1
|
Amemiya T, Shibata K, Yamaguchi T. Metabolic Oscillations and Glycolytic Phenotypes of Cancer Cells. Int J Mol Sci 2023; 24:11914. [PMID: 37569294 PMCID: PMC10419005 DOI: 10.3390/ijms241511914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer cells show several metabolic phenotypes depending on the cancer types and the microenvironments in tumor tissues. The glycolytic phenotype is one of the hallmarks of cancer cells and is considered to be one of the crucial features of malignant cancers. Here, we show glycolytic oscillations in the concentrations of metabolites in the glycolytic pathway in two types of cancer cells, HeLa cervical cancer cells and DU145 prostate cancer cells, and in two types of cellular morphologies, spheroids and monolayers. Autofluorescence from nicotinamide adenine dinucleotide (NADH) in cells was used for monitoring the glycolytic oscillations at the single-cell level. The frequencies of NADH oscillations were different among the cellular types and morphologies, indicating that more glycolytic cancer cells tended to exhibit oscillations with higher frequencies than less glycolytic cells. A mathematical model for glycolytic oscillations in cancer cells reproduced the experimental results quantitatively, confirming that the higher frequencies of oscillations were due to the higher activities of glycolytic enzymes. Thus, glycolytic oscillations are expected as a medical indicator to evaluate the malignancy of cancer cells with glycolytic phenotypes.
Collapse
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;
| | - Kenichi Shibata
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan;
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan;
| |
Collapse
|
2
|
Simanurak O, Pekthong D, Somran J, Wangteeraprasert A, Srikummool M, Kaewpaeng N, Parhira S, Srisawang P. Enhanced apoptosis of HCT116 colon cancer cells treated with extracts from Calotropis gigantea stem bark by starvation. Heliyon 2023; 9:e18013. [PMID: 37483695 PMCID: PMC10362240 DOI: 10.1016/j.heliyon.2023.e18013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/25/2023] Open
Abstract
Calotropis gigantea stem bark extract, particularly the dichloromethane fraction (CGDCM), demonstrated the most potent antiproliferative effects on hepatocellular carcinoma HepG2 and colorectal HCT116 cells. The current study focused on enhancing the effectiveness of cancer treatment with CGDCM at concentrations close to the IC50 in HCT116 cells by reducing their nutrient supply. CGDCM (2, 4, and 8 μg/mL) treatment for 24 h under glucose conditions of 4.5 g/L without fetal bovine serum (FBS) supplementation or serum starvation (G+/F-), glucose 0 g/L with 10% FBS or glucose starvation (G-/F+), and glucose 0 g/L with 0% FBS or complete starvation (G-/F-) induced a greater antiproliferative effect in HCT116 cells than therapy in complete medium with glucose 4.5 g/L and 10% FBS (G+/F+). Nonetheless, the anticancer effect of CGDCM at 4 μg/mL under (G-/F-) showed the highest activity compared to other starvation conditions. The three starvation conditions showed a significant reduction in cell viability compared to the control (G+/F+) medium group, while the inhibitory effect on cell viability did not differ significantly among the three starvation conditions. CGDCM at 4 μg/mL in (G-/F-) medium triggered apoptosis by dissipating the mitochondrial membrane potential and arresting cells in the G2/M phase. This investigation demonstrated that a decrease in intracellular ATP and fatty acid levels was associated with enhanced apoptosis by treatment with CGDCM at 4 μg/mL under (G-/F-) conditions. In addition, under (G-/F-), CGDCM at 4 μg/mL increased levels of reactive oxygen species (ROS) and was suggested to primarily trigger apoptosis in HCT116 cells. Thus, C. gigantea extracts may be useful for the future development of alternative, effective cancer treatment regimens.
