1
|
Radford EJ, Whitworth DE. The genetic basis of predation by myxobacteria. Adv Microb Physiol 2024; 85:1-55. [PMID: 39059819 DOI: 10.1016/bs.ampbs.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myxobacteria (phylum Myxococcota) are abundant and virtually ubiquitous microbial predators. Facultatively multicellular organisms, they are able to form multicellular fruiting bodies and swarm across surfaces, cooperatively hunting for prey. Myxobacterial communities are able to kill a wide range of prey microbes, assimilating their biomass to fuel population growth. Their mechanism of predation is exobiotic - hydrolytic enzymes and toxic metabolites are secreted into the extracellular environment, killing and digesting prey cells from without. However, recent observations of single-cell predation and contact-dependent prey killing challenge the dogma of myxobacterial predation being obligately cooperative. Regardless of their predatory mechanisms, myxobacteria have a broad prey range, which includes Gram-negative bacteria, Gram-positive bacteria and fungi. Pangenome analyses have shown that their extremely large genomes are mainly composed of accessory genes, which are not shared by all members of their species. It seems that the diversity of accessory genes in different strains provides the breadth of activity required to prey upon such a smorgasbord of microbes, and also explains the considerable strain-to-strain variation in predatory efficiency against specific prey. After providing a short introduction to general features of myxobacterial biology which are relevant to predation, this review brings together a rapidly growing body of work into the molecular mechanisms and genetic basis of predation, presenting a summary of current knowledge, highlighting trends in research and suggesting strategies by which we can potentially exploit myxobacterial predation in the future.
Collapse
Affiliation(s)
- Emily J Radford
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - David E Whitworth
- Department of Life Sciences, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom.
| |
Collapse
|
2
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Rombouts S, Mas A, Le Gall A, Fiche JB, Mignot T, Nollmann M. Multi-scale dynamic imaging reveals that cooperative motility behaviors promote efficient predation in bacteria. Nat Commun 2023; 14:5588. [PMID: 37696789 PMCID: PMC10495355 DOI: 10.1038/s41467-023-41193-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Many species, such as fish schools or bird flocks, rely on collective motion to forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and moves collectively to prey and feed on other bacterial species. These activities require two distinct motility machines enabling adventurous (A) and social (S) gliding, however when and how these mechanisms are used has remained elusive. Here, we address this long-standing question by applying multiscale semantic cell tracking during predation. We show that: (1) foragers and swarms can comprise A- and S-motile cells, with single cells exchanging frequently between these groups; (2) A-motility is critical to ensure the directional movement of both foragers and swarms; (3) the combined action of A- and S-motile cells within swarms leads to increased predation efficiencies. These results challenge the notion that A- and S-motilities are exclusive to foragers and swarms, and show that these machines act synergistically to enhance predation efficiency.
Collapse
Affiliation(s)
- Sara Rombouts
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Anna Mas
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Antoine Le Gall
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| | - Jean-Bernard Fiche
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Marseille, France
| | - Marcelo Nollmann
- Centre de Biologie Structurale, CNRS UMR 5048, INSERM U1054, Université de Montpellier, 60 rue de Navacelles, 34090, Montpellier, France.
| |
Collapse
|
4
|
Bautista S, Schmidt V, Guiseppi A, Mauriello EMF, Attia B, Elantak L, Mignot T, Mercier R. FrzS acts as a polar beacon to recruit SgmX, a central activator of type IV pili during Myxococcus xanthus motility. EMBO J 2022; 42:e111661. [PMID: 36345779 PMCID: PMC9811614 DOI: 10.15252/embj.2022111661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
In rod-shaped bacteria, type IV pili (Tfp) promote twitching motility by assembling and retracting at the cell pole. In Myxococcus xanthus, a bacterium that moves in highly coordinated cell groups, Tfp are activated by a polar activator protein, SgmX. However, while it is known that the Ras-like protein MglA is required for unipolar targeting, how SgmX accesses the cell pole to activate Tfp is unknown. Here, we demonstrate that a polar beacon protein, FrzS, recruits SgmX at the cell pole. We identified two main functional domains, including a Tfp-activating domain and a polar-binding domain. Within the latter, we show that the direct binding of MglA-GTP unveils a hidden motif that binds directly to the FrzS N-terminal response regulator (CheY). Structural analyses reveal that this binding occurs through a novel binding interface for response regulator domains. In conclusion, the findings unveil the protein interaction network leading to the spatial activation of Tfp at the cell pole. This tripartite system is at the root of complex collective behaviours in this predatory bacterium.
