, Ge Y, Zhou L, Zhao F, Jia R. Diagnosis accuracy of PCA3 level in patients with prostate cancer: a systematic review with meta-analysis. Int Braz J Urol 2020; 46:691-704. [PMID: 31961625 PMCID: PMC7822358 DOI: 10.1590/s1677-5538.ibju.2019.0360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/13/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The diagnostic value and suitability of prostate cancer antigen 3 (PCA3) for the detection of prostate cancer (PCa) have been inconsistent in previous studies. Thus, the aim of the present meta-analysis was performed to systematically evaluate the diagnostic value of PCA3 for PCa. MATERIALS AND METHODS A meta-analysis was performed to search relevant studies using online databases EMBASE, PubMed and Web of Science published until February 1st, 2019. Ultimately, 65 studies met the inclusion criteria for this meta-analysis with 8.139 cases and 14.116 controls. The sensitivity, specificity, positive likelihood ratios (LR+), negative likelihood ratios (LR-), and other measures of PCA3 were pooled and determined to evaluate the diagnostic rate of PCa by the random-effect model. RESULTS With PCA3, the pooled overall diagnostic sensitivity, specificity, LR+, LR-, and 95% confidence intervals (CIs) for predicting significant PCa were 0.68 (0.64-0.72), 0.72 (0.68-0.75), 2.41 (2.16-2.69), 0.44 (0.40-0.49), respectively. Besides, the summary diagnostic odds ratio (DOR) and 95% CIs for PCA3 was 5.44 (4.53-6.53). In addition, the area under summary receiver operating characteristic (sROC) curves and 95% CIs was 0.76 (0.72-0.79). The major design deficiencies of included studies were differential verification bias, and a lack of clear inclusion and exclusion criteria. CONCLUSIONS The results of this meta-analysis suggested that PCA3 was a non-invasive method with the acceptable sensitivity and specificity in the diagnosis of PCa, to distinguish between patients and healthy individuals. To validate the potential applicability of PCA3 in the diagnosis of PCa, more rigorous studies were needed to confirm these conclusions.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianxiang Yao
- Department of Urology, Huzhou first people's hospital, Huzhou, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuzheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Zhao
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Characterisation of the main PSA glycoforms in aggressive prostate cancer. Sci Rep 2020; 10:18974. [PMID: 33149259 PMCID: PMC7643140 DOI: 10.1038/s41598-020-75526-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Serum levels of prostate specific antigen (PSA) are commonly used for prostate cancer (PCa) detection. However, their lack of specificity to distinguish benign prostate pathologies from PCa, or indolent from aggressive PCa have prompted the study of new non-invasive PCa biomarkers. Aberrant glycosylation is involved in neoplastic progression and specific changes in PSA glycosylation pattern, as the reduction in the percentage of α2,6-sialic acid (SA) are associated with PCa aggressiveness. In this study, we have characterised the main sialylated PSA glycoforms from blood serum of aggressive PCa patients and have compared with those of standard PSA from healthy individuals’ seminal plasma. PSA was immunoprecipitated and α2,6-SA were separated from α2,3-SA glycoforms using SNA affinity chromatography. PSA N-glycans were released, labelled and analysed by hydrophilic interaction liquid chromatography combined with exoglycosidase digestions. The results showed that blood serum PSA sialylated glycoforms containing GalNAc residues were largely increased in aggressive PCa patients, whereas the disialylated core fucosylated biantennary structures with α2,6-SA, which are the major PSA glycoforms in standard PSA from healthy individuals, were markedly reduced in aggressive PCa. The identification of these main PSA glycoforms altered in aggressive PCa opens the way to design specific strategies to target them, which will be useful to improve PCa risk stratification.