Collapse
Affiliation(s)
- Orakot Simanurak
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Dumrongsak Pekthong
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Julintorn Somran
- Department of Pathology, Faculty of Medicine, Naresuan University, Phitsanulok, 65000, Thailand
| | | | - Metawee Srikummool
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Naphat Kaewpaeng
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Supawadee Parhira
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Environmental Health and Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000, Thailand
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Piyarat Srisawang
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
3
|
Han H, Feng X, Guo Y, Cheng M, Cui Z, Guo S, Zhou W. Identification of potential target genes of breast cancer in response to Chidamide treatment. Front Mol Biosci 2022; 9:999582. [PMID: 36425653 PMCID: PMC9679413 DOI: 10.3389/fmolb.2022.999582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 08/30/2023] Open
Abstract
Chidamide, a new chemically structured HDACi-like drug, has been shown to inhibit breast cancer, but its specific mechanism has not been fully elucidated. In this paper, we selected ER-positive breast cancer MCF-7 cells and used RNA-seq technique to analyze the gene expression differences of Chidamide-treated breast cancer cells to identify the drug targets of Chidamide's anti-breast cancer effect and to lay the foundation for the development of new drugs for breast cancer treatment. The results showed that the MCF-7 CHID group expressed 320 up-regulated genes and 222 down-regulated genes compared to the control group; Gene Ontology functional enrichment analysis showed that most genes were enriched to biological processes. Subsequently, 10 hub genes for Chidamide treatment of breast cancer were identified based on high scores using CytoHubba, a plug-in for Cytoscape: TP53, JUN, CAD, ACLY, IL-6, peroxisome proliferator-activated receptor gamma, THBS1, CXCL8, IMPDH2, and YARS. Finally, a combination of the Gene Expression Profiling Interactive Analysis database and Kaplan Meier mapper to compare the expression and survival analysis of these 10 hub genes, TP53, ACLY, PPARG, and JUN were found to be potential candidate genes significantly associated with Chidamide for breast cancer treatment. Among them, TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. Therefore, we identified four genes central to the treatment of breast cancer with Chidamide by bioinformatics analysis, and clarified that TP53 may be a potential target gene for Chidamide to overcome multi-drug resistance in breast cancer. This study lays a solid experimental and theoretical foundation for the treatment of breast cancer at the molecular level with Chidamide and for the combination of Chidamide.
Collapse
Affiliation(s)
- Han Han
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Xue Feng
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Yarui Guo
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| | - Meijia Cheng
- Department of Biomedical Statistics, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Science, Fukui, Japan
| | - Shanchun Guo
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, United States
| | - Weiqiang Zhou
- Department of Pathogen Biology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
4
|
Amemiya T, Shibata K, Takahashi J, Watanabe M, Nakata S, Nakamura K, Yamaguchi T. Glycolytic oscillations in HeLa cervical cancer cell spheroids. FEBS J 2022; 289:5551-5570. [DOI: 10.1111/febs.16454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 02/07/2022] [Accepted: 04/07/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | - Kenichi Shibata
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | - Junpei Takahashi
- Graduate School of Environment and Information Sciences Yokohama National University (YNU) Japan
| | | | - Satoshi Nakata
- Graduate School of Integrated Sciences for Life Hiroshima University Higashi‐Hiroshima Japan
| | - Kazuyuki Nakamura
- School of Interdisciplinary Mathematical Sciences Meiji University Nakano‐ku Japan
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), Meiji University Nakano‐ku Japan
| |
Collapse
|
5
|
Wu S, Zhang C, Xie J, Li S, Huang S. A Five-MicroRNA Signature Predicts the Prognosis in Nasopharyngeal Carcinoma. Front Oncol 2021; 11:723362. [PMID: 34568051 PMCID: PMC8459682 DOI: 10.3389/fonc.2021.723362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Background There is no effective prognostic signature that could predict the prognosis of nasopharyngeal carcinoma (NPC). Methods We constructed a prognostic signature based on five microRNAs using random forest and Least Absolute Shrinkage And Selection Operator (LASSO) algorithm on the GSE32960 cohort (N = 213). We verified its prognostic value using three independent external validation cohorts (GSE36682, N = 62; GSE70970, N = 246; and TCGA-HNSC, N = 523). Through principal component analysis, receiver operating characteristic curve analysis, and C-index calculation, we confirmed the predictive accuracy of this prognostic signature. Results We calculated the risk score based on the LASSO algorithm and divided the patients into high- and low-risk groups according to the calculated optimal cutoff value. The patients in the high-risk group tended to have a worse prognosis outcome and chemotherapy response. The time-dependent receiver operating characteristic curve showed that the 1-year overall survival rate of the five-microRNA signature had an area under the curve of more than 0.83. A functional annotation analysis of the five-microRNA signature showed that the patients in the high-risk group were usually accompanied by activation of DNA repair and MYC-target pathways, while the patients in the low-risk group had higher immune-related pathway signals. Conclusions We constructed a five-microRNA prognostic signature, which could accurately predict the prognosis of nasopharyngeal carcinoma, and constructed a nomogram that could conveniently predict the overall survival of patients.