Collapse
Affiliation(s)
- Sarah Bautista
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Victoria Schmidt
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Annick Guiseppi
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Emillia M F Mauriello
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Bouchra Attia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Latifa Elantak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7255)MarseilleFrance
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| | - Romain Mercier
- Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la MéditerranéeAix‐Marseille Université‐CNRS (UMR7283)MarseilleFrance
| |
Collapse
|
5
|
Smiley P, Levin M. Competition for finite resources as coordination mechanism for morphogenesis: An evolutionary algorithm study of digital embryogeny. Biosystems 2022; 221:104762. [PMID: 36064151 DOI: 10.1016/j.biosystems.2022.104762] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/17/2022] [Indexed: 01/02/2023]
Abstract
The standard view of embryogenesis is one of cooperation driven by the cells' shared genetics and evolutionary interests. However, numerous examples from developmental biology and agriculture reveal a surprising amount of competition among body cells, tissues, and organs for both metabolic and informational resources. To explain the existence of such competition we had hypothesized that evolution uses limiting "reservoirs" of resource molecules as a communication medium - a global scratchpad, to enable tissues across the body to coordinate growth. Here, we test this hypothesis via an evolutionary simulation of embryogeny in silico. Genomes encode state transition rules for cells, such as proliferation, differentiation, and resource use, enabling virtual embryos to develop a specific large-scale morphology. An evolutionary algorithm operates over the genomes, with fitness defined as a function of specific morphological requirements for the final embryo shape. We found that not only does such an algorithm rapidly discover rules for cellular behavior that reliably make embryos with specific anatomical properties, but that it discovers the strategy of using finite resources to coordinate development. Given the option of using finite or infinite reservoirs (which determine cells' ability to carry out specific actions), evolution preferentially uses finite reservoirs, which results in higher fitness and increased consistency (without needing direct selection for morphological invariance). We report aspects of anatomical, physiological/transcriptional, and genomic analysis of evolved virtual embryos that help understand how evolution can use competition among genetically identical subunits within a multicellular body to coordinate reliable, complex morphogenesis. Our results suggest that under some conditions, composite multi-scale systems will promote conflict and artificial scarcity for their components.
Collapse
Affiliation(s)
- Peter Smiley
- Department of Computer Science, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University and Department of Biology, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA.
| |
Collapse
|
6
|
Vidiella B, Solé R. Ecological firewalls for synthetic biology. iScience 2022; 25:104658. [PMID: 35832885 PMCID: PMC9272386 DOI: 10.1016/j.isci.2022.104658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/30/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
It has been recently suggested that engineered microbial strains could be used to protect ecosystems from undesirable tipping points and biodiversity loss. A major concern in this context is the potential unintended consequences, which are usually addressed in terms of designed genetic constructs aimed at controlling overproliferation. Here we present and discuss an alternative view grounded in the nonlinear attractor dynamics of some ecological network motifs. These ecological firewalls are designed to perform novel functionalities (such as plastic removal) while containment is achieved within the resident community. That could help provide a self-regulating biocontainment. In this way, engineered organisms have a limited spread while-when required-preventing their extinction. The basic synthetic designs and their dynamical behavior are presented, each one inspired in a given ecological class of interaction. Their possible applications are discussed and the broader connection with invasion ecology outlined.