Collapse
|
36
|
French WW, Wallen EM. Advances in the diagnostic options for prostate cancer. Postgrad Med 2020; 132:52-62. [PMID: 32900250 DOI: 10.1080/00325481.2020.1822067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Over the past decade, despite the controversies surrounding prostate cancer screening, significant refinements have improved its application. PSA screening, although it has been questioned, appears to confer a mortality benefit and remains the most effective way to identify the possible presence of prostate cancer. Methods to improve the specificity of PSA screening and limit overdiagnosis of indolent cancers, including risk-stratified screening regimens, are currently being utilized. Certain imaging modalities, such as multiparametric MRI, have proven to be excellent adjuncts providing improved risk stratification and the ability for targeted biopsies; however, concerns over variability in interpretation and generalizability persist. A number of novel biomarkers have become available with nearly all demonstrating the ability to improve upon the specificity of PSA screening; however, optimal timing, direct comparisons, and usefulness in conjunction with imaging modalities remain to be elucidated. With the improvement in testing options and recognition of the risk/benefit ratio for men undergoing screening for prostate cancer, the increasing role of shared decision making in the process is emphasized.
Collapse
Affiliation(s)
- William W French
- Department of Urology, University of North Carolina Medical Center , Chapel Hill, NC, United States
| | - Eric M Wallen
- Department of Urology, University of North Carolina Medical Center , Chapel Hill, NC, United States
| |
Collapse
|
37
|
Lee D, Shim SR, Ahn ST, Oh MM, Moon DG, Park HS, Cheon J, Kim JW. Diagnostic Performance of the Prostate Cancer Antigen 3 Test in Prostate Cancer: Systematic Review and Meta-analysis. Clin Genitourin Cancer 2020; 18:402-408.e5. [DOI: 10.1016/j.clgc.2020.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/26/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
|
38
|
Gwak J, Jeong H, Lee K, Shin JY, Sim T, Na J, Kim J, Ju BG. SFMBT2-Mediated Infiltration of Preadipocytes and TAMs in Prostate Cancer. Cancers (Basel) 2020; 12:E2718. [PMID: 32971847 PMCID: PMC7565541 DOI: 10.3390/cancers12092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
Infiltration of diverse cell types into tumor microenvironment plays a critical role in cancer progression including metastasis. We previously reported that SFMBT2 (Scm-like with four mbt domains 2) regulates the expression of matrix metalloproteinases (MMPs) and migration and invasion of cancer cells in prostate cancer. Here we investigated whether the down-regulation of SFMBT2 regulates the infiltration of preadipocytes and tumor-associated macrophages (TAMs) in prostate cancer. We found that the down-regulation of SFMBT2 promotes the infiltration of preadipocytes and TAMs through up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression in prostate cancer. Expression of CXCL8, CCL2, CXCL10, and CCL20 was also elevated in prostate cancer patients having a higher Gleason score (≥8), which had substantially lower SFMBT2 expression. We also found that the up-regulation of CXCL8, CCL2, CXCL10, and CCL20 expression is dependent on NF-κB activation in prostate cancer cells expressing a low level of SFMBT2. Moreover, increased IL-6 from infiltrated preadipocytes and TAMs promoted migration and invasion of prostate cancer cells expressing a low level of SFMBT2. Our study may suggest that SFMBT2 a critical regulator for the infiltration of preadipocytes and TAMs into the prostate tumor microenvironment. Thus, the regulation of SFMBT2 may provide a new therapeutic strategy to inhibit prostate cancer metastasis, and SFMBT2 could be used as a potential biomarker in prostate cancer metastasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea; (J.G.); (H.J.); (K.L.); (J.Y.S.); (T.S.); (J.N.); (J.K.)