Collapse
Affiliation(s)
- Shixiong Wu
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cen Zhang
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Xie
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuang Li
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuo Huang
- Department of Otolaryngology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Asymmetric Dimethylarginine (ADMA) in Pediatric Renal Diseases: From Pathophysiological Phenomenon to Clinical Biomarker and Beyond. CHILDREN-BASEL 2021; 8:children8100837. [PMID: 34682102 PMCID: PMC8535118 DOI: 10.3390/children8100837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) synthase inhibitor, inhibits NO synthesis and contributes to the pathogenesis of many human diseases. In adults, ADMA has been identified as a biomarker for chronic kidney disease (CKD) progression and cardiovascular risk. However, little attention is given to translating the adult experience into the pediatric clinical setting. In the current review, we summarize circulating and urinary ADMA reported thus far in clinical studies relating to kidney disease in children and adolescents, as well as systematize the knowledge on pathophysiological role of ADMA in the kidneys. The aim of this review is also to show the various analytical methods for measuring ADMA and the issues tht need to be addressed before transforming to clinical practice in pediatric medicine. The last task is to suggest that ADMA may not only be suitable as a diagnostic or prognostic biomarker, but also a promising therapeutic strategy to treat pediatric kidney disease in the future.
Collapse
|
7
|
Integrated Metabolomics and Transcriptomics Using an Optimised Dual Extraction Process to Study Human Brain Cancer Cells and Tissues. Metabolites 2021; 11:metabo11040240. [PMID: 33919944 PMCID: PMC8070957 DOI: 10.3390/metabo11040240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/12/2021] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
The integration of untargeted metabolomics and transcriptomics from the same population of cells or tissue enhances the confidence in the identified metabolic pathways and understanding of the enzyme–metabolite relationship. Here, we optimised a simultaneous extraction method of metabolites/lipids and RNA from ependymoma cells (BXD-1425). Relative to established RNA (mirVana kit) or metabolite (sequential solvent addition and shaking) single extraction methods, four dual-extraction techniques were evaluated and compared (methanol:water:chloroform ratios): cryomill/mirVana (1:1:2); cryomill-wash/Econospin (5:1:2); rotation/phenol-chloroform (9:10:1); Sequential/mirVana (1:1:3). All methods extracted the same metabolites, yet rotation/phenol-chloroform did not extract lipids. Cryomill/mirVana and sequential/mirVana recovered the highest amounts of RNA, at 70 and 68% of that recovered with mirVana kit alone. sequential/mirVana, involving RNA extraction from the interphase of our established sequential solvent addition and shaking metabolomics-lipidomics extraction method, was the most efficient approach overall. Sequential/mirVana was applied to study a) the biological effect caused by acute serum starvation in BXD-1425 cells and b) primary ependymoma tumour tissue. We found (a) 64 differentially abundant metabolites and 28 differentially expressed metabolic genes, discovering four gene-metabolite interactions, and (b) all metabolites and 62% lipids were above the limit of detection, and RNA yield was sufficient for transcriptomics, in just 10 mg of tissue.