Collapse
Affiliation(s)
- Blai Vidiella
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Centre de Recerca Matemàtica, Campus de Bellaterra, Edifici C, 08193 Cerdanyola del Valles, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Universitat Pompeu Fabra, Dr Aiguader 88, 08003 Barcelona, Spain
- Institut de Biologia Evolutiva, CSIC-UPF, Pg Maritim de la Barceloneta 37, 08003 Barcelona, Spain
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
7
|
Multi-scale Chimerism: An experimental window on the algorithms of anatomical control. Cells Dev 2022; 169:203764. [PMID: 34974205 DOI: 10.1016/j.cdev.2021.203764] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 12/22/2022]
Abstract
Despite the immense progress in genetics and cell biology, major knowledge gaps remain with respect to prediction and control of the global morphologies that will result from the cooperation of cells with known genomes. The understanding of cooperativity, competition, and synergy across diverse biological scales has been obscured by a focus on standard model systems that exhibit invariant species-specific anatomies. Morphogenesis of chimeric biological material is an especially instructive window on the control of biological growth and form because it emphasizes the need for prediction without reliance on familiar, standard outcomes. Here, we review an important and fascinating body of data from experiments utilizing DNA transfer, cell transplantation, organ grafting, and parabiosis. We suggest that these are all instances (at different levels of organization) of one general phenomenon: chimerism. Multi-scale chimeras are a powerful conceptual and experimental tool with which to probe the mapping between properties of components and large-scale anatomy: the laws of morphogenesis. The existing data and future advances in this field will impact not only the understanding of cooperation and the evolution of body forms, but also the design of strategies for system-level outcomes in regenerative medicine and swarm robotics.
Collapse
|
8
|
Abstract
A wide range of biological systems, from microbial swarms to bird flocks, display emergent behaviors driven by coordinated movement of individuals. To this end, individual organisms interact by recognizing their kin and adjusting their motility based on others around them. However, even in the best-studied systems, the mechanistic basis of the interplay between kin recognition and motility coordination is not understood. Here, using a combination of experiments and mathematical modeling, we uncover the mechanism of an emergent social behavior in Myxococcus xanthus. By overexpressing the cell surface adhesins TraA and TraB, which are involved in kin recognition, large numbers of cells adhere to one another and form organized macroscopic circular aggregates that spin clockwise or counterclockwise. Mechanistically, TraAB adhesion results in sustained cell-cell contacts that trigger cells to suppress cell reversals, and circular aggregates form as the result of cells’ ability to follow their own cellular slime trails. Furthermore, our in silico simulations demonstrate a remarkable ability to predict self-organization patterns when phenotypically distinct strains are mixed. For example, defying naive expectations, both models and experiments found that strains engineered to overexpress different and incompatible TraAB adhesins nevertheless form mixed circular aggregates. Therefore, this work provides key mechanistic insights into M. xanthus social interactions and demonstrates how local cell contacts induce emergent collective behaviors by millions of cells. IMPORTANCE In many species, large populations exhibit emergent behaviors whereby all related individuals move in unison. For example, fish in schools can all dart in one direction simultaneously to avoid a predator. Currently, it is impossible to explain how such animals recognize kin through brain cognition and elicit such behaviors at a molecular level. However, microbes also recognize kin and exhibit emergent collective behaviors that are experimentally tractable. Here, using a model social bacterium, we engineer dispersed individuals to organize into synchronized collectives that create emergent patterns. With experimental and mathematical approaches, we explain how this occurs at both molecular and population levels. The results demonstrate how the combination of local physical interactions triggers intracellular signaling, which in turn leads to emergent behaviors on a population scale.