| |
Collapse
|
39
|
Kotova ES, Savochkina YA, Doludin YV, Vasilyev AO, Prilepskay EA, Potoldykova NV, Babalyan KA, Kanygina AV, Morozov AO, Govorov AV, Enikeev DV, Kostryukova ES, Ilina EN, Govorun VM, Pushkar DY, Sharova EI. Identification of Clinically Significant Prostate Cancer by Combined PCA3 and AMACR mRNA Detection in Urine Samples. Res Rep Urol 2020; 12:403-413. [PMID: 32984088 PMCID: PMC7505712 DOI: 10.2147/rru.s262310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/19/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Preclinical evaluation of PCA3 and AMACR transcript simultaneous detection in urine to diagnose clinical significant prostate cancer (prostate cancer with Gleason score ≥7) in a Russian cohort. Patients and Methods We analyzed urine samples of patients with a total serum PSA ≥2 ng/mL: 31 men with prostate cancer scheduled for radical prostatectomy, 128 men scheduled for first diagnostic biopsy (prebiopsy cohort). PCA3, AMACR, PSA and GPI transcripts were detected by multiplex reverse transcription quantitative polymerase chain reaction, and the results were used for scores for calculation and statistical analysis. Results There was no significant difference between clinically significant and nonsignificant prostate cancer PCA3 scores. However, there was a significant difference in the AMACR score (patients scheduled for radical prostatectomy p=0.0088, prebiopsy cohort p=0.029). We estimated AUCs, optimal cutoffs, sensitivities and specificities for PCa and csPCa detection in the prebiopsy cohort by tPSA, PCA3 score, PCPT Risk Calculator and classification models based on tPSA, PCA3 score and AMACR score. In the clinically significant prostate cancer ROC analysis, the PCA3 score AUC was 0.632 (95%CI: 0.511–0.752), the AMACR score AUC was 0.711 (95%CI: 0.617–0.806) and AUC of classification model based on the PCA3 score, the AMACR score and total PSA was 0.72 (95%CI: 0.58–0.83). In addition, the correlation of the AMACR score with the ratio of total RNA and RNA of prostate cells in urine was shown (tau=0.347, p=6.542e–09). Significant amounts of nonprostate RNA in urine may be a limitation for the AMACR score use. Conclusion The AMACR score is a good predictor of clinically significant prostate cancer. Significant amounts of nonprostate RNA in urine may be a limitation for the AMACR score use. Evaluation of the AMACR score and classification models based on it for clinically significant prostate cancer detection with larger samples and a follow-up analysis is promising.
Collapse
Affiliation(s)
- Elena S Kotova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Yuriy V Doludin
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexander O Vasilyev
- Department of Urology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena A Prilepskay
- Department of Urology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - Konstantin A Babalyan
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Alexandra V Kanygina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Alexander V Govorov
- Department of Urology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | | | - Elena S Kostryukova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Elena N Ilina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vadim M Govorun
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitry Y Pushkar
- Department of Urology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - Elena I Sharova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
40
|
Lima AR, Pinto J, Carvalho-Maia C, Jerónimo C, Henrique R, Bastos MDL, Carvalho M, Guedes de Pinho P. A Panel of Urinary Volatile Biomarkers for Differential Diagnosis of Prostate Cancer from Other Urological Cancers. Cancers (Basel) 2020; 12:cancers12082017. [PMID: 32717987 PMCID: PMC7464354 DOI: 10.3390/cancers12082017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Our group recently developed a urinary 6-biomarker panel for the diagnosis of prostate cancer (PCa) which has a higher level of accuracy compared to the serum prostate specific antigen (PSA) test. Herein, urine from an independent cohort of PCa patients and cancer-free controls was analyzed to further validate the discriminative power of that panel. Additionally, urine from patients diagnosed with bladder cancer (BC) and renal cancer (RC) were included to evaluate the site-specificity of the panel. Results confirmed the ability of the 6-biomarker panel to discriminate PCa patients from controls, but not from other urological cancers. To overcome this limitation, an untargeted approach was performed to unveil discriminant metabolites among the three cancer types. A 10-biomarker panel comprising the original panel plus four new metabolites was established to discriminate PCa from controls, BC, and RC, with 76% sensitivity, 90% specificity, and 92% accuracy. This improved panel also disclosed better accuracy than serum PSA test and provides the basis for a new non-invasive early detection tool for PCa.
Collapse
Affiliation(s)
- Ana Rita Lima
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| | - Joana Pinto
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
| | - Carina Carvalho-Maia
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Porto Comprehensive Cancer Center (P.CCC), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal; (C.C.-M.); (C.J.); (R.H.)
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), P.CCC Porto Comprehensive Cancer Center, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Biomedical Sciences Institute (ICBAS), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
| | - Márcia Carvalho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Fernando Pessoa Energy, Environment and Health Research Unit (FP-ENAS), Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| | - Paula Guedes de Pinho
- UCIBIO/REQUIMTE, Department of Biological Sciences, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.P.); (M.d.L.B.)