Collapse
|
8
|
A data-driven computational model enables integrative and mechanistic characterization of dynamic macrophage polarization. iScience 2021; 24:102112. [PMID: 33659877 PMCID: PMC7895754 DOI: 10.1016/j.isci.2021.102112] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 01/09/2023] Open
Abstract
Macrophages are highly plastic immune cells that dynamically integrate microenvironmental signals to shape their own functional phenotypes, a process known as polarization. Here we develop a large-scale mechanistic computational model that for the first time enables a systems-level characterization, from quantitative, temporal, dose-dependent, and single-cell perspectives, of macrophage polarization driven by a complex multi-pathway signaling network. The model was extensively calibrated and validated against literature and focused on in-house experimental data. Using the model, we generated dynamic phenotype maps in response to numerous combinations of polarizing signals; we also probed into an in silico population of model-based macrophages to examine the impact of polarization continuum at the single-cell level. Additionally, we analyzed the model under an in vitro condition of peripheral arterial disease to evaluate strategies that can potentially induce therapeutic macrophage repolarization. Our model is a key step toward the future development of a network-centric, comprehensive "virtual macrophage" simulation platform.
Collapse
|
9
|
Trisolini L, Laera L, Favia M, Muscella A, Castegna A, Pesce V, Guerra L, De Grassi A, Volpicella M, Pierri CL. Differential Expression of ADP/ATP Carriers as a Biomarker of Metabolic Remodeling and Survival in Kidney Cancers. Biomolecules 2020; 11:38. [PMID: 33396658 PMCID: PMC7824283 DOI: 10.3390/biom11010038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
ADP/ATP carriers (AACs) are mitochondrial transport proteins playing a strategic role in maintaining the respiratory chain activity, fueling the cell with ATP, and also regulating mitochondrial apoptosis. To understand if AACs might represent a new molecular target for cancer treatment, we evaluated AAC expression levels in cancer/normal tissue pairs available on the Tissue Cancer Genome Atlas database (TCGA), observing that AACs are dysregulated in most of the available samples. It was observed that at least two AACs showed a significant differential expression in all the available kidney cancer/normal tissue pairs. Thus, we investigated AAC expression in the corresponding kidney non-cancer (HK2)/cancer (RCC-Shaw and CaKi-1) cell lines, grown in complete medium or serum starvation, for investigating how metabolic alteration induced by different growth conditions might influence AAC expression and resistance to mitochondrial apoptosis initiators, such as "staurosporine" or the AAC highly selective inhibitor "carboxyatractyloside". Our analyses showed that AAC2 and AAC3 transcripts are more expressed than AAC1 in all the investigated kidney cell lines grown in complete medium, whereas serum starvation causes an increase of at least two AAC transcripts in kidney cancer cell lines compared to non-cancer cells. However, the total AAC protein content is decreased in the investigated cancer cell lines, above all in the serum-free medium. The observed decrease in AAC protein content might be responsible for the decrease of OXPHOS activity and for the observed lowered sensitivity to mitochondrial apoptosis induced by staurosporine or carboxyatractyloside. Notably, the cumulative probability of the survival of kidney cancer patients seriously decreases with the decrease of AAC1 expression in KIRC and KIRP tissues making AAC1 a possible new biomarker of metabolic remodeling and survival in kidney cancers.
Collapse
Affiliation(s)
- Lucia Trisolini
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Luna Laera
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Maria Favia
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Antonella Muscella
- Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Università del Salento, 73100 Lecce, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Vito Pesce
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
- BROWSer S.r.l. c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70125 Bari, Italy; (L.T.); (L.L.); (M.F.); (A.C.); (V.P.); (L.G.)
- BROWSer S.r.l. c/o, Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
10
|
Bayraktutan Z, Kiziltunc A, Bakan E, Alp HH. Determination of Endothelial Nitric Oxide Synthase Gene Polymorphism and Plasma Asymmetric Dimethyl Arginine Concentrations in Patients with Lung Cancer. Eurasian J Med 2020; 52:185-190. [PMID: 32612429 DOI: 10.5152/eurasianjmed.2020.19220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
Objective Genetic factors can contribute to both the occurrence and development of lung cancer. This study aimed to investigate endothelial nitric oxide synthase (eNOS) G894T and T-786C polymorphisms and plasma asymmetric dimethylarginine (ADMA) levels of lung cancer patients in comparison with healthy subjects. Materials and Methods A total of 200 subjects, 100 patients with lung cancer and 100 healthy volunteers were included in this study. To determine eNOS gene polymorphisms, we collected and analyzed blood samples with polymerase chain reaction (PCR). Plasma ADMA levels were evaluated by high-performance liquid chromatography (HPLC). Results The difference in gene polymorphisms between lung cancer patients and healthy controls were insignificant. However, lung cancer patients had statistically significantly higher plasma ADMA levels than healthy controls. The patients and control groups with CC polymorphisms and TT polymorphisms on eNOS T-786C and G894T gene regions had higher plasma ADMA levels. The CC polymorphisms and plasma ADMA levels were higher in patients with small-cell lung cancer compared to those in patients with non-small-cell lung cancer. Conclusion Although eNOS gene polymorphisms had no significant difference between lung cancer patients and healthy controls, plasma ADMA levels were higher in lung cancer patients compared to healthy controls. Our study suggests that CC genotypes and elevated plasma ADMA levels might be associated with small-cell lung cancer.