Collapse
|
9
|
Saïdi F, Jolivet NY, Lemon DJ, Nakamura A, Belgrave AM, Garza AG, Veyrier FJ, Islam ST. Bacterial glycocalyx integrity drives multicellular swarm biofilm dynamism. Mol Microbiol 2021; 116:1151-1172. [PMID: 34455651 DOI: 10.1111/mmi.14803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022]
Abstract
Exopolysaccharide (EPS) layers on the bacterial cell surface are key determinants of biofilm establishment and maintenance, leading to the formation of higher-order 3D structures that confer numerous survival benefits to a cell community. In addition to a specific cell-associated EPS glycocalyx, we recently revealed that the social δ-proteobacterium Myxococcus xanthus secretes a novel biosurfactant polysaccharide (BPS) to the extracellular milieu. Together, secretion of the two polymers (EPS and BPS) is required for type IV pilus (T4P)-dependent swarm expansion via spatio-specific biofilm expression profiles. Thus the synergy between EPS and BPS secretion somehow modulates the multicellular lifecycle of M. xanthus. Herein, we demonstrate that BPS secretion functionally alters the EPS glycocalyx via destabilization of the latter, fundamentally changing the characteristics of the cell surface. This impacts motility behaviors at the single-cell level and the aggregative capacity of cells in groups via cell-surface EPS fibril formation as well as T4P production, stability, and positioning. These changes modulate the structure of swarm biofilms via cell layering, likely contributing to the formation of internal swarm polysaccharide architecture. Together, these data reveal the manner by which the combined secretion of two distinct polymers induces single-cell changes that modulate swarm biofilm communities.
Collapse
Affiliation(s)
- Fares Saïdi
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - Nicolas Y Jolivet
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| | - David J Lemon
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Arnaldo Nakamura
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Akeisha M Belgrave
- Integrated Sciences Program, Harrisburg University of Science & Technology, Harrisburg, Pennsylvania, USA
| | - Anthony G Garza
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Frédéric J Veyrier
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada
| | - Salim T Islam
- Institut National de la Recherche Scientifique (INRS), Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Institut Pasteur International Network, Laval, Quebec, Canada.,PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, Université Laval, Québec, Quebec, Canada
| |
Collapse
|
10
|
Imaran M, Inamdar MM, Prabhakar R, Chelakkot R. Cluster and conquer: the morphodynamics of invasion of a compliant substrate by active rods. SOFT MATTER 2021; 17:7459-7465. [PMID: 34346477 DOI: 10.1039/d1sm00860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The colonisation of a soft passive material by motile cells such as bacteria is common in biology. The resulting colonies of the invading cells are often observed to exhibit intricate patterns whose morphology and dynamics can depend on a number of factors, particularly the mechanical properties of the substrate and the motility of the individual cells. We use simulations of a minimal 2D model of self-propelled rods moving through a passive compliant medium consisting of particles that offer elastic resistance before being plastically displaced from their equilibrium positions. It is observed that the clustering of active (self-propelled) particles is crucial for understanding the morphodynamics of colonisation. Clustering enables motile colonies to spread faster than they would have as isolated particles. The colonisation rate depends non-monotonically on substrate stiffness with a distinct maximum at a non-zero value of substrate stiffness. This is observed to be due to a change in the morphology of clusters. Furrow networks created by the active particles have a fractal-like structure whose dimension varies systematically with substrate stiffness but is less sensitive to particle activity. The power-law growth exponent of the furrowed area is smaller than unity, suggesting that, to sustain such extensive furrow networks, colonies must regulate their overall growth rate.
Collapse
|
11
|
Ramos CH, Rodríguez-Sánchez E, Del Angel JAA, Arzola AV, Benítez M, Escalante AE, Franci A, Volpe G, Rivera-Yoshida N. The environment topography alters the way to multicellularity in Myxococcus xanthus. SCIENCE ADVANCES 2021; 7:7/35/eabh2278. [PMID: 34433567 PMCID: PMC8386931 DOI: 10.1126/sciadv.abh2278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/02/2021] [Indexed: 05/10/2023]
Abstract
The social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance.
Collapse
Affiliation(s)
- Corina H Ramos
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Edna Rodríguez-Sánchez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Juan Antonio Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alejandro V Arzola
- Instituto de Física, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, México
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Ana E Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| | - Alessio Franci
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Natsuko Rivera-Yoshida
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. de México, C.P. 4510, Mexico.