- Correspondence: (A.R.L.); (M.C.); (P.G.d.P.); Tel.: +35-12-2042-8599 (A.R.L. & M.C. & P.G.d.P.); Fax: +35-12-2609-3390 (A.R.L. & M.C. & P.G.d.P.)
| |
Collapse
|
41
|
The Movember Prostate Cancer Landscape Analysis: an assessment of unmet research needs. Nat Rev Urol 2020; 17:499-512. [PMID: 32699318 PMCID: PMC7462750 DOI: 10.1038/s41585-020-0349-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is a heterogeneous cancer with widely varying levels of morbidity and mortality. Approaches to prostate cancer screening, diagnosis, surveillance, treatment and management differ around the world. To identify the highest priority research needs across the prostate cancer biomedical research domain, Movember conducted a landscape analysis with the aim of maximizing the effect of future research investment through global collaborative efforts and partnerships. A global Landscape Analysis Committee (LAC) was established to act as an independent group of experts across urology, medical oncology, radiation oncology, radiology, pathology, translational research, health economics and patient advocacy. Men with prostate cancer and thought leaders from a variety of disciplines provided a range of key insights through a range of interviews. Insights were prioritized against predetermined criteria to understand the areas of greatest unmet need. From these efforts, 17 research needs in prostate cancer were agreed on and prioritized, and 3 received the maximum prioritization score by the LAC: first, to establish more sensitive and specific tests to improve disease screening and diagnosis; second, to develop indicators to better stratify low-risk prostate cancer for determining which men should go on active surveillance; and third, to integrate companion diagnostics into randomized clinical trials to enable prediction of treatment response. On the basis of the findings from the landscape analysis, Movember will now have an increased focus on addressing the specific research needs that have been identified, with particular investment in research efforts that reduce disease progression and lead to improved therapies for advanced prostate cancer. The Movember global Landscape Analysis Committee (LAC) was established to act as an independent group of experts across urology, medical oncology, radiation oncology, radiology, pathology, translational research, health economics and patient advocacy to identify the highest priority research needs across the prostate cancer biomedical research domain. Findings from the landscape analysis illustrate the research priorities in prostate cancer and will enable Movember to focus on specific needs, with particular investment in research to reduce disease progression and improve therapies for advanced prostate cancer.
Collapse
|
42
|
Remmers S, Roobol MJ. Personalized strategies in population screening for prostate cancer. Int J Cancer 2020; 147:2977-2987. [PMID: 32394421 PMCID: PMC7586980 DOI: 10.1002/ijc.33045] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022]
Abstract
This review discusses evidence for population-based screening with contemporary screening tools. In Europe, prostate-specific antigen (PSA)-based screening led to a relative reduction of prostate cancer (PCa) mortality, but also to a substantial amount of overdiagnosis and unnecessarily biopsies. Risk stratification based on a single variable (a clinical variable or based on the presence of a lesion on prostate imaging) or based on multivariable approaches can aid in reducing unnecessary prostate biopsies and overdiagnosis by selecting men who can benefit from further clinical assessment. Multivariable approaches include clinical variables, and biomarkers, often combined in risk calculators or nomograms. These risk calculators can also incorporate the result of MRI imaging. In general, as compared to a purely PSA based approach, the combination of relevant prebiopsy information results in superior selection of men at higher risk of harboring clinically significant prostate cancer. Currently, it is not possible to draw any conclusions on the superiority of these multivariable risk-based approaches since head-to-head comparisons are virtually lacking. Recently initiated large population-based screening studies in Finland, Germany and Sweden, incorporating various multivariable risk stratification approaches will hopefully give more insight in whether the harm-benefit ratio can be improved, that is, maintain (or improving) the ability to reduce metastatic disease and prostate cancer mortality while reducing harm caused by unnecessary testing and overdiagnosis including related overtreatment.
