1
|
Wang X, Lu X, Wang M, Zhou Q, Wang X, Yang W, Liu K, Gao R, Liao T, Chen Y, Hu J, Gu M, Hu S, Liu X, Liu X. RNA-Seq Profiling in Chicken Spleen and Thymus Infected with Newcastle Disease Virus of Varying Virulence. Vet Sci 2024; 11:569. [PMID: 39591343 PMCID: PMC11599091 DOI: 10.3390/vetsci11110569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant JS/7/05/Ch during poultry immunization. Here, we aimed to explore the mechanisms underlying virulence enhancement of the two viruses. Pathogenically, JS/7/05/Ch mediated stronger virulence and pathogenicity in vivo compared to Mukteswar. Comparative transcriptome analysis revealed 834 differentially expressed genes (DEGs), comprising 339 up-regulated and 495 down-regulated genes, in the spleen, and 716 DEGs, with 313 up-regulated and 403 down-regulated genes, in the thymus. Gene Ontology (GO) analysis indicated that these candidate targets primarily participated in cell and biological development, extracellular part and membrane composition, as well as receptor and binding activity. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis unveiled a substantial portion of candidate genes predominantly involved in cellular processes, environmental information processing, metabolism, and organismal systems. Additionally, five DEGs (TRAT1, JUP, LPAR4, CYB561A3, and CXCR5) were randomly identified through RNA-seq analysis and subsequently confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). The findings revealed a marked up-regulation in the expression levels of these DEGs induced by JS/7/05/Ch compared to Mukteswar, with CYB561A3 and CXCR5 exhibiting significant increases. The findings corroborated the sequencing accuracy, offering promising research directions. Taken together, we comprehensively evaluated transcriptomic alterations in chicken immune organs infected by NDV strains of diverse virulence. This study establishes a basis and direction for NDV virulence research.
Collapse
Affiliation(s)
- Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiaolong Lu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Mingzhu Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
| | - Qiwen Zhou
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
| | - Xiyue Wang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
| | - Wenhao Yang
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Kaituo Liu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225000, China
| | - Ruyi Gao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Tianxing Liao
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Yu Chen
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Jiao Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Min Gu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Shunlin Hu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| | - Xiaowen Liu
- Key Laboratory of Avian Bioproducts Development, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225000, China; (X.W.); (X.L.); (M.W.); (Q.Z.); (X.W.); (W.Y.); (R.G.); (T.L.); (Y.C.); (J.H.); (M.G.); (S.H.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
2
|
Uttam V, Vohra V, Chhotaray S, Santhosh A, Diwakar V, Patel V, Gahlyan RK. Exome-wide comparative analyses revealed differentiating genomic regions for performance traits in Indian native buffaloes. Anim Biotechnol 2024; 35:2277376. [PMID: 37934017 DOI: 10.1080/10495398.2023.2277376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
In India, 20 breeds of buffalo have been identified and registered, yet limited studies have been conducted to explore the performance potential of these breeds, especially in the Indian native breeds. This study is a maiden attempt to delineate the important variants and unique genes through exome sequencing for milk yield, milk composition, fertility, and adaptation traits in Indian local breeds of buffalo. In the present study, whole exome sequencing was performed on Chhattisgarhi (n = 3), Chilika (n = 4), Gojri (n = 3), and Murrah (n = 4) buffalo breeds and after stringent quality control, 4333, 6829, 4130, and 4854 InDels were revealed, respectively. Exome-wide FST along 100-kb sliding windows detected 27, 98, 38, and 35 outlier windows in Chhattisgarhi, Chilika, Gojri, and Murrah, respectively. The comparative exome analysis of InDels and subsequent gene ontology revealed unique breed specific genes for milk yield (CAMSAP3), milk composition (CLCN1, NUDT3), fertility (PTGER3) and adaptation (KCNA3, TH) traits. Study provides insight into mechanism of how these breeds have evolved under natural selection, the impact of these events on their respective genomes, and their importance in maintaining purity of these breeds for the traits under study. Additionally, this result will underwrite to the genetic acquaintance of these breeds for breeding application, and in understanding of evolution of these Indian local breeds.