Collapse
Affiliation(s)
- Zafer Bayraktutan
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Ahmet Kiziltunc
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Ebubekir Bakan
- Department of Biochemistry, Ataturk University School of Medicine, Erzurum, Turkey
| | - Hamit Hakan Alp
- Department of Biochemistry, Yuzuncu Yil University School of Medicine, Van, Turkey
| |
Collapse
|
11
|
Serum starvation enhances nonsense mutation readthrough. J Mol Med (Berl) 2019; 97:1695-1710. [PMID: 31786671 DOI: 10.1007/s00109-019-01847-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/03/2019] [Accepted: 10/23/2019] [Indexed: 12/13/2022]
Abstract
Of all genetic mutations causing human disease, premature termination codons (PTCs) that result from splicing defaults, insertions, deletions, and point mutations comprise around 30%. From these mutations, around 11% are a substitution of a single nucleotide that change a codon into a premature termination codon. These types of mutations affect several million patients suffering from a large variety of genetic diseases, ranging from relatively common inheritable cancer syndromes to muscular dystrophy or very rare neuro-metabolic disorders. Over the past three decades, genetic and biochemical studies have revealed that certain antibiotics and other synthetic molecules can act as nonsense mutation readthrough-inducing drugs. These compounds bind a specific site on the rRNA and, as a result, the stop codon is misread and an amino acid (that may or may not differ from the wild-type amino acid) is inserted and translation occurs through the premature termination codon. This strategy has great therapeutic potential. Unfortunately, many readthrough agents are toxic and cannot be administered over the extended period usually required for the chronic treatment of genetic diseases. Furthermore, readthrough compounds only restore protein production in very few disease models and the readthrough levels are usually low, typically achieving no more than 5% of normal protein expression. Efforts have been made over the years to overcome these obstacles so that readthrough treatment can become clinically relevant. Here, we present the creation of a stable cell line system that constitutively expresses our dual-reporter vector harboring two cancer initiating nonsense mutations in the adenomatous polyposis coli (APC) gene. This system will be used as an improved screening method for isolation of new nonsense mutation readthrough inducers. Using these cell lines as well as colorectal cancer cell lines, we demonstrate that serum starvation enhances drug-induced readthrough activity, an observation which may prove beneficial in a therapeutic scenario that requires higher levels of the restored protein. KEY MESSAGES: Nonsense mutations affects millions of people worldwide. We have developed a nonsense mutation read-through screening tool. We find that serum starvation enhances antibiotic-induced nonsense mutation read-through. Our results suggest new strategies for enhancing nonsense mutation read-through that may have positive effects on a large number of patients.
Collapse
|
12
|
Kwong SC, Jamil AHA, Rhodes A, Taib NA, Chung I. Metabolic role of fatty acid binding protein 7 in mediating triple-negative breast cancer cell death via PPAR-α signaling. J Lipid Res 2019; 60:1807-1817. [PMID: 31484694 DOI: 10.1194/jlr.m092379] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, partly due to the lack of targeted therapy available. Cancer cells heavily reprogram their metabolism and acquire metabolic plasticity to satisfy the high-energy demand due to uncontrolled proliferation. Accumulating evidence shows that deregulated lipid metabolism affects cancer cell survival, and therefore we sought to understand the function of fatty acid binding protein 7 (FABP7), which is expressed predominantly in TNBC tissues. As FABP7 was not detected in the TNBC cell lines tested, Hs578T and MDA-MB-231 cells were transduced with lentiviral particles containing either FABP7 open reading frame or red fluorescent protein. During serum starvation, when lipids were significantly reduced, FABP7 decreased the viability of Hs578T, but not of MDA-MB-231, cells. FABP7-overexpressing Hs578T (Hs-FABP7) cells failed to efficiently utilize other available bioenergetic substrates such as glucose to sustain ATP production, which led to S/G2 phase arrest and cell death. We further showed that this metabolic phenotype was mediated by PPAR-α signaling, despite the lack of fatty acids in culture media, as Hs-FABP7 cells attempted to survive. This study provides imperative evidence of metabolic vulnerabilities driven by FABP7 via PPAR-α signaling.