Collapse
Affiliation(s)
- Sebastiaan Remmers
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monique J Roobol
- Department of Urology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
43
|
Bruzzone C, Loizaga-Iriarte A, Sánchez-Mosquera P, Gil-Redondo R, Astobiza I, Diercks T, Cortazar AR, Ugalde-Olano A, Schäfer H, Blanco FJ, Unda M, Cannet C, Spraul M, Mato JM, Embade N, Carracedo A, Millet O. 1H NMR-Based Urine Metabolomics Reveals Signs of Enhanced Carbon and Nitrogen Recycling in Prostate Cancer. J Proteome Res 2020; 19:2419-2428. [PMID: 32380831 DOI: 10.1021/acs.jproteome.0c00091] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer is the second most common tumor and the fifth cause of cancer-related death among men worldwide. PC cells exhibit profound signaling and metabolic reprogramming that account for the acquisition of aggressive features. Although the metabolic understanding of this disease has increased in recent years, the analysis of such alterations through noninvasive methodologies in biofluids remains limited. Here, we used NMR-based metabolomics on a large cohort of urine samples (more than 650) from PC and benign prostate hyperplasia (BPH) patients to investigate the molecular basis of this disease. Multivariate analysis failed to distinguish between the two classes, highlighting the modest impact of prostate alterations on urine composition and the multifactorial nature of PC. However, univariate analysis of urine metabolites unveiled significant changes, discriminating PC from BPH. Metabolites with altered abundance in urine from PC patients revealed changes in pathways related to cancer biology, including glycolysis and the urea cycle. We found out that metabolites from such pathways were diminished in the urine from PC individuals, strongly supporting the notion that PC reduces nitrogen and carbon waste in order to maximize their usage in anabolic processes that support cancer cell growth.
Collapse
Affiliation(s)
- Chiara Bruzzone
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| | - Ana Loizaga-Iriarte
- CIBERONC, Madrid 28025, Spain.,Department of Urology, Basurto University Hospital, Bilbao 48013, Spain
| | | | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| | - Ianire Astobiza
- CIBERONC, Madrid 28025, Spain.,Cancer Cell Signaling and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| | - Tammo Diercks
- Structural Biology Unit, CIC bioGUNE, Derio 48160, Spain
| | - Ana R Cortazar
- CIBERONC, Madrid 28025, Spain.,Cancer Cell Signaling and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| | - Aitziber Ugalde-Olano
- CIBERONC, Madrid 28025, Spain.,Department of Pathology, Basurto University Hospital, Bilbao 48013, Spain
| | - Hartmut Schäfer
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | - Francisco J Blanco
- Structural Biology of Cancer Lab, CIC bioGUNE, Derio 48160, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain
| | - Miguel Unda
- CIBERONC, Madrid 28025, Spain.,Department of Urology, Basurto University Hospital, Bilbao 48013, Spain
| | - Claire Cannet
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen, 76287 Rheinstetten, Germany
| | - José M Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| | - Arkaitz Carracedo
- CIBERONC, Madrid 28025, Spain.,Cancer Cell Signaling and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao 48011, Spain.,Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao 20018, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Derio 48160, Spain
| |
Collapse
|
44
|
Yamkamon V, Htoo KPP, Yainoy S, Suksrichavalit T, Tangchaikeeree T, Eiamphungporn W. Urinary PCA3 detection in prostate cancer by magnetic nanoparticles coupled with colorimetric enzyme-linked oligonucleotide assay. EXCLI JOURNAL 2020; 19:501-513. [PMID: 32398974 PMCID: PMC7214775 DOI: 10.17179/excli2020-1036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
PCA3 is one of the most prostate cancer-specific genes described to date. Of note, PCA3 expression is detectable at high level in the urine of prostate cancer (PCa) patients. Accordingly, PCA3 is an ideal biomarker for PCa diagnosis. Several techniques for the measurement of this biomarker in urine have been developed but there are still some drawbacks. In this study, magnetic nanoparticle-based PCR coupled with streptavidin-horseradish peroxidase and a substrate for colorimetric detection was established as a potential assay for urinary PCA3 detection. The method provided a high specificity for PCA3 gene in LNCaP prostate cancer cell line. Additionally, this technique could detect PCA3 at femtogram level which was approximately 1,000-fold more sensitive than the conventional RT-PCR followed by agarose gel electrophoresis. The effectiveness of the method was assessed by PCA3 detection in clinical specimens. The relative PCA3 expression of PCa patients determined by this assay was significantly greater than that of benign prostatic hyperplasia (BPH) patients and healthy controls. The results of our test were comparable with the results of qRT-PCR. The proposed method is promising to distinguish between cancerous and non-cancerous groups. Altogether, this simple assay is practicable and useful for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Vichanan Yamkamon