Collapse
Affiliation(s)
- Vishakha Uttam
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Vohra
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Supriya Chhotaray
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Ameya Santhosh
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vikas Diwakar
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Vaibhav Patel
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rajesh Kumar Gahlyan
- Animal Genetics & Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
3
|
Yao H, Pan Z, Ma W, Zhao Z, Su Z, Yang J. Whole-Genome Resequencing Analysis of the Camelus bactrianus (Bactrian Camel) Genome Identifies Mutations and Genes Affecting Milk Production Traits. Int J Mol Sci 2024; 25:7836. [PMID: 39063078 PMCID: PMC11277051 DOI: 10.3390/ijms25147836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Milk production is an important trait that influences the economic value of camels. However, the genetic regulatory mechanisms underlying milk production in camels have not yet been elucidated. We aimed to identify candidate molecular markers that affect camel milk production. We classified Junggar Bactrian camels (9-10-year-old) as low-yield (<1.96 kg/d) or high-yield (>2.75 kg/d) based on milk production performance. Milk fat (5.16 ± 0.51 g/100 g) and milk protein (3.59 ± 0.22 g/100 g) concentrations were significantly lower in high-yielding camels than those in low-yielding camels (6.21 ± 0.59 g/100 g, and 3.93 ± 0.27 g/100 g, respectively) (p < 0.01). There were no apparent differences in gland tissue morphology between the low- and high-production groups. Whole-genome resequencing of 12 low- and 12 high-yield camels was performed. The results of selection mapping methods, performed using two methods (FST and θπ), showed that 264 single nucleotide polymorphism sites (SNPs) overlapped between the two methods, identifying 181 genes. These genes were mainly associated with the regulation of oxytocin, estrogen, ErbB, Wnt, mTOR, PI3K-Akt, growth hormone synthesis/secretion/action, and MAPK signaling pathways. A total of 123 SNPs were selected, based on significantly associated genomic regions and important pathways for SNP genotyping, for verification in 521 additional Bactrian camels. This analysis showed that 13 SNPs were significantly associated with camel milk production yield and 18 SNPs were significantly associated with camel milk composition percentages. Most of these SNPs were located in coding regions of the genome. However, five and two important mutation sites were found in the introns of CSN2 (β-casein) and CSN3 (κ-casein), respectively. Among the candidate genes, NR4A1, ADCY8, PPARG, CSN2, and CSN3 have previously been well studied in dairy livestock. These observations provide a basis for understanding the molecular mechanisms underlying milk production in camels as well as genetic markers for breeding programs aimed at improving milk production.
Collapse
Affiliation(s)
- Huaibing Yao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhangyuan Pan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Zhongkai Zhao
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (W.M.); (Z.S.)
| | - Jie Yang
- Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China; (H.Y.); (Z.Z.)
- Xinjiang Camel Industry Engineering Technology Research Center, Urumqi 830017, China
| |
Collapse
|
4
|
Ayalew W, Wu X, Tarekegn GM, Sisay Tessema T, Naboulsi R, Van Damme R, Bongcam-Rudloff E, Edea Z, Chu M, Enquahone S, Liang C, Yan P. Whole Genome Scan Uncovers Candidate Genes Related to Milk Production Traits in Barka Cattle. Int J Mol Sci 2024; 25:6142. [PMID: 38892330 PMCID: PMC11172929 DOI: 10.3390/ijms25116142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.