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Cd. de México, C.P. 04510, Mexico
| |
Collapse
|
12
|
Pérez-Burgos M, Søgaard-Andersen L. Biosynthesis and function of cell-surface polysaccharides in the social bacterium Myxococcus xanthus. Biol Chem 2021; 401:1375-1387. [PMID: 32769218 DOI: 10.1515/hsz-2020-0217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/29/2022]
Abstract
In bacteria, cell-surface polysaccharides fulfill important physiological functions, including interactions with the environment and other cells as well as protection from diverse stresses. The Gram-negative delta-proteobacterium Myxococcus xanthus is a model to study social behaviors in bacteria. M. xanthus synthesizes four cell-surface polysaccharides, i.e., exopolysaccharide (EPS), biosurfactant polysaccharide (BPS), spore coat polysaccharide, and O-antigen. Here, we describe recent progress in elucidating the three Wzx/Wzy-dependent pathways for EPS, BPS and spore coat polysaccharide biosynthesis and the ABC transporter-dependent pathway for O-antigen biosynthesis. Moreover, we describe the functions of these four cell-surface polysaccharides in the social life cycle of M. xanthus.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, D-35043 Marburg, Germany
| |
Collapse
|
13
|
The polar Ras-like GTPase MglA activates type IV pilus via SgmX to enable twitching motility in Myxococcus xanthus. Proc Natl Acad Sci U S A 2020; 117:28366-28373. [PMID: 33093210 PMCID: PMC7668184 DOI: 10.1073/pnas.2002783117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The type IV pilus (Tfp) is a multipurpose machine found on bacterial surfaces that works by cycles of synthesis/retraction of a pilin fiber. During surface (twitching) motility, the coordinated actions of multiple Tfps at the cell pole promotes single cells and synchronized group movements. Here, directly observing polar Tfp machines in action during motility of Myxococcus xanthus, we identified the mechanism underlying pole-specific Tfps activation. In this process, the Ras-like protein MglA targets a novel essential Tfp-activator, SgmX, to the pole, ensuring both the unipolar activation of Tfps and its switching to the opposite pole when cells reverse their movement. Thus, a dynamic cascade of polar activators regulates multicellular movements, a feature that is likely conserved in other twitching bacteria. Type IV pili (Tfp) are highly conserved macromolecular structures that fulfill diverse cellular functions, such as adhesion to host cells, the import of extracellular DNA, kin recognition, and cell motility (twitching). Outstandingly, twitching motility enables a poorly understood process by which highly coordinated groups of hundreds of cells move in cooperative manner, providing a basis for multicellular behaviors, such as biofilm formation. In the social bacteria Myxococcus xanthus, we know that twitching motility is under the dependence of the small GTPase MglA, but the underlying molecular mechanisms remain elusive. Here we show that MglA complexed to GTP recruits a newly characterized Tfp regulator, termed SgmX, to activate Tfp machines at the bacterial cell pole. This mechanism also ensures spatial regulation of Tfp, explaining how MglA switching provokes directional reversals. This discovery paves the way to elucidate how polar Tfp machines are regulated to coordinate multicellular movements, a conserved feature in twitching bacteria.
Collapse
|
14
|
Arias Del Angel JA, Nanjundiah V, Benítez M, Newman SA. Interplay of mesoscale physics and agent-like behaviors in the parallel evolution of aggregative multicellularity. EvoDevo 2020; 11:21. [PMID: 33062243 PMCID: PMC7549232 DOI: 10.1186/s13227-020-00165-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Myxobacteria and dictyostelids are prokaryotic and eukaryotic multicellular lineages, respectively, that after nutrient depletion aggregate and develop into structures called fruiting bodies. The developmental processes and resulting morphological outcomes resemble one another to a remarkable extent despite their independent origins, the evolutionary distance between them and the lack of traceable homology in molecular mechanisms. We hypothesize that the morphological parallelism between the two lineages arises as the consequence of the interplay within multicellular aggregates between generic processes, physical and physicochemical processes operating similarly in living and non-living matter at the mesoscale (~10-3-10-1 m) and agent-like behaviors, unique to living systems and characteristic of the constituent cells, considered as autonomous entities acting according to internal rules in a shared environment. Here, we analyze the contributions of generic and agent-like determinants in myxobacteria and dictyostelid development and their roles in the generation of their common traits. Consequent to aggregation, collective cell-cell contacts mediate the emergence of liquid-like properties, making nascent multicellular masses subject to novel patterning and morphogenetic processes. In both lineages, this leads to behaviors such as streaming, rippling, and rounding-up, as seen in non-living fluids. Later the aggregates solidify, leading them to exhibit additional generic properties and motifs. Computational models suggest that the morphological phenotypes of the multicellular masses deviate from the predictions of generic physics due to the contribution of agent-like behaviors of cells such as directed migration, quiescence, and oscillatory signal transduction mediated by responses to external cues. These employ signaling mechanisms that reflect the evolutionary histories of the respective organisms. We propose that the similar developmental trajectories of myxobacteria and dictyostelids are more due to shared generic physical processes in coordination with analogous agent-type behaviors than to convergent evolution under parallel selection regimes. Insights from the biology of these aggregative forms may enable a unified understanding of developmental evolution, including that of animals and plants.
Collapse
Affiliation(s)
- Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Mariana Benítez
- Laboratorio Nacional de Ciencias de La Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Centro de Ciencias de La Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595 USA
| |
Collapse
|
15
|
Deutsch A, Friedl P, Preziosi L, Theraulaz G. Multi-scale analysis and modelling of collective migration in biological systems. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190377. [PMID: 32713301 PMCID: PMC7423374 DOI: 10.1098/rstb.2019.0377] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Collective migration has become a paradigm for emergent behaviour in systems of moving and interacting individual units resulting in coherent motion. In biology, these units are cells or organisms. Collective cell migration is important in embryonic development, where it underlies tissue and organ formation, as well as pathological processes, such as cancer invasion and metastasis. In animal groups, collective movements may enhance individuals' decisions and facilitate navigation through complex environments and access to food resources. Mathematical models can extract unifying principles behind the diverse manifestations of collective migration. In biology, with a few exceptions, collective migration typically occurs at a 'mesoscopic scale' where the number of units ranges from only a few dozen to a few thousands, in contrast to the large systems treated by statistical mechanics. Recent developments in multi-scale analysis have allowed linkage of mesoscopic to micro- and macroscopic scales, and for different biological systems. The articles in this theme issue on 'Multi-scale analysis and modelling of collective migration' compile a range of mathematical modelling ideas and multi-scale methods for the analysis of collective migration. These approaches (i) uncover new unifying organization principles of collective behaviour, (ii) shed light on the transition from single to collective migration, and (iii) allow us to define similarities and differences of collective behaviour in groups of cells and organisms. As a common theme, self-organized collective migration is the result of ecological and evolutionary constraints both at the cell and organismic levels. Thereby, the rules governing physiological collective behaviours also underlie pathological processes, albeit with different upstream inputs and consequences for the group. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Andreas Deutsch
- Department of Innovative Methods of Computing, Center for Information Services and High Performance Computing, Technische Universität Dresden, Dresden, Germany
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
- Cancer Genomics Center, Utrecht, The Netherlands
- Department of Genitourinary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Torino, Italy
| | - Guy Theraulaz
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Institute for Advanced Study in Toulouse, Toulouse, France
| |
Collapse
|
16
|
Pérez-Burgos M, García-Romero I, Jung J, Valvano MA, Søgaard-Andersen L. Identification of the lipopolysaccharide O-antigen biosynthesis priming enzyme and the O-antigen ligase in Myxococcus xanthus: critical role of LPS O-antigen in motility and development. Mol Microbiol 2019; 112:1178-1198. [PMID: 31332863 DOI: 10.1111/mmi.14354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2019] [Indexed: 01/03/2023]
Abstract
Myxococcus xanthus is a model bacterium to study social behavior. At the cellular level, the different social behaviors of M. xanthus involve extensive cell-cell contacts. Here, we used bioinformatics, genetics, heterologous expression and biochemical experiments to identify and characterize the key enzymes in M. xanthus implicated in O-antigen and lipopolysaccharide (LPS) biosynthesis and examined the role of LPS O-antigen in M. xanthus social behaviors. We identified WbaPMx (MXAN_2922) as the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for priming O-antigen synthesis. In heterologous expression experiments, WbaPMx complemented a Salmonella enterica mutant lacking the endogenous WbaP that primes O-antigen synthesis, indicating that WbaPMx transfers galactose-1-P to undecaprenyl-phosphate. We also identified WaaLMx (MXAN_2919), as the O-antigen ligase that joins O-antigen to lipid A-core. Our data also support the previous suggestion that WzmMx (MXAN_4622) and WztMx (MXAN_4623) form the Wzm/Wzt ABC transporter. We show that mutations that block different steps in LPS O-antigen synthesis can cause pleiotropic phenotypes. Also, using a wbaPMx deletion mutant, we revisited the role of LPS O-antigen and demonstrate that it is important for gliding motility, conditionally important for type IV pili-dependent motility and required to complete the developmental program leading to the formation of spore-filled fruiting bodies.