Collapse
Affiliation(s)
- Soke Chee Kwong
- Departments of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Anthony Rhodes
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia.,Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nur Aishah Taib
- Surgery Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.,University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ivy Chung
- Departments of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia .,University of Malaya Cancer Research Institute, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Virumbrales-Muñoz M, Ayuso JM, Lacueva A, Randelovic T, Livingston MK, Beebe DJ, Oliván S, Pereboom D, Doblare M, Fernández L, Ochoa I. Enabling cell recovery from 3D cell culture microfluidic devices for tumour microenvironment biomarker profiling. Sci Rep 2019; 9:6199. [PMID: 30996291 PMCID: PMC6470149 DOI: 10.1038/s41598-019-42529-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 04/03/2019] [Indexed: 01/20/2023] Open
Abstract
The tumour microenvironment (TME) has recently drawn much attention due to its profound impact on tumour development, drug resistance and patient outcome. There is an increasing interest in new therapies that target the TME. Nonetheless, most established in vitro models fail to include essential cues of the TME. Microfluidics can be used to reproduce the TME in vitro and hence provide valuable insight on tumour evolution and drug sensitivity. However, microfluidics remains far from well-established mainstream molecular and cell biology methods. Therefore, we have developed a quick and straightforward collagenase-based enzymatic method to recover cells embedded in a 3D hydrogel in a microfluidic device with no impact on cell viability. We demonstrate the validity of this method on two different cell lines in a TME microfluidic model. Cells were successfully retrieved with high viability, and we characterised the different cell death mechanisms via AMNIS image cytometry in our model.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Jose M Ayuso
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States.,Medical Engineering, Morgridge Institute for Research, 330 N Orchard street, Madison, WI, 53715, USA
| | - Alodia Lacueva
- Group of Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN), Madrid, Spain.,Aragon Institute for Health Research (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Teodora Randelovic
- Group of Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN), Madrid, Spain.,Aragon Institute for Health Research (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Megan K Livingston
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, USA
| | - David J Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States.,Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Sara Oliván
- Group of Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN), Madrid, Spain.,Aragon Institute for Health Research (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Desirée Pereboom
- Servicio General de Apoyo a la Investigación de Citómica, University of Zaragoza, Zaragoza, Spain
| | - Manuel Doblare
- Group of Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN), Madrid, Spain.,Aragon Institute for Health Research (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Luis Fernández
- Group of Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN), Madrid, Spain.,Aragon Institute for Health Research (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain
| | - Ignacio Ochoa
- Group of Applied Mechanics and Bioengineering (AMB), Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain. .,Centro Investigacion Biomedica en Red. Bioingenieria, biomateriales y nanomedicina (CIBER-BBN), Madrid, Spain. .,Aragon Institute for Health Research (IIS Aragón), Instituto de Salud Carlos III, Zaragoza, Spain.
| |
Collapse
|
14
|
Amemiya T, Shibata K, Du Y, Nakata S, Yamaguchi T. Modeling studies of heterogeneities in glycolytic oscillations in HeLa cervical cancer cells. CHAOS (WOODBURY, N.Y.) 2019; 29:033132. [PMID: 30927859 DOI: 10.1063/1.5087216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/08/2019] [Indexed: 06/09/2023]
Abstract
Previous experiments demonstrated that a population of HeLa cells starved of glucose or both glucose and serum exhibited a strong heterogeneity in the glycolytic oscillations in terms of the number of oscillatory cells, periods of oscillations, and duration of oscillations. Here, we report numerical simulations of this heterogeneous oscillatory behavior in HeLa cells by using a newly developed mathematical model. It is simple enough that we can apply a mathematical analysis, but capture the core of the glycolytic pathway and the activity of the glucose transporter (GLUT). Lognormal distributions of the values of the four rate constants in the model were obtained from the experimental distributions in the periods of oscillations. Thus, the heterogeneity in the periods of oscillations can be attributed to the difference in the rate constants of the enzymatic reactions. The activity of GLUT is found to determine whether the HeLa cells were oscillatory or non-oscillatory under the same experimental conditions. Simulation with the log-normal distribution of the maximum uptake velocity of glucose and the four randomized rate constants based on the log-normal distributions successfully reproduced the time-dependent number of oscillatory cells (oscillatory ratios) under the two starving conditions. The difference in the initial values of the metabolites has little effect on the simulated results.
Collapse
Affiliation(s)
- Takashi Amemiya
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Kenichi Shibata
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Yichen Du
- Graduate School of Environment and Information Sciences, Yokohama National University (YNU), 79-7 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Satoshi Nakata
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashihiroshima 739-8526, Japan
| | - Tomohiko Yamaguchi
- Meiji Institute for Advanced Study of Mathematical Sciences (MIMS), 4-21-1 Nakano, Nakano-ku, Tokyo 164-8525, Japan
| |
Collapse
|
15
|
Agathokleous E, Kitao M, Calabrese EJ. Environmental hormesis and its fundamental biological basis: Rewriting the history of toxicology. ENVIRONMENTAL RESEARCH 2018; 165:274-278. [PMID: 29734028 DOI: 10.1016/j.envres.2018.04.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 04/30/2018] [Indexed: 05/09/2023]
Abstract
It has long been debated whether a little stress may be "good" for you. Extensive evidence has now sufficiently accumulated demonstrating that low doses of a vast range of chemical and physical agents induce protective/beneficial effects while the opposite occurs at higher doses, a phenomenon known as hormesis. Low doses of environmental agents have recently induced autophagy, a critical adaptive response that protects essentially all cell types, as well as being transgenerational via epigenetic mechanisms. These collective findings highlight a generalized and substantial ongoing dose-response transformation with significant implications for disease biology and clinical applications, challenging the history and practice of toxicology and pharmacology along with an appeal to stake holders to reexamine the process of risk assessment, with the goal of optimizing public health rather than simply avoiding harm.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan; Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Sapporo, Hokkaido 060-8589, Japan.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
16
|
Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest. PLoS One 2017; 12:e0181081. [PMID: 28746345 PMCID: PMC5528889 DOI: 10.1371/journal.pone.0181081] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC) cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2), xeroderma pigmentosum complementation group C (XPC), stress inducible protein (SIP) and p21) compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm) and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.
Collapse
|
17
|
Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel) 2017; 9:toxins9030092. [PMID: 28272322 PMCID: PMC5371847 DOI: 10.3390/toxins9030092] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/04/2017] [Indexed: 02/07/2023] Open
Abstract
Asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) are toxic, non-proteinogenic amino acids formed by post-translational modification and are uremic toxins that inhibit nitric oxide (NO) production and play multifunctional roles in many human diseases. Both ADMA and SDMA have emerged as strong predictors of cardiovascular events and death in a range of illnesses. Major progress has been made in research on ADMA-lowering therapies in animal studies; however, further studies are required to fill the translational gap between animal models and clinical trials in order to treat human diseases related to elevated ADMA/SDMA levels. Here, we review the reported impacts of ADMA and SDMA on human health and disease, focusing on the synthesis and metabolism of ADMA and SDMA; the pathophysiological roles of these dimethylarginines; clinical conditions and animal models associated with elevated ADMA and SDMA levels; and potential therapies against ADMA and SDMA. There is currently no specific pharmacological therapy for lowering the levels and counteracting the deleterious effects of ADMA and SDMA. A better understanding of the mechanisms underlying the impact of ADMA and SDMA on a wide range of human diseases is essential to the development of specific therapies against diseases related to ADMA and SDMA.
Collapse
|