Collapse
Affiliation(s)
- Wondossen Ayalew
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Xiaoyun Wu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Getinet Mekuriaw Tarekegn
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
- Scotland’s Rural College (SRUC), Easter Bush Campus, Roslin Institute Building, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Tesfaye Sisay Tessema
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Rakan Naboulsi
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institute, Tomtebodavägen 18A, 17177 Stockholm, Sweden
| | - Renaud Van Damme
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Erik Bongcam-Rudloff
- Department of Animal Biosciences, Bioinformatics Section, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden (E.B.-R.)
| | - Zewdu Edea
- Ethiopian Bio and Emerging Technology Institute, Addis Ababa P.O. Box 5954, Ethiopia;
| | - Min Chu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Solomon Enquahone
- Institute of Biotechnology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia
| | - Chunnian Liang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| | - Ping Yan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (W.A.); (X.W.); (M.C.)
| |
Collapse
|
5
|
Ghulam Mohyuddin S, Liang Y, Xia Y, Wang M, Zhang H, Li M, Yang Z, A. Karrow N, Mao Y. Identification and Classification of Long Non-Coding RNAs in the Mammary Gland of the Holstein Cow. Int J Mol Sci 2023; 24:13585. [PMID: 37686392 PMCID: PMC10487475 DOI: 10.3390/ijms241713585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The mammary glands, responsible for milk secretion, are regulated at a local level by various hormones, growth factors, non-coding RNAs, and other elements. Recent research has discovered the presence of lncRNAs in these glands, with suggestions that they may be essential for the maintenance and function of mammary glands. Besides directly controlling the gene and protein expression, lncRNAs are believed to play a significant part in numerous physiological and pathological processes. This study focused on examining the mammary gland tissues of Chinese Holstein cows, to identify and categorize long non-coding RNAs (lncRNAs). The research intended to distinguish lncRNAs in the mammary tissues of Holstein cows and contrast them between lactation and non-lactation periods. In this study, mammary gland tissues were sampled from three Holstein cows in early lactation (n = 3, 30 days postpartum) and non-lactation (n = 3, 315 days postpartum) on a large dairy farm in Jiangsu province. Mammary tissue samples were collected during early lactation and again during non-lactation. In total, we detected 1905 lncRNAs, with 57.3% being 500 bp and 612 intronic lncRNAs. The exon count for lncRNAs varied from 2 to 10. It was observed that 96 lncRNA expressions markedly differed between the two stages, with 83 genes being upregulated and 53 downregulated. Enrichment analysis results revealed that Gene Ontology (GO) analysis was primarily abundant in cellular processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that target genes were predominantly abundant in metabolic pathways, fatty acid biosynthesis, the immune system, and glycosphingolipid biosynthesis. This study analyzed the expression profile and characteristics of lncRNAs in the mammary gland tissues of Holstein cows during both lactation and non-lactation stages, forming a foundation for further investigation into the functional roles of lncRNAs in Holstein cows throughout lactation.
Collapse
Affiliation(s)
- Sahar Ghulam Mohyuddin
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yuxin Xia
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mengqi Wang
- Department of Animal Science, Laval University, Québec, QC G1V-0A6, Canada
| | - Huimin Zhang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Niel A. Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G-2W1, Canada
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (S.G.M.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
6
|
Li R, Zhao Y, Liang B, Pu Y, Jiang L, Ma Y. Genome-Wide Signal Selection Analysis Revealing Genes Potentially Related to Sheep-Milk-Production Traits. Animals (Basel) 2023; 13:ani13101654. [PMID: 37238084 DOI: 10.3390/ani13101654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Natural selection and domestication have shaped modern sheep populations into a vast range of phenotypically diverse breeds. Among these breeds, dairy sheep have a smaller population than meat sheep and wool sheep, and less research is performed on them, but the lactation mechanism in dairy sheep is critically important for improving animal-production methods. In this study, whole-genome sequences were generated from 10 sheep breeds, including 57 high-milk-yield sheep and 44 low-milk-yield sheep, to investigate the genetic signatures of milk production in dairy sheep, and 59,864,820 valid SNPs (Single Nucleotide Polymorphisms) were kept after quality control to perform population-genetic-structure analyses, gene-detection analyses, and gene-function-validation analyses. For the population-genetic-structure analyses, we carried out PCA (Principal Component Analysis), as well as neighbor-joining tree and structure analyses to classify different sheep populations. The sheep used in our study were well distributed in ten groups, with the high-milk-yield-group populations close to each other and the low-milk-yield-group populations showing similar classifications. To perform an exact signal-selection analysis, we used three different methods to find SNPs to perform gene-annotation analyses within the 995 common regions derived from the fixation index (FST), nucleotide diversity (Ɵπ), and heterozygosity rate (ZHp) results. In total, we found 553 genes that were located in these regions. These genes mainly participate in the protein-binding pathway and the nucleoplasm-interaction pathway, as revealed by the GO- and KEGG-function-enrichment analyses. After the gene selection and function analyses, we found that FCGR3A, CTSK, CTSS, ARNT, GHR, SLC29A4, ROR1, and TNRC18 were potentially related to sheep-milk-production traits. We chose the strongly selected genes, FCGR3A, CTSK, CTSS, and ARNT during the signal-selection analysis to perform a RT-qPCR (Reale time Quantitative Polymerase Chain Reaction) experiment to validate their expression-level relationship with milk production, and the results showed that FCGR3A has a significant negative relationship with sheep-milk production, while other three genes did not show any positive or negative relations. In this study, it was discovered and proven that the candidate gene FCGR3A potentially contributes to the milk production of dairy sheep and a basis was laid for the further study of the genetic mechanism underlying the strong milk-production traits of sheep.