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Khin Phyu Pyar Htoo
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.,Department of Medical Laboratory Technology, University of Medical Technology, Mandalay, Myanmar
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Thummaruk Suksrichavalit
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Tienrat Tangchaikeeree
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
45
|
Becerra MF, Atluri VS, Bhattu AS, Punnen S. Serum and urine biomarkers for detecting clinically significant prostate cancer. Urol Oncol 2020; 39:686-690. [PMID: 32241692 DOI: 10.1016/j.urolonc.2020.02.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 02/06/2023]
Abstract
Since the "prostate-specific antigen (PSA) era," we have seen an increase in unnecessary biopsies, which has ultimately lead to an overtreatment of low-risk cancers. Given the limitations of prostate-specific antigen and the invasive nature of prostate biopsy several serum and urinary biomarkers have been developed. In this paper, we provide a comprehensive review of the available biomarkers for the detection clinically significant prostate cancer namely PHI, 4Kscore, PCA3, MiPS, SelectMDx, ExosomeDX. Current literature suggests that these biomarkers can improve detection of clinically significant prostate cancer reducing overtreatment and making treatment strategies more cost-effective. Nevertheless, large prospective studies with head-to-head-comparisons of the available biomarkers are necessary to fully assess the potential of incorporating biomarkers in routine clinical practice.
Collapse
Affiliation(s)
- Maria F Becerra
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL
| | - Venkatasai S Atluri
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL
| | - Amit S Bhattu
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL
| | - Sanoj Punnen
- Department of Urology, Miller School of Medicine, University of Miami, Miami, FL; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL.
| |
Collapse
|
46
|
Ferro M, De Cobelli O, Lucarelli G, Porreca A, Busetto GM, Cantiello F, Damiano R, Autorino R, Musi G, Vartolomei MD, Muto M, Terracciano D. Beyond PSA: The Role of Prostate Health Index (phi). Int J Mol Sci 2020; 21:ijms21041184. [PMID: 32053990 PMCID: PMC7072791 DOI: 10.3390/ijms21041184] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/03/2023] Open
Abstract
Background: Widespread use of prostate specific antigen (PSA) in screening procedures allowed early identification of an increasing number of prostate cancers (PCas), mainly including indolent cancer. Availability of different therapeutic strategies which have a very different impact on the patient’s quality of life suggested a strong need for tools able to identify clinically significant cancer at diagnosis. Multi-parametric magnetic resonance showed very good performance in pre-biopsy diagnosis. However, it is an expensive tool and requires an experienced radiologist. In this context, a simple blood-based test is worth investigating. In this context, researchers focused their attention on the development of a laboratory test able to minimize overdiagnosis without losing the identification of aggressive tumors. Results: Recent literature data on PCa biomarkers revealed a clear tendency towards the use of panels of biomarkers or a combination of biomarkers and clinical variables. Phi, the 4Kscore, and Stockholm3 as circulating biomarkers and the Mi-prostate score, Exo DX Prostate, and Select MD-X as urinary biomarker-based tests have been developed. In this scenario, phi is worthy of attention as a noninvasive test significantly associated with aggressive PCa. Conclusions: Literature data showed that phi had good diagnostic performance to identify clinically significant (cs) PCa, suggesting that it could be a useful tool for personalized treatment decision-making. In this review, phi potentialities, limitations, and comparisons with other blood- and urinary-based tests were explored.
Collapse
Affiliation(s)
- Matteo Ferro
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy; (M.F.); (O.D.C.); (G.M.)
| | - Ottavio De Cobelli
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy; (M.F.); (O.D.C.); (G.M.)
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation—Urology, Andrology and Kidney Transplantation Unit, University of Bari, 70124 Bari, Italy;
| | - Angelo Porreca
- Department of Urology, Abano Terme Hospital, 35031 Padua, Italy;
| | | | - Francesco Cantiello
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (R.D.)
| | - Rocco Damiano
- Department of Urology, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.C.); (R.D.)
| | | | - Gennaro Musi
- Division of Urology, European Institute of Oncology, 20141 Milan, Italy; (M.F.); (O.D.C.); (G.M.)
| | - Mihai Dorin Vartolomei
- Department of Urology, Comprehensive Cancer Center, Vienna General Hospital, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria
- Department of Cell and Molecular Biology, University of Medicine, Pharmacy, Sciences and Technology, 540139 Targu Mures, Romania
| | - Matteo Muto
- Radiotherapy Unit, “S. G. Moscati” Hospital, 83100 Avellino, Italy;
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples “Federico II”, 8031 Naples, Italy
- Correspondence: ; Tel.: +39-8174-6361-7
| |
Collapse
|
47
|
Detection of Prostate Cancer Antigen 3 and Prostate Cancer Susceptibility Candidate in Non-DRE Urine Improves Diagnosis of Prostate Cancer in Chinese Population. Prostate Cancer 2020; 2020:3964615. [PMID: 32099679 PMCID: PMC7013283 DOI: 10.1155/2020/3964615] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Although prostate biopsy is the gold standard for the diagnosis of prostate cancer, it also leads to high incidence of negative biopsies and the diagnosis of clinically low-risk prostate cancer and the subsequent overtreatment. It remains an unmet need to discover new biomarkers in order to defer the unnecessary biopsies in clinical practice. In this study, we described a new method, LBXexo score, to measure the urine exosomal PCA3/PRAC expression from non-DRE urine as a noninvasive diagnosis to improve the detection rate in Chinese population with a low serum PSA level. First-voided urine samples were collected to isolate exosomes, and exosomal RNAs of PCA3 and PRAC were measured by quantitative reverse transcription PCR. A significant increase in exoPCA3/PRAC was observed in both any-grade and high-grade prostate cancer groups when compared with the biopsy-negative group. Receiver-operating characteristic curve analyses showed that the LBXexo score significantly improved diagnostic performance in predicting biopsy results, with AUCs of 0.723 (p=0.017) and 0.736 (p=0.038) for any-grade and high-grade (GS ≥ 7) prostate cancer, respectively. For high-grade cancer, LBXexo had the negative and positive predictive values of 100% and 27.59%, respectively, and could potentially avoid unnecessary biopsy. This is the first report in Chinese population that demonstrates the predictive value of the exosomal expression of PCA3 and PRAC derived from non-DRE urine in predicting prostate biopsy outcomes. It could be used in clinical practice to make a better informed biopsy decision and avoid unnecessary biopsies in Chinese population.
Collapse
|
48
|
Gilani S, Shakery M, Shoureshi P, Salimi H, Maleki H, Alavi A, Khodadadi F. How is the association between urinary prostate cancer antigen 3 (PCA3) levels and Gleason scores in patients suspicious of prostate cancer? INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2019; 11:283-288. [PMID: 31993103 PMCID: PMC6971503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Prostate cancer is one of the most common cancers in men which is mostly slow growing and responses well to treatments if early diagnosed. Urinary prostate cancer antigen 3 (PCA3) assay is a new method with effective results in diagnosing prostate cancer. The aim of this present study was evaluate the correlation between urinary PCA3 and Gleason scores in patients who are suspicious of prostate cancer and undergo tissue biopsies. METHODS This is a cross-sectional study which was performed in 2017-2018. The patients included this study complain of prostate problems and were selected from Nour hospital, Ali-Asghar hospital and Ordibehesht clinic in Tehran, Iran. Urinary PCA3 levels were checked in all patients and then they went under prostate biopsies. Amounts of PCA3 and Gleason scores were collected and analyzed using SPSS software. FINDINGS We evaluated a total number of 80 patients. 40 patients had prostate cancer and 40 had no cancer. We indicated that no significant relation was reported between Gleason scores and urinary PCA3 levels. Levels of urinary PCA3 were higher in patients with prostate cancer than in patients with no cancer (P=0.007). DISCUSSION Generally, urinary PCA3 test is indicated as a non-invasive method to improve the specificity of prostate cancer diagnosis and its potential predictive value was studied in numerous clinical researches, but here we found higher PCA3 levels in patients with prostate cancer than in patients with and other prostate problems. We conclude that PCA3 functions as a diagnostic test and its changes in prostate cancer need to be further studied in different populations and races.
Collapse
Affiliation(s)
- Sasan Gilani
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Mina Shakery
- Department of Pathology, Isfahan University of Medical SciencesIsfahan, Iran
| | - Pouria Shoureshi
- Department of Internal Medicine, Orange Park Medical CenterFlorida, USA
| | - Hojjat Salimi
- Department of Urology, School of Medicine, Shahid Beheshti University Medical ScienceTehran, Iran
| | - Hadi Maleki
- Department of Urology, Shahid Sadoughi University of Medical SciencesYazd, Iran
| | - Ali Alavi
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| | - Farinaz Khodadadi
- School of Medicine, Isfahan University of Medical SciencesIsfahan, Iran
| |
Collapse
|
49
|
Constâncio V, Nunes SP, Moreira-Barbosa C, Freitas R, Oliveira J, Pousa I, Oliveira J, Soares M, Dias CG, Dias T, Antunes L, Henrique R, Jerónimo C. Early detection of the major male cancer types in blood-based liquid biopsies using a DNA methylation panel. Clin Epigenetics 2019; 11:175. [PMID: 31791387 PMCID: PMC6889617 DOI: 10.1186/s13148-019-0779-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/13/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Lung (LC), prostate (PCa) and colorectal (CRC) cancers are the most incident in males worldwide. Despite recent advances, optimal population-based cancer screening methods remain an unmet need. Due to its early onset, cancer specificity and accessibility in body fluids, aberrant DNA promoter methylation might be a valuable minimally invasive tool for early cancer detection. Herein, we aimed to develop a minimally invasive methylation-based test for simultaneous early detection of LC, PCa and CRC in males, using liquid biopsies. RESULTS Circulating cell-free DNA was extracted from 102 LC, 121 PCa and 100 CRC patients and 136 asymptomatic donors' plasma samples. Sodium-bisulfite modification and whole-genome amplification was performed. Promoter methylation levels of APCme, FOXA1me, GSTP1me, HOXD3me, RARβ2me, RASSF1Ame, SEPT9me and SOX17me were assessed by multiplex quantitative methylation-specific PCR. SEPT9me and SOX17me were the only biomarkers shared by all three cancer types, although they detected CRC with limited sensitivity. A "PanCancer" panel (FOXA1me, RARβ2me and RASSF1Ame) detected LC and PCa with 64% sensitivity and 70% specificity, complemented with "CancerType" panel (GSTP1me and SOX17me) which discriminated between LC and PCa with 93% specificity, but with modest sensitivity. Moreover, a HOXD3me and RASSF1Ame panel discriminated small cell lung carcinoma from non-small cell lung carcinoma with 75% sensitivity, 88% specificity, 6.5 LR+ and 0.28 LR-. An APCme and RASSF1Ame panel independently predicted disease-specific mortality in LC patients. CONCLUSIONS We concluded that a DNA methylation-based test in liquid biopsies might enable minimally invasive screening of LC and PCa, improving patient compliance and reducing healthcare costs. Moreover, it might assist in LC subtyping and prognostication.
Collapse
Affiliation(s)
- Vera Constâncio
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Master in Oncology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Sandra P Nunes
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Catarina Moreira-Barbosa
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Freitas
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Jorge Oliveira
- Urology Clinic, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Inês Pousa
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Júlio Oliveira
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Marta Soares
- Lung Cancer Clinic and Department of Medical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Carlos Gonçalves Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Teresa Dias
- Digestive Tract Pathology Clinic and Surgical Oncology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Luís Antunes
- Department of Epidemiology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), LAB 3, F Bdg, 1st floor Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar-University of Porto (ICBAS-UP), Rua de Jorge Viterbo Ferreira no. 228, 4050-313, Porto, Portugal.
| |
Collapse
|
50
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|