Collapse
Affiliation(s)
- María Pérez-Burgos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Inmaculada García-Romero
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Jana Jung
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| |
Collapse
|
17
|
Marshall RC, Whitworth DE. Is "Wolf-Pack" Predation by Antimicrobial Bacteria Cooperative? Cell Behaviour and Predatory Mechanisms Indicate Profound Selfishness, Even when Working Alongside Kin. Bioessays 2019; 41:e1800247. [PMID: 30919490 DOI: 10.1002/bies.201800247] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/10/2019] [Indexed: 01/27/2023]
Abstract
For decades, myxobacteria have been spotlighted as exemplars of social "wolf-pack" predation, communally secreting antimicrobial substances into the shared public milieu. This behavior has been described as cooperative, becoming more efficient if performed by more cells. However, laboratory evidence for cooperativity is limited and of little relevance to predation in a natural setting. In contrast, there is accumulating evidence for predatory mechanisms promoting "selfish" behavior during predation, which together with conflicting definitions of cooperativity, casts doubt on whether microbial "wolf-pack" predation really is cooperative. Here, it is hypothesized that public-goods-mediated predation is not cooperative, and it is argued that a holistic model of microbial predation is needed, accounting for predator and prey relatedness, social phenotypes, spatial organization, activity/specificity/transport of secreted toxins, and prey resistance mechanisms. Filling such gaps in our knowledge is vital if the evolutionary benefits of potentially costly microbial behaviors mediated by public goods are to be properly understood.
Collapse
Affiliation(s)
- Rupert C Marshall
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DA, UK
| | - David E Whitworth
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion SY23 3DA, UK
| |
Collapse
|
18
|
Badura P. Virtual bacterium colony in 3D image segmentation. Comput Med Imaging Graph 2018; 65:152-166. [DOI: 10.1016/j.compmedimag.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 11/16/2022]
|
19
|
Zhou T, Nan B. Exopolysaccharides promote Myxococcus xanthus social motility by inhibiting cellular reversals. Mol Microbiol 2016; 103:729-743. [PMID: 27874229 DOI: 10.1111/mmi.13585] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2016] [Indexed: 11/27/2022]
Abstract
The biofilm-forming bacterium Myxococcus xanthus moves on surfaces as structured swarms utilizing type IV pili-dependent social (S) motility. In contrast to isolated cells that reverse their moving direction frequently, individual cells within swarms rarely reverse. The regulatory mechanisms that inhibit cellular reversal and promote the formation of swarms are not well understood. Here we show that exopolysaccharides (EPS), the major extracellular components of M. xanthus swarms, inhibit cellular reversal in a concentration-dependent manner. Thus, individual wild-type cells reverse less frequently in swarms due to high local EPS concentrations. In contrast, cells defective in EPS production hyper-reverse their moving direction and show severe defects in S-motility. Surprisingly, S-motility and wild-type reversal frequency are restored in double mutants that are defective in both EPS production and the Frz chemosensory system, indicating that EPS regulates cellular reversal in parallel to the Frz pathway. Here we clarify that besides functioning as the structural scaffold in biofilms, EPS is a self-produced signal that coordinates the group motion of the social bacterium M. xanthus.
Collapse
Affiliation(s)
- Tianyi Zhou
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|