Collapse
Affiliation(s)
- Ruonan Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Yuhetian Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Benmeng Liang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yabin Pu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Lin Jiang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
| |
Collapse
|
7
|
Helmi N, Alammari D, Mobashir M. Role of Potential COVID-19 Immune System Associated Genes and the Potential Pathways Linkage with Type-2 Diabetes. Comb Chem High Throughput Screen 2022; 25:2452-2462. [PMID: 34348612 DOI: 10.2174/1386207324666210804124416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/30/2021] [Accepted: 06/06/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND Coronavirus is an enclosed positive-sense RNA virus with club-like spikes extending from its surface. It is most typically associated with acute respiratory infections in humans, but its capacity to infect many host species and cause multiple illnesses makes it a complicated pathogen. The frequent encounters between wild animals and humans are a typical cause of infection. The zoonotic infections SARS-CoV and MERS-CoV are among the most common causes of serious respiratory illnesses in humans. AIM The main goal of this research was to look at gene expression profiles in human samples that were either infected with coronavirus or were not, and compare the varied expression patterns and their functional implications. METHODS The previously researched samples were acquired from a public database for this purpose, and the study was conducted, which included gene expression analysis, pathway analysis, and network-level comprehension. The results for differentially expressed genes, enriched pathways, and networks for prospective genes and gene sets are presented in the analysis. In terms of COVID-19 gene expression and its relationship to type 2 diabetes. RESULTS We see a lot of genes that have different gene expression patterns than normal for coronavirus infection, but in terms of pathways, it appears that there are only a few sets of functions that are affected by altered gene expression, and they are related to infection, inflammation, and the immune system. CONCLUSION Based on our study, we conclude that the potential genes which are affected due to infection are NFKBIA, MYC, FOXO3, BIRC3, ICAM1, IL8, CXCL1/2/5, GADD45A, RELB, SGK1, AREG, BBC3, DDIT3/4, EGR1, MTHFD2, and SESN2 and the functional changes are mainly associated with these pathways: TNF, cytokine, NF-kB, TLR, TCR, BCR, Foxo, and TGF signaling pathways are among them and there are additional pathways such as hippo signaling, apoptosis, estrogen signaling, regulating pluropotency of stem cells, ErbB, Wnt, p53, cAMP, MAPK, PI3K-AKT, oxidative phosphorylation, protein processing in endoplasmic reticulum, prolactin signaling, adipocytokine, neurotrophine signaling, and longevity regulating pathways. SMARCD3, PARL, GLIPR1, STAT2, PMAIP1, GP1BA, and TOX genes and PI3K-Akt, focal adhesion, Foxo, phagosome, adrenergic, osteoclast differentiation, platelet activation, insulin, cytokine- cytokine interaction, apoptosis, ECM, JAK-STAT, and oxytocin signaling appear as the linkage between COVID-19 and Type-2 diabetes.
Collapse
Affiliation(s)
- Nawal Helmi
- