1
|
Malhotra P, Basu S. The Intricate Role of Ecdysis Triggering Hormone Signaling in Insect Development and Reproductive Regulation. INSECTS 2023; 14:711. [PMID: 37623421 PMCID: PMC10455322 DOI: 10.3390/insects14080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
Insect growth is interrupted by molts, during which the insect develops a new exoskeleton. The exoskeleton confers protection and undergoes shedding between each developmental stage through an evolutionarily conserved and ordered sequence of behaviors, collectively referred to as ecdysis. Ecdysis is triggered by Ecdysis triggering hormone (ETH) synthesized and secreted from peripheral Inka cells on the tracheal surface and plays a vital role in the orchestration of ecdysis in insects and possibly in other arthropod species. ETH synthesized by Inka cells then binds to ETH receptor (ETHR) present on the peptidergic neurons in the central nervous system (CNS) to facilitate synthesis of various other neuropeptides involved in ecdysis. The mechanism of ETH function on ecdysis has been well investigated in holometabolous insects such as moths Manduca sexta and Bombyx mori, fruit fly Drosophila melanogaster, the yellow fever mosquito Aedes aegypti and beetle Tribolium castaneum etc. In contrast, very little information is available about the role of ETH in sequential and gradual growth and developmental changes associated with ecdysis in hemimetabolous insects. Recent studies have identified ETH precursors and characterized functional and biochemical features of ETH and ETHR in a hemimetabolous insect, desert locust, Schistocerca gregaria. Recently, the role of ETH in Juvenile hormone (JH) mediated courtship short-term memory (STM) retention and long-term courtship memory regulation and retention have also been investigated in adult male Drosophila. Our review provides a novel synthesis of ETH signaling cascades and responses in various insects triggering diverse functions in adults and juvenile insects including their development and reproductive regulation and might allow researchers to develop sustainable pest management strategies by identifying novel compounds and targets.
Collapse
Affiliation(s)
| | - Saumik Basu
- Department of Entomology, Washington State University, Pullman, WA 99164, USA;
| |
Collapse
|
2
|
Knockdown of Ecdysone-Induced Protein 93F Causes Abnormal Pupae and Adults in the Eggplant Lady Beetle. BIOLOGY 2022; 11:biology11111640. [DOI: 10.3390/biology11111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
Ecdysone-induced protein 93F (E93) plays triple roles during post-embryonic development in insects whose juvenile instars are more than four. However, it only acts as a specifier of adult structures in Drosophila flies whose larval instars are fixed at three. In this study, we determined the functions of E93 in the eggplant lady beetle (Henosepilachna vigintioctopunctata), which has four larval instars. We uncovered that E93 was abundantly expressed at the prepupal and pupal stages. A precocious inhibition of the juvenile hormone signal by RNA interference (RNAi) of HvKr-h1 or HvHairy, two vital downstream developmental effectors, at the penultimate instar larval stage increased the expression of E93, Conversely, ingestion of JH by the third-instar larvae stimulated the expression of HvKr-h1 but repressed the transcription of either HvE93X1 or HvE93X2. However, disturbance of the JH signal neither drove premature metamorphosis nor caused supernumerary instars. In contrast, depletion of E93 at the third- and fourth-instar larval and prepupal stages severely impaired pupation and caused a larval-pupal mixed phenotype: pupal spines and larval scoli were simultaneously presented on the cuticle. RNAi of E93 at the pupal stage affected adult eclosion. When the beetles had suffered from a dsE93 injection at the fourth-instar larval and pupal stages, a few resultant adults emerged, with separated elytra, abnormally folded hindwings, a small body size and short appendages. Taken together, our results suggest the larval instars are fixed in H. vigintioctopunctata; E93 serves as a repressor of larval characters and a specifier of adult structures during the larval–pupal–adult transition.
Collapse
|
3
|
He Q, Zhang Y. Kr-h1, a Cornerstone Gene in Insect Life History. Front Physiol 2022; 13:905441. [PMID: 35574485 PMCID: PMC9092015 DOI: 10.3389/fphys.2022.905441] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Insect life cycle is coordinated by hormones and their downstream effectors. Krüppel homolog1 (Kr-h1) is one of the crucial effectors which mediates the actions of the two critical hormones of insects, the juvenile hormone (JH) and 20-hydroxyecdysone (20E). It is a transcription factor with a DNA-binding motif of eight C2H2 zinc fingers which is found to be conserved among insect orders. The expression of Kr-h1 is fluctuant during insect development with high abundance in juvenile instars and lower levels in the final instar and pupal stage, and reappearance in adults, which is governed by the coordination of JH, 20E, and miRNAs. The dynamic expression pattern of Kr-h1 is closely linked to its function in the entire life of insects. Over the past several years, accumulating studies have advanced our understanding of the role of Kr-h1 during insect development. It acts as a universal antimetamorphic factor in both hemimetabolous and holometabolous species by directly inhibiting the transcription of 20E signaling genes Broad-Complex (Br-C) and Ecdysone induced protein 93F (E93), and steroidogenic enzyme genes involved in ecdysone biosynthesis. Meanwhile, it promotes vitellogenesis and ovarian development in the majority of studied insects. In addition, Kr-h1 regulates insect behavioral plasticity and caste identity, neuronal morphogenesis, maturation of sexual behavior, as well as embryogenesis and metabolic homeostasis. Hence, Kr-h1 acts as a cornerstone regulator in insect life.
Collapse
Affiliation(s)
- Qianyu He
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yuanxi Zhang
- Daqing Municipal Ecology and Environment Bureau, Daqing, China
| |
Collapse
|
4
|
Liu XJ, Jun G, Liang XY, Zhang XY, Zhang TT, Liu WM, Zhang JZ, Zhang M. Silencing of transcription factor E93 inhibits adult morphogenesis and disrupts cuticle, wing and ovary development in Locusta migratoria. INSECT SCIENCE 2022; 29:333-343. [PMID: 34117716 DOI: 10.1111/1744-7917.12924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Ecdysone-induced protein 93F (E93) plays important roles during the metamorphosis process in insects. In this study, a cDNA of the LmE93 gene was identified from the transcriptome of Locusta migratoria, which consists of the 3378-nucleotide open-reading frame (ORF) and encodes 1125 amino acids with helix-turn-helix (HTH) motifs. Reverse transcription quantitative polymerase chain reaction analysis revealed that LmE93 was highest expressed in ovary. The LmE93 expression level was markedly low from the 3rd to 4th instar nymphs, and greatly increased in 1-day-old 5th instar nymphs with a peak on middle nymphal days, then declined in the late nymphal days. Moreover, injected dsLmE93 into 4th and 5th instar nymphs greatly reduced LmE93 transcripts, respectively, and prevented the process of metamorphosis, causing supernumerary nymphal stages. Hematoxylin-eosin staining of the integument showed that the apolysis occurred in advance in 4th instar nymphs, and old cuticle degradation was decreased in dsLmE93-injected locusts of 5th instar nymphs. Smaller and no fully developed wings with reduced columns between the anterior and posterior regions were found in N6 and N7 supernumerary nymphs. In addition, the development of the ovary in dsLmE93-injected locusts was severely blocked, the yolk was almost not formed and there was no development of ovarioles. The results indicated that LmE93 play key roles in the metamorphosis, cuticle, wing and ovarian development of locusts.
Collapse
Affiliation(s)
- Xiao-Jian Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Guo Jun
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xiao-Yu Liang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Xue-Yao Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Ting-Ting Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Wei-Min Liu
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Jian-Zhen Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Min Zhang
- Research Institute of Applied Biology, Shanxi University, Taiyuan, China
| |
Collapse
|
5
|
Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proc Natl Acad Sci U S A 2022; 119:2114773119. [PMID: 35217609 PMCID: PMC8892354 DOI: 10.1073/pnas.2114773119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
As caterpillars metamorphose to butterflies, insects change their appearance dramatically through metamorphosis. Some insects have an immobile pupal stage for morphological remodeling (homometaboly). Other insects, such as cockroaches, have no pupal stage, and the juveniles and adults are morphologically similar (hemimetaboly). Notably, among the most-ancestral hemimetabolous insects, dragonflies drastically alter their appearance from aquatic nymphs to aerial adults. In dragonflies, we showed that transcription factors Kr-h1 and E93 are essential for regulating metamorphosis as in other insects, while broad, the master gene for pupation in holometabolous insects, regulates a number of both nymph-specific genes and adult-specific genes, providing insight into what evolutionary trajectory the key transcription factor broad has experienced before ending up with governing pupation and holometaboly. Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonata. E93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93. Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93. These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.
Collapse
|
6
|
Hutfilz C. Endocrine Regulation of Lifespan in Insect Diapause. Front Physiol 2022; 13:825057. [PMID: 35242054 PMCID: PMC8886022 DOI: 10.3389/fphys.2022.825057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2022] [Indexed: 01/27/2023] Open
Abstract
Diapause is a physiological adaptation to conditions that are unfavorable for growth or reproduction. During diapause, animals become long-lived, stress-resistant, developmentally static, and non-reproductive, in the case of diapausing adults. Diapause has been observed at all developmental stages in both vertebrates and invertebrates. In adults, diapause traits weaken into adaptations such as hibernation, estivation, dormancy, or torpor, which represent evolutionarily diverse versions of the traditional diapause traits. These traits are regulated through modifications of the endocrine program guiding development. In insects, this typically includes changes in molting hormones, as well as metabolic signals that limit growth while skewing the organism's energetic demands toward conservation. While much work has been done to characterize these modifications, the interactions between hormones and their downstream consequences are incompletely understood. The current state of diapause endocrinology is reviewed here to highlight the relevance of diapause beyond its use as a model to study seasonality and development. Specifically, insect diapause is an emerging model to study mechanisms that determine lifespan. The induction of diapause represents a dramatic change in the normal progression of age. Hormones such as juvenile hormone, 20-hydroxyecdysone, and prothoracicotropic hormone are well-known to modulate this plasticity. The induction of diapause-and by extension, the cessation of normal aging-is coordinated by interactions between these pathways. However, research directly connecting diapause endocrinology to the biology of aging is lacking. This review explores connections between diapause and aging through the perspective of endocrine signaling. The current state of research in both fields suggests appreciable overlap that will greatly contribute to our understanding of diapause and lifespan determination.
Collapse
|
7
|
Komagata O, Kasai S, Itokawa K, Minagawa K, Kazuma T, Mizutani K, Muto A, Tanikawa T, Adachi M, Komatsu N, Tomita T. Common substitution mutation F348Y of acetylcholinesterase gene contributes to organophosphate and carbamate resistance in Cimex lectularius and C. hemipterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 138:103637. [PMID: 34454015 DOI: 10.1016/j.ibmb.2021.103637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Bed bug control highly depends on insecticides with a limited number of modes of action, especially since the global prevalence of pyrethroid resistance. De facto insecticide options against bed bugs in Japan are acetylcholinesterase inhibitors (AChEis) that consist of organophosphates and carbamates. However, the status of AChEi resistance and the mechanisms involved have not been ascertained. An amino acid substitution mutation, F348Y (or F331Y in standard numbering), occurring at an acyl-binding site of the paralogous AChE gene (p-Ace), was identified among AChEi-resistant colonies of both common and tropical bed bugs (Cimex lectularius and C. hemipterus, respectively). This mutation was genetically associated with propoxur and fenitrothion resistance in F348Y-segregating colonies of C. hemipterus. Inhibition of heterologously expressed C. lectularius p-Ace with insecticides revealed that the sensitivities of F348Y-carrying AChE decreased by orders of 10- to more than 100-fold for diazoxon, carbaryl, fenitroxon, paraoxon, chlorpyrifos-methyl, malaoxon, azamethiphos, methyl-paraoxon, and propoxur. In contrast, the mutant AChE showed a slightly decreased degree of sensitivity for dichlorvos and almost unchanged sensitivity for metoxadiazone. Further studies are needed to ascertain whether the practical efficacies of dichlorvos and metoxadiazone are ensured against F348Y-carrying bed bugs and whether other resistance mechanisms are involved.
Collapse
Affiliation(s)
- Osamu Komagata
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Keiko Minagawa
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Toru Kazuma
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Kiyoshi Mizutani
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Atsuhiko Muto
- Environmental Biology and Living Environmental Department, Japan Environmental Sanitation Center, Kawasaki-ku, Kawasaki, 210-0828, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, IKARI Shodoku Co., Ltd., Narashino, Chiba, 275-0024, Japan
| | | | - Noriyuki Komatsu
- Civil International Corporation, Taito-ku, Tokyo, 110-0014, Japan
| | - Takashi Tomita
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|
8
|
Wu Z, Yang L, Li H, Zhou S. Krüppel-homolog 1 exerts anti-metamorphic and vitellogenic functions in insects via phosphorylation-mediated recruitment of specific cofactors. BMC Biol 2021; 19:222. [PMID: 34625063 PMCID: PMC8499471 DOI: 10.1186/s12915-021-01157-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background The zinc-finger transcription factor Krüppel-homolog 1 (Kr-h1) exerts a dual regulatory role during insect development by preventing precocious larval/nymphal metamorphosis and in stimulating aspects of adult reproduction such as vitellogenesis. However, how Kr-h1 functions both as a transcriptional repressor in juvenile metamorphosis and an activator in adult reproduction remains elusive. Here, we use the insect Locusta migratoria to dissect the molecular mechanism by which Kr-h1 functions as activator and repressor at these distinct developmental stages. Results We report that the kinase PKCα triggers Kr-h1 phosphorylation at the amino acid residue Ser154, a step essential for its dual functions. During juvenile stage, phosphorylated Kr-h1 recruits a corepressor, C-terminal binding protein (CtBP). The complex of phosphorylated Kr-h1 and CtBP represses the transcription of Ecdysone induced protein 93F (E93) and consequently prevents the juvenile-to-adult transition. In adult insects, phosphorylated Kr-h1 recruits a coactivator, CREB-binding protein (CBP), and promotes vitellogenesis by inducing the expression of Ribosomal protein L36. Furthermore, Kr-h1 phosphorylation with the concomitant inhibition of E93 transcription is evolutionarily conserved across insect orders. Conclusion Our results suggest that Kr-h1 phosphorylation is indispensable for the recruitment of transcriptional cofactors, and for its anti-metamorphic and vitellogenic actions in insects. Our data shed new light on the understanding of Kr-h1 regulation and function in JH-regulated insect metamorphosis and reproduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01157-3.
Collapse
Affiliation(s)
- Zhongxia Wu
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Libin Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Huihui Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
9
|
Elgendy AM, Mohamed AA, Duvic B, Tufail M, Takeda M. Involvement of Cis-Acting Elements in Molecular Regulation of JH-Mediated Vitellogenin Gene 2 of Female Periplaneta americana. Front Physiol 2021; 12:723072. [PMID: 34526913 PMCID: PMC8435907 DOI: 10.3389/fphys.2021.723072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/30/2021] [Indexed: 01/10/2023] Open
Abstract
Vitellogenins (Vgs) are yolk protein precursors that are regulated by juvenile hormone (JH) and/or 20-hydroxyecdysone (20E) in insects. JH acts as the principal gonadotropin that stimulates vitellogenesis in hemimetabolous insects. In this study, we cloned and characterized the Periplaneta americana Vitellogenin 2 (Vg2) promoter. Multiple sites for putative transcription factor binding were predicted for the 1,804 bp Vg2 promoter region, such as the Broad-Complex, ecdysone response element (EcRE), GATA, Hairy, JH response element (JHRE), and Methoprene (Met)-binding motif, among others. Luciferase reporter assay has identified that construct -177 bp is enough to support JH III induction but not 20E suppression. This 38 bp region (from -177 to -139 bp) contains two conserved response element half-sites separated by 2 nucleotides spacer (DR2) and is designated as Vg2RE (-168GAGTCACGGAGTCGCCGCTG-149). Mutation assay and luciferase assay data using mutated constructs verified the crucial role of G residues in Vg2RE for binding the isolated fat body nuclear protein. In Sf9 cells, a luciferase reporter placed under the control of a minimal promoter containing Vg2RE was induced by JH III in a dose- and time-dependent manner. Nuclear proteins isolated from previtellogenic female fat body cells bound to Vg2RE, and this binding was outcompeted by a 50-fold excess of cold Drosophila melanogaster DR4 and Galleria mellonella JH binding protein response elements (Chorion factor-I/Ultraspiracle). Affinity pull-down experiment with nuclear extracts of previtellogenic female fat body, using 31-bp probe Vg2RE as bait, yielded a 71 kDa candidate nuclear protein that may mediate the regulatory action of the JH III.
Collapse
Affiliation(s)
- Azza M Elgendy
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt.,Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | | | - Muhammad Tufail
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan.,Ghazi University, Dera Ghazi Khan, Punjab, Pakistan
| | - Makio Takeda
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Hyogo, Japan
| |
Collapse
|
10
|
Suzuki Y, Shiotsuki T, Jouraku A, Miura K, Minakuchi C. Characterization of E93 in neometabolous thrips Frankliniella occidentalis and Haplothrips brevitubus. PLoS One 2021; 16:e0254963. [PMID: 34293026 PMCID: PMC8297894 DOI: 10.1371/journal.pone.0254963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as “propupa” and “pupa”, and this type of distinctive metamorphosis is called neometaboly. To understand the mechanisms of hormonal regulation in thrips metamorphosis, we previously analyzed the transcript levels of Kr-h1 and br in two thrips species, Frankliniella occidentalis (Thripidae) and Haplothrips brevitubus (Phlaeothripidae). In both species, the transcript levels of Kr-h1 and br decreased in the “propupal” and “pupal” stages, and their transcription was upregulated by exogenous JH mimic treatment. Here we analyzed the developmental profiles of E93 in these two thrips species. Quantitative RT-PCR revealed that E93 expression started to increase at the end of the larval stage in F. occidentalis and in the “propupal” stage of H. brevitubus, as Kr-h1 and br mRNA levels decreased. Treatment with an exogenous JH mimic at the onset of metamorphosis prevented pupal-adult transition and caused repression of E93. These results indicated that E93 is involved in adult differentiation after JH titer decreases at the end of the larval stage of thrips. By comparing the expression profiles of Kr-h1, br, and E93 among insect species, we propose that the “propupal” and “pupal” stages of thrips have some similarities with the holometabolous prepupal and pupal stages, respectively.
Collapse
Affiliation(s)
- Youhei Suzuki
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shiotsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Miura
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
11
|
Regulation of Juvenile Hormone on Summer Diapause of Geleruca daurica and Its Pathway Analysis. INSECTS 2021; 12:insects12030237. [PMID: 33799822 PMCID: PMC8000908 DOI: 10.3390/insects12030237] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Diapause is an arrestment state in development, and plays an important role in life history in insects. It has been thought that a lack in juvenile hormone (JH) results in reproductive diapause occurring at the adult stage. However, we do not fully know about the underlying molecular mechanism. In this study, we proved that the topical application of a JH analog methoprene caused the changes at the transcriptional levels of a great number of genes, inhibited lipid accumulation, and finally delayed the adults entering diapause. Therefore, JH signaling plays an important role in regulating reproductive diapause of G. daurica, a new pest with great outbreaks in Inner Mongolia. Abstract Juvenile hormone (JH) signaling plays an important role in regulation of reproductive diapause in insects. However, we have little understanding of the effect of JH on gene expression at the transcriptome level in diapause. Galeruca daurica is a new pest in the Inner Mongolia grasslands with obligatory summer diapause in the adult stage. Topical application of a JH analog methoprene at the pre-diapause stage delayed the adults entering diapause and inhibited lipid accumulation whereas it did not during diapause. Using Illumina sequencing technology and bioinformatics tools, 54 and 138 differentially expressed genes (DEGs) were detected at 1 and 2 d after treatment, respectively. The KEGG analysis showed that the DEGs were mainly enriched in the metabolism pathways. qRT-PCR analysis indicated that methoprene promoted the expression of genes encoding vitellogenin, fork head transcription factor and Krüppel homolog 1, whereas suppressed the expression of genes encoding juvenile hormone-binding protein, juvenile hormone esterase, juvenile hormone acid methyltransferase, juvenile hormone epoxide hydrolase and fatty acid synthase 2. These results indicate that JH signaling plays an important role in regulating reproductive diapause of G. daurica.
Collapse
|
12
|
Wang X, Ding Y, Lu X, Geng D, Li S, Raikhel AS, Zou Z. The ecdysone-induced protein 93 is a key factor regulating gonadotrophic cycles in the adult female mosquito Aedes aegypti. Proc Natl Acad Sci U S A 2021; 118:e2021910118. [PMID: 33593917 PMCID: PMC7923369 DOI: 10.1073/pnas.2021910118] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repeated blood feedings are required for adult female mosquitoes to maintain their gonadotrophic cycles, enabling them to be important pathogen carriers of human diseases. Elucidating the molecular mechanism underlying developmental switches between these mosquito gonadotrophic cycles will provide valuable insight into mosquito reproduction and could aid in the identification of targets to disrupt these cycles, thereby reducing disease transmission. We report here that the transcription factor ecdysone-induced protein 93 (E93), previously implicated in insect metamorphic transitions, plays a key role in determining the gonadotrophic cyclicity in adult females of the major arboviral vector Aedes aegypti Expression of the E93 gene in mosquitoes is down-regulated by juvenile hormone (JH) and up-regulated by 20-hydroxyecdysone (20E). We find that E93 controls Hormone Receptor 3 (HR3), the transcription factor linked to the termination of reproductive cycles. Moreover, knockdown of E93 expression via RNAi impaired fat body autophagy, suggesting that E93 governs autophagy-induced termination of vitellogenesis. E93 RNAi silencing prior to the first gonadotrophic cycle affected normal progression of the second cycle. Finally, transcriptomic analysis showed a considerable E93-dependent decline in the expression of genes involved in translation and metabolism at the end of a reproductive cycle. In conclusion, our data demonstrate that E93 acts as a crucial factor in regulating reproductive cycle switches in adult female mosquitoes.
Collapse
Affiliation(s)
- Xueli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Yike Ding
- Department of Entomology, University of California, Riverside, CA 92521
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Xiangyang Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Danqian Geng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Shan Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| | - Alexander S Raikhel
- Department of Entomology, University of California, Riverside, CA 92521;
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, People's Republic of China;
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, 100049 Beijing, People's Republic of China
| |
Collapse
|
13
|
Crucial Role of Juvenile Hormone Receptor Components Methoprene-Tolerant and Taiman in Sexual Maturation of Adult Male Desert Locusts. Biomolecules 2021; 11:biom11020244. [PMID: 33572050 PMCID: PMC7915749 DOI: 10.3390/biom11020244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/17/2022] Open
Abstract
Currently (2020), Africa and Asia are experiencing the worst desert locust (Schistocerca gregaria) plague in decades. Exceptionally high rainfall in different regions caused favorable environmental conditions for very successful reproduction and population growth. To better understand the molecular mechanisms responsible for this remarkable reproductive capacity, as well as to fill existing knowledge gaps regarding the regulation of male reproductive physiology, we investigated the role of methoprene-tolerant (Scg-Met) and Taiman (Scg-Tai), responsible for transducing the juvenile hormone (JH) signal, in adult male locusts. We demonstrated that knockdown of these components by RNA interference strongly inhibits male sexual maturation, severely disrupting reproduction. This was evidenced by the inability to show mating behavior, the absence of a yellow-colored cuticle, the reduction of relative testes weight, and the drastically reduced phenylacetonitrile (PAN) pheromone levels of the treated males. We also observed a reduced relative weight, as well as relative protein content, of the male accessory glands in Scg-Met knockdown locusts. Interestingly, in these animals the size of the corpora allata (CA), the endocrine glands where JH is synthesized, was significantly increased, as well as the transcript level of JH acid methyltransferase (JHAMT), a rate-limiting enzyme in the JH biosynthesis pathway. Moreover, other endocrine pathways appeared to be affected by the knockdown, as evidenced by changes in the expression levels of the insulin-related peptide and two neuroparsins in the fat body. Our results demonstrate that JH signaling pathway components play a crucial role in male reproductive physiology, illustrating their potential as molecular targets for pest control.
Collapse
|
14
|
Zhu ZD, Hu QH, Tong CM, Yang HG, Zheng SC, Feng QL, Deng HM. Transcriptomic analysis reveals the regulation network of BmKrüppel homolog 1 in the oocyte development of Bombyx mori. INSECT SCIENCE 2021; 28:47-62. [PMID: 32283000 DOI: 10.1111/1744-7917.12747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 06/11/2023]
Abstract
Krüppel homolog 1 (Kr-h1), a zinc finger transcription factor, is involved in the metamorphosis and adult reproduction of insects. However, the role of Kr-h1 in reproduction of holometabolic insects remains to be elucidated. The regulation network of Kr-h1-associated genes in the reproduction in Bombyx mori was investigated in this study. The higher expression level of BmKr-h1 in the ovaries was detected during the late pupal stage and adults. RNA interference (RNAi)-mediated depletion of BmKr-h1 in the female at day 6 of pupae resulted in abnormal oocytes at 48 h post-double-stranded RNA treatment, which showed less yolk protein deposition and partially transparent chorion. RNA-seq and subsequent differentially expressed transcripts analysis showed that knockdown of BmKr-h1 caused a decrease in the expression of 2882 genes and an increase in the expression of 2565 genes in the oocytes at day 8 of pupae. Totally, 27 genes coding for transcription factors were down-regulated, while six genes coding for other transcription factors were up-regulated. BmKr-h1 bound to the Kr-h1 binding site of the transcription factors AP-1 (activating protein-1) and FOXG1 to increase their messenger RNA transcripts in the BmN cells, respectively. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses of that positively co-expressed with AP-1 and FOXG1 transcripts showed mainly enrichment in the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes. These data suggested that BmKr-h1 might directly regulate the metabolic-related pathways, the nutrient absorption and the yolk protein absorption processes or probably through AP-1 and /or FOXG1 to regulate oocyte development.
Collapse
Affiliation(s)
- Zi-Dan Zhu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Hao Hu
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Chun-Mei Tong
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hong-Guang Yang
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Si-Chun Zheng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hui-Min Deng
- Guangdong Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
15
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
16
|
Niederhuber MJ, McKay DJ. Mechanisms underlying the control of dynamic regulatory element activity and chromatin accessibility during metamorphosis. CURRENT OPINION IN INSECT SCIENCE 2021; 43:21-28. [PMID: 32979530 PMCID: PMC7985040 DOI: 10.1016/j.cois.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/25/2020] [Indexed: 05/10/2023]
Abstract
Cis-regulatory modules of metazoan genomes determine the when and where of gene expression during development. Here we discuss insights into the genetic and molecular mechanisms behind cis-regulatory module usage that have come from recent application of genomics assays to insect metamorphosis. Assays including FAIRE-seq, ATAC-seq, and CUT&RUN indicate that sequential changes in chromatin accessibility play a key role in mediating stage-specific cis-regulatory module activity and gene expression. We review the current understanding of what controls precisely coordinated changes in chromatin accessibility during metamorphosis and describe evidence that points to systemic hormone signaling as a primary signal to trigger genome-wide shifts in accessibility patterns and cis-regulatory module usage.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States; Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, United States.
| |
Collapse
|
17
|
Gijbels M, Marchal E, Verdonckt TW, Bruyninckx E, Vanden Broeck J. RNAi-Mediated Knockdown of Transcription Factor E93 in Nymphs of the Desert Locust ( Schistocerca gregaria) Inhibits Adult Morphogenesis and Results in Supernumerary Juvenile Stages. Int J Mol Sci 2020; 21:E7518. [PMID: 33053862 PMCID: PMC7590052 DOI: 10.3390/ijms21207518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 02/02/2023] Open
Abstract
Postembryonic development of insects is coordinated by juvenile hormone (JH) together with ecdysteroids. Whereas the JH early response gene krüppel-homolog 1 (Kr-h1) plays a crucial role in the maintenance of juvenile characteristics during consecutive larval stages, the ecdysteroid-inducible early gene E93 appears to be a key factor promoting metamorphosis and adult morphogenesis. Here, we report on the developmental and molecular consequences of an RNAi-mediated knockdown of SgE93 in the desert locust, Schistocerca gregaria, a hemimetabolan species. Our experimental data show that injection of gregarious locust nymphs with a double-stranded RNA construct targeting the SgE93 transcript inhibited the process of metamorphosis and instead led to supernumerary nymphal stages. These supernumerary nymphal instars still displayed juvenile morphological features, such as a nymphal color scheme and body shape, while they reached the physical body size of the adult locusts, or even surpassed it after the next supernumerary molt. Interestingly, when compared to control locusts, the total duration of the fifth and normally final nymphal (N5) stage was shorter than normal. This appeared to correspond with temporal and quantitative changes in hemolymph ecdysteroid levels, as well as with altered expression of the rate-limiting Halloween gene, Spook (SgSpo). In addition, the levels of the ecdysone receptor (SgEcR) and retinoïd X receptor (SgRXR) transcripts were altered, indicating that silencing SgE93 affects both ecdysteroid synthesis and signaling. Upon knockdown of SgE93, a very potent upregulation of the SgKr-h1 transcript levels was observed in both head and fat body, while no significant changes were detected in the transcript levels of SgJHAMT and SgCYP15A1, the enzymes that catalyze the two final steps in JH biosynthesis. Moreover, the process of molting was disturbed in these supernumerary nymphs. While attempting ecdysis to the next stage, 50% of the N6 and all N7 nymphal instars eventually died. S. gregaria is a very harmful, swarm-forming pest species that destroys crops and threatens food security in many of the world's poorest countries. We believe that a better knowledge of the mechanisms of postembryonic development may contribute to the discovery of novel, more selective and sustainable strategies for controlling gregarious locust populations. In this context, identification of molecular target candidates that are capable of significantly reducing the fitness of this devastating swarming pest will be of crucial importance.
Collapse
Affiliation(s)
- Marijke Gijbels
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| | - Elisabeth Marchal
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
- Life Science Technologies, Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Thomas Wolf Verdonckt
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| | - Evert Bruyninckx
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| | - Jozef Vanden Broeck
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (E.M.); (T.W.V.); (E.B.)
| |
Collapse
|
18
|
Gijbels M, Schellens S, Schellekens T, Bruyninckx E, Marchal E, Vanden Broeck J. Precocious Downregulation of Krüppel-Homolog 1 in the Migratory Locust, Locusta migratoria, Gives Rise to An Adultoid Phenotype with Accelerated Ovarian Development but Disturbed Mating and Oviposition. Int J Mol Sci 2020; 21:E6058. [PMID: 32842716 PMCID: PMC7503607 DOI: 10.3390/ijms21176058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 01/29/2023] Open
Abstract
Krüppel-homolog 1 (Kr-h1) is a zinc finger transcription factor maintaining the status quo in immature insect stages and promoting reproduction in adult insects through the transduction of the Juvenile Hormone (JH) signal. Knockdown studies have shown that precocious silencing of Kr-h1 in the immature stages results in the premature development of adult features. However, the molecular characteristics and reproductive potential of these premature adult insect stages are still poorly understood. Here we report on an adult-like or 'adultoid' phenotype of the migratory locust, Locusta migratoria, obtained after a premature metamorphosis induced by the silencing of LmKr-h1 in the penultimate instar. The freshly molted adultoid shows precocious development of adult features, corresponding with increased transcript levels of the adult specifier gene LmE93. Furthermore, accelerated ovarian maturation and vitellogenesis were observed in female adultoids, coinciding with elevated expression of LmCYP15A1 in corpora allata (CA) and LmKr-h1 and vitellogenin genes (LmVg) in fat body, whereas LmE93 and Methoprene-tolerant (LmMet) transcript levels decreased in fat body. In adultoid ovaries, expression of the Halloween genes, Spook (LmSpo) and Phantom (LmPhm), was elevated as well. In addition, the processes of mating and oviposition were severely disturbed in these females. L. migratoria is a well-known, swarm-forming pest insect that can destroy crops and harvests in some of the world's poorest countries. As such, a better understanding of factors that are capable of significantly reducing the reproductive potential of this pest may be of crucial importance for the development of novel locust control strategies.
Collapse
Affiliation(s)
- Marijke Gijbels
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (S.S.); (T.S.); (E.B.)
| | - Sam Schellens
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (S.S.); (T.S.); (E.B.)
| | - Tine Schellekens
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (S.S.); (T.S.); (E.B.)
| | - Evert Bruyninckx
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (S.S.); (T.S.); (E.B.)
| | - Elisabeth Marchal
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (S.S.); (T.S.); (E.B.)
- Life Science Technologies, Imec, Kapeldreef 75, B- 3001 Leuven, Belgium
| | - Jozef Vanden Broeck
- Research Group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium; (M.G.); (S.S.); (T.S.); (E.B.)
| |
Collapse
|
19
|
Eid DM, Chereddy SCRR, Palli SR. The effect of E93 knockdown on female reproduction in the red flour beetle, Tribolium castaneum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21688. [PMID: 32394503 PMCID: PMC9939234 DOI: 10.1002/arch.21688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/28/2020] [Accepted: 04/20/2020] [Indexed: 05/07/2023]
Abstract
The E93 transcription factor is a member of helix-turn-helix transcription factor family containing a Pip-squeak motif. This ecdysone primary response gene was identified as a regulator of cell death in Drosophila melanogaster where it is involved in ecdysone-induced autophagy and caspase activity that mediate degeneration of larval tissues during metamorphosis from larva to pupa. However, its function in adult insects is not well studied. To study E93 function in the red flour beetle, Tribolium castaneum, double-stranded RNA (dsRNA) targeting E93 (dsE93) was injected into newly emerged adults. Knockdown of E93 caused a decrease in the synthesis of vitellogenin (Vg), oocyte development, and egg-laying. Sequencing of RNA isolated from adults injected with dsE93 and control dsmalE (dsRNA targeting Escherichia coli malE gene) followed by differential gene expression analysis showed upregulation of genes involved in the metabolism of reserved nutrients. E93 knockdown induced changes in gene expression resulted in a decrease in Vg synthesis in the fat body and oocyte maturation in ovaries. Mating experiments showed that females injected with dsE93 did not lay eggs. Knockdown of E93 caused a reduction in the number and size of lipid droplets in the fat body when compared with that in control beetles injected with dsmalE. These data suggest that during the first 2-3 days after the emergence of adult females, E93 suppresses genes coding for enzymes that metabolize reserved nutrients until initiation of vitellogenesis and oogenesis.
Collapse
Affiliation(s)
- Duaa Musleh Eid
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| | | | - Subba Reddy Palli
- Department of Entomology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
20
|
Zhu GH, Chereddy SCRR, Howell JL, Palli SR. Genome editing in the fall armyworm, Spodoptera frugiperda: Multiple sgRNA/Cas9 method for identification of knockouts in one generation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103373. [PMID: 32276113 DOI: 10.1016/j.ibmb.2020.103373] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
The CRISPR/Cas9 system is an efficient genome editing method that can be used in functional genomics research. The fall armyworm, Spodoptera frugiperda, is a serious agricultural pest that has spread over most of the world. However, very little information is available on functional genomics for this insect. We performed CRISPR/Cas9-mediated site-specific mutagenesis of three target genes: two marker genes [Biogenesis of lysosome-related organelles complex 1 subunit 2 (BLOS2) and tryptophan 2, 3-dioxygenase (TO)], and a developmental gene, E93 (a key ecdysone-induced transcription factor that promotes adult development). The knockouts (KO) of BLOS2, TO and E93 induced translucent mosaic integument, olive eye color, and larval-pupal intermediate phenotypes, respectively. Sequencing RNA isolated from wild-type and E93 KO insects showed that E93 promotes adult development by influencing the expression of the genes coding for transcription factor, Krüppel homolog 1, the pupal specifier, Broad-Complex, serine proteases, and heat shock proteins. Often, gene-edited insects display mosaicism in which only a fraction of the cells are edited as intended, and establishing a homozygous line is both costly and time-consuming. To overcome these limitations, a method to completely KO the target gene in S. frugiperda by injecting the Cas9 protein and multiple sgRNAs targeting one exon of the E93 gene into embryos was developed. Ten percent of the G0 larvae exhibited larval-pupal intermediates. The mutations were confirmed by T7E1 assay, and the mutation frequency was determined as >80%. Complete KO of the E93 gene was achieved in one generation using the multiple sgRNA method, demonstrating a powerful approach to improve genome editing in lepidopteran and other non-model insects.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Jeffrey L Howell
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
21
|
Mao Y, Li Y, Gao H, Lin X. Krüppel homologue 1 interacts directly with Hairy and regulates ecdysis in the brown planthopper. INSECT MOLECULAR BIOLOGY 2020; 29:293-300. [PMID: 31908059 DOI: 10.1111/imb.12635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/27/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Juvenile hormone (JH) plays important roles in the growth and development of insects. JH and its receptor methoprene-tolerant (Met) regulate the expression of transcription factors to control the transcription of downstream genes. The expression of Hairy (Hry) and Krüppel homologue 1 (Kr-h1) is regulated by JH and JH receptors. Hry and Kr-h1 are both crucial in mediating JH signalling. However, whether they interact at the gene level in regulating metamorphosis and whether they interact physically at the protein level remain unknown. We used co-immunoprecipitation, glutathione S-transferase pull-down and RNA interference (RNAi) approaches to study the genetic and biochemical interactions of the two proteins Hry and Kr-h1. The results showed that brown planthopper (Nilaparvata lugens) Hry and Kr-h1 interact directly: Hry binds to the N-terminal of Kr-h1, which includes five zinc-finger domains. The RNAi experiment showed that downregulation of Hry reduced the ratio of ecdysis failure caused by knockdown of Kr-h1, indicating that the downregulation of Hry might mitigate ecdysis failure via the downregulation of Kr-h1. The expression of Hry increased significantly when Kr-h1 was downregulated, whereas it did not change significantly when both were downregulated. Our results suggest that the binding of Hry protein with Kr-h1 prevents the N-terminal five zinc-finger domains from binding with DNA, which in turn inactivates the transcription activator or inhibitor function of Kr-h1. Hry could possibly be used as a target for pesticide applications in the future.
Collapse
Affiliation(s)
- Y Mao
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Y Li
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - H Gao
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - X Lin
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou, China
| |
Collapse
|
22
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
23
|
Hu K, Tian P, Yang L, Tang Y, Qiu L, He H, Ding W, Li Y. Molecular characterization of the Krüppel-homolog 1 and its role in ovarian development in Sogatella furcifera (Hemiptera: Delphacidae). Mol Biol Rep 2019; 47:1099-1106. [DOI: 10.1007/s11033-019-05206-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/22/2019] [Indexed: 11/30/2022]
|
24
|
Zhang J, Liu X, Liu Y, An Y, Fang H, Michaud JP, Zhang H, Li Y, Zhang Q, Li Z. Molecular Characterization of Primary Juvenile Hormone Responders Methoprene-Tolerant (Met) and Krüppel Homolog 1 (Kr-h1) in Grapholita molesta (Lepidoptera: Tortricidae) with Clarification of Their Roles in Metamorphosis and Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2369-2380. [PMID: 31173097 DOI: 10.1093/jee/toz155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Methoprene-tolerant (Met) is a putative JH intracellular receptor that transduces JH signal by activation of the inducible Krüppel homolog 1 (Kr-h1). We analyzed the gene sequences of Met and Kr-h1 and their patterns of expression in Grapholita molesta (Busck) immature and adult stages in order to better understand the roles of these primary JH responders in regulating the metamorphosis and reproduction of this global pest of fruit crops. The deduced amino acid sequences of both GmMet and GmKr-h1 were highly homologous to those of other Lepidoptera, especially the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Peak expression of GmMet occurred during the last 3 to 5 d of the final instar, followed by that of GmKr-h1, in the last 3 d of final instar. Similar patterns of GmMet and GmKr-h1 expression were detected across various tissue types in the fifth-instar larvae, with the highest expression observed in the head, followed by the epidermis, and the fat body. When expression of GmMet and GmKr-h1 was knocked down via dsRNA injection in the fifth instar, the results were increased larval mortality, abnormal pupation, delayed pupal duration, reduced adult emergence, extended preoviposition period, and reduced fecundity. We infer that both GmMet and GmKr-h1 participated in regulation of metamorphosis and reproduction in G. molesta, the former acting upstream of the latter, and could present biorational targets for novel pest control compounds.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yichen Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yueqing An
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - J P Michaud
- Department of Entomology, Kansas State University, Agricultural Research Station-Hays, Hays, KS
| | - Huaijiang Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Liaoning, China
| | - Yisong Li
- The College of Agronomy, Xinjiang Agricultural University, Xinjiang, China
| | - Qingwen Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
25
|
Belles X. The innovation of the final moult and the origin of insect metamorphosis. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180415. [PMID: 31438822 DOI: 10.1098/rstb.2018.0415] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The three modes of insect postembryonic development are ametaboly, hemimetaboly and holometaboly, the latter being considered the only significant metamorphosis mode. However, the emergence of hemimetaboly, with the genuine innovation of the final moult, represents the origin of insect metamorphosis and a necessary step in the evolution of holometaboly. Hemimetaboly derives from ametaboly and might have appeared as a consequence of wing emergence in Pterygota, in the early Devonian. In extant insects, the final moult is mainly achieved through the degeneration of the prothoracic gland (PG), after the formation of the winged and reproductively competent adult stage. Metamorphosis, including the formation of the mature wings and the degeneration of the PG, is regulated by the MEKRE93 pathway, through which juvenile hormone precludes the adult morphogenesis by repressing the expression of transcription factor E93, which triggers this change. The MEKRE93 pathway appears conserved in extant metamorphosing insects, which suggest that this pathway was operative in the Pterygota last common ancestor. We propose that the final moult, and the consequent hemimetabolan metamorphosis, is a monophyletic innovation and that the role of E93 as a promoter of wing formation and the degeneration of the PG was mechanistically crucial for their emergence. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim 37, 08003 Barcelona, Spain
| |
Collapse
|
26
|
Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190225. [PMID: 31438810 DOI: 10.1098/rstb.2019.0225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Juvenile hormones and the genetic interaction between the transcription factors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb'Kr-h1, Gb'Br and the adult-specifier transcription factor Gb'E93 from the sixth to final (eighth) nymphal instar. Gb'Kr-h1 and Gb'Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb'Kr-h1 or Gb'Br knockdown in the sixth instar. The depletion of Gb'Kr-h1 or Gb'Br upregulates Gb'E93 in the sixth instar. By contrast, Gb'E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb'E93 also represses Gb'Kr-h1 and Gb'Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sayuri Tomonari
- Division of Chemical and Physical Analyses, Center for Technical Support, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| |
Collapse
|
27
|
Jindra M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190064. [PMID: 31438814 DOI: 10.1098/rstb.2019.0064] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice 370 05, Czech Republic
| |
Collapse
|
28
|
Mao Y, Li Y, Gao H, Lin X. The Direct Interaction between E93 and Kr-h1 Mediated Their Antagonistic Effect on Ovary Development of the Brown Planthopper. Int J Mol Sci 2019; 20:ijms20102431. [PMID: 31100930 PMCID: PMC6566557 DOI: 10.3390/ijms20102431] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 11/22/2022] Open
Abstract
The juvenile hormone (JH) signalling and ecdysone signalling pathways are crucial endocrine signalling pathways that orchestrate the metamorphosis of insects. The metamorphic process, the morphological change from the immature to adult forms, is orchestrated by the dramatic reduction of JH and downstream transcription factors. The Krüppel-homologue 1 (Kr-h1), a downstream transcription factor of the JH signalling pathway, represses E93 expression with an anti-metamorphic effect. However, the biochemical interaction between Kr-h1 and E93 and how the interaction regulates ovary development, a sensitive readout for endocrine regulation, remain unknown. In brown planthopper, Nilaparvata lugens, we found that the downregulation of Kr-h1 partially recovered the deteriorating effect of E93 knock-down on metamorphosis. Dual knock down of E93 and Kr-h1 increased ovary development and the number of eggs laid when compared to the effects of the knock down of E93 alone, indicating that the knock down of Kr-h1 partially recovered the deteriorating effect of the E93 knock-down on ovary development. In summary, our results indicated that E93 and Kr-h1 have antagonistic effects on regulating metamorphosis and ovary development. We tested the biochemical interaction between these two proteins and found that these molecules interact directly. Kr-h1 V and E93 II undergo strong and specific interactions, indicating that the potential interacting domain may be located in these two regions. We inferred that the nuclear receptor interaction motif (NR-box) and helix-turn-helix DNA binding motifs of the pipsqueak family (RHF1) are candidate domains responsible for the protein–protein interaction between E93 and Kr-h1. Moreover, the HA-tagged E93 and FLAG-tagged Kr-h1 were co-localized in the nucleus, and the expression of E93 was increased when Kr-h1 was downregulated, supporting that these two proteins may interact antagonistically. JH and ecdysone signalling are critical for the control of ovary development and pest populations. Our result is important for understanding the interactions between E93 and related proteins, which makes it possible to identify potential targets and develop new pesticides for pest management.
Collapse
Affiliation(s)
- Yiwen Mao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Yan Li
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Han Gao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| | - Xinda Lin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
29
|
Wang W, Peng J, Li Z, Wang P, Guo M, Zhang T, Qian W, Xia Q, Cheng D. Transcription factor E93 regulates wing development by directly promoting Dpp signaling in Drosophila. Biochem Biophys Res Commun 2019; 513:280-286. [DOI: 10.1016/j.bbrc.2019.03.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
|
30
|
Basnet S, Kamble ST. Silencing of Four Genes Involved in Chromatin Remodeling by RNA Interference Adversely Affects Fecundity of Bed Bugs (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:1440-1445. [PMID: 30010946 DOI: 10.1093/jme/tjy112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 06/08/2023]
Abstract
DNA, the blue print of life, is densely wrapped around histone proteins to form chromatin. Chromatin remodeling ATPases unwind histone-DNA interactions to facilitate DNA transcription, modification, and repair. Four genes involved in chromatin remodeling, namely, imitation SWI (iswi), chromodomain-helicase-DNA-binding protein 1 (chd-1), DNA helicase INO80 (ino80) and mi-2 were silenced through the injection of dsRNA, and phenotypes were assessed in bed bugs. Bed bugs were injected with 0.2 µg dsRNA per insect between the last thoracic segment and first abdominal segment using a fine capillary tube fitted to a nanoinjector. We observed a significant reduction in reproductive potential with all the genes tested, suggesting the essential function of chromatin remodeling ATPases in many cellular processes including egg-laying and egg-hatching. Knockdown of mi-2 and iswi completely inhibited oviposition over time. Real-time quantitative polymerase chain reaction confirmed significant knockdown of targeted mRNAs for at least 30 d, which supports persistence of RNAi in bed bugs. In addition, we observed a significant depletion of targeted transcripts in eggs laid by bed bugs injected with dsRNAs specific to chromatin remodeling ATPases. This study demonstrates the importance of chromatin remodeling ATPase in bed bug reproduction.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln, NE
| | | |
Collapse
|
31
|
Chafino S, López-Escardó D, Benelli G, Kovac H, Casacuberta E, Franch-Marro X, Kathirithamby J, Martín D. Differential expression of the adult specifier E93 in the strepsipteran Xenos vesparum Rossi suggests a role in female neoteny. Sci Rep 2018; 8:14176. [PMID: 30242215 PMCID: PMC6155025 DOI: 10.1038/s41598-018-32611-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/10/2018] [Indexed: 11/10/2022] Open
Abstract
Holometaboly is a key evolutionary innovation that has facilitated the spectacular radiation of insects. Despite the undeniable advantage of complete metamorphosis, the female of some holometabolous species have lost the typical holometabolous development through neoteny. In Xenos vesparum Rossi (Strepsiptera: Stylopidae), a derived species of the holometabolous endoparasitic order Strepsiptera, neotenic females reach sexual maturity without the pupal and the imaginal stages, thus retaining their larval morphology (with the exception of the anterior part of the body or cephalothorax), while males undergo normal pupal-based metamorphosis. Expression of the “adult-specifier” E93 factor has been shown to be required for proper metamorphosis in holometabolous insects. Here, we investigated the involvement of E93 in female neoteny by cloning XvE93. Interestingly, while we detected a clear up-regulation of XvE93 expression in pupal and adult stages of males, persistent low levels of XvE93 were detected in X. vesparum females. However, a specific up-regulation of XvE93 was observed in the cephalothorax of late 4th female instar larva, which correlates with the occurrence of neotenic-specific features in the anterior part of the female body. Moreover, the same expression dynamic in the cephalothorax and abdomen was also observed for other two critical metamorphic regulators, the anti-metamorphic XvKr-h1 and the pupal specifier XvBr-C. The specific up-regulation of XvE93 and XvBr-C in the female cephalothorax seems to be the result of an increase in 20-hydroxyecdysone (20E) signaling in this region for we detected higher expression levels of the 20E-dependent nuclear receptors XvHR3 and XvE75 in the cephalothorax. Overall, our results detect a sex-specific expression pattern of critical metamorphic genes in X. vesparum, suggesting that neoteny in Strepsiptera results from the modification of the normal expression of E93, Br-C and Kr-h1 genes.
Collapse
Affiliation(s)
- S Chafino
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - D López-Escardó
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - G Benelli
- Department of Agriculture, Food and Environment, University of Pisa via del Borghetto 80, 56124, Pisa, Italy
| | - H Kovac
- Institut für Biologie, Universitaet Graz, Universitaetsplatz 2, A-8010, Graz, Austria
| | - E Casacuberta
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - X Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - J Kathirithamby
- Department of Zoology, University of Oxford, Oxford, United Kingdom.
| | - D Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra) Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
32
|
Guo W, Wu Z, Yang L, Cai Z, Zhao L, Zhou S. Juvenile hormone–dependent Kazal‐type serine protease inhibitor Greglin safeguards insect vitellogenesis and egg production. FASEB J 2018; 33:917-927. [DOI: 10.1096/fj.201801068r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Wei Guo
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Zhongxia Wu
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| | - Libin Yang
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| | - Zhaokui Cai
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Lianfeng Zhao
- State Key Laboratory of Integrated Management of Pest Insects and RodentsInstitute of ZoologyChinese Academy of Sciences Beijing China
| | - Shutang Zhou
- Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan University Kaifeng China
| |
Collapse
|
33
|
Basnet S, Kamble ST. RNAi-Mediated Knockdown of vATPase Subunits Affects Survival and Reproduction of Bed Bugs (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:540-546. [PMID: 29438553 DOI: 10.1093/jme/tjy001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Indexed: 06/08/2023]
Abstract
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) has resurged as one of the most troublesome household pests affecting people across the globe. Bed bug infestations have increased in recent years primarily due to the evolution of insecticide resistance and the insect's ability to hitchhike with travelers. vATPases are one of the most evolutionarily conserved holoenzymes in eukaryotes, which are mainly involved in proton transport across the plasma membranes and intracellular organelles. RNA interference (RNAi) has been developed as a promising tool for insect control. In this study, we used RNAi as an approach to knock down subunits A and E of the vATPase gene of bed bugs. Delivery of 0.2 µg/insect of dsRNA specific to vATPase-A and vATPase-E into female bed bugs dramatically impaired the laying and viability of eggs over time. Injection of the vATPase-E dsRNA decreased survival of the bed bugs over 30 d. Our results also showed that the knockdown of mRNA is highly effective and persistent up to 30 d post injection. This research demonstrated that silencing of the two vATPase subunits A and E offers a potential strategy to suppress bed bug populations.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE
| | - Shripat T Kamble
- Department of Entomology, University of Nebraska, 103 Entomology Hall, Lincoln, NE
| |
Collapse
|
34
|
Basnet S, Kamble ST. Knockdown of the Chromatin Remodeling Gene Brahma by RNA Interference Reduces Reproductive Fitness and Lifespan in Common Bed Bug (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:534-539. [PMID: 29272428 DOI: 10.1093/jme/tjx234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) is a nuisance household pest causing significant medical and economic impacts. RNA interference (RNAi) of genes that are involved in vital physiological processes can serve as potential RNAi targets for insect control. Brahma is an ATPase subunit of a chromatin-remodeling complex involved in transcription of several genes for cellular processes, most importantly the homeotic genes. In this study, we used a microinjection technique to deliver double stranded RNA into female bed bugs. Delivery of 0.05 and 0.5 µg/insect of brahma dsRNA directly into hemocele resulted substantial reduction in oviposition. Eggs laid by bed bugs receiving both doses of brahma dsRNA exhibited significantly lower hatching percentage as compared to controls. In addition, brahma RNAi in female bed bugs caused significant mortality. Our results disclosed the potential of brahma RNAi to suppress bed bug population through injection of specific dsRNA, suggesting a critical function of this gene in bed bugs' reproduction and survival. Based on our data, brahma can be a promising RNAi target for suppression of bed bug population.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln
| | | |
Collapse
|
35
|
Basnet S, Kamble ST. RNA Interference of the Muscle Actin Gene in Bed Bugs: Exploring Injection Versus Topical Application for dsRNA Delivery. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:4999034. [PMID: 29788394 PMCID: PMC5961172 DOI: 10.1093/jisesa/iey045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Bed bugs are one the most troublesome household pests that feed primarily on human blood. RNA interference (RNAi) is currently being pursued as a potential tool for insect population management and has shown efficacy against some phytophagous insects. We evaluated the different techniques to deliver dsRNA specific to bed bug muscle actin (dsactin) into bed bugs. Initially, stability of dsRNA in human blood was studied to evaluate the feasibility of feeding method. Adult bed bugs were injected with dsRNA between last thoracic segment and first abdominal segment on the ventral side, with a dose of 0.2 µg dsactin per insect. In addition to injection, dsactin was mixed in acetone and treated topically in the abdomens of fifth stage nymphs. We found the quick degradation of dsRNA in blood. Injection of dsactin caused significant depletion of actin transcripts and substantial reduction in oviposition and lethality in female adults. Topically treated dsRNA in fifth stage nymphs had no effect on actin mRNA expression and survival. Our results demonstrated that injection is a reliable method of dsRNA delivery into bed bugs while topical treatment was not successful. This research provides an understanding on effective delivery methods of dsRNA into bed bugs for functional genomics research and feasibility of the RNAi based molecules for pest management purposes.
Collapse
Affiliation(s)
- Sanjay Basnet
- Department of Entomology, University of Nebraska, Lincoln, NE
| | - Shripat T Kamble
- Department of Entomology, University of Nebraska, Lincoln, NE
- Corresponding author, e-mail:
| |
Collapse
|
36
|
Gujar H, Palli SR. Juvenile hormone regulation of female reproduction in the common bed bug, Cimex lectularius. Sci Rep 2016; 6:35546. [PMID: 27762340 PMCID: PMC5071884 DOI: 10.1038/srep35546] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/27/2016] [Indexed: 01/23/2023] Open
Abstract
To begin studies on reproduction in common bed bug, Cimex lectularius, we identified three genes coding for vitellogenin (Vg, a protein required for the reproductive success of insects) and studied their hormonal regulation. RNA interference studied showed that expression of Vg3 gene in the adult females is a prerequisite for successful completion of embryogenesis in the eggs laid by them. Juvenile hormone (JH) receptor, Methoprene-tolerant (Met), steroid receptor coactivator (SRC) and GATAa but not ecdysone receptor (EcR) or its partner, ultraspiracle (USP) are required for expression of Vg genes. Feeding and mating working through Vg, Met, SRC, EcR, and GATAa regulate oocyte development. Knockdown of the expression of Met, SRC, EcR, USP, BR-C (Broad-Complex), TOR (target of rapamycin), and GATAa in female adults resulted in a reduction in the number eggs laid by them. Interestingly, Kruppel homolog 1 (Kr-h1) knockdown in the adult females did not reduce their fecundity but affected the development of embryos in the eggs laid by females injected with Kr-h1 double-stranded RNA. These data suggest that JH functioning through Met and SRC regulate both vitellogenesis and oogenesis in C. lectularius. However, JH does not work through Kr-h1 but may work through transcription factors not yet identified.
Collapse
Affiliation(s)
- Hemant Gujar
- Department of Entomology University of Kentucky, Lexington, KY 40546-0091, USA
| | - Subba Reddy Palli
- Department of Entomology University of Kentucky, Lexington, KY 40546-0091, USA
| |
Collapse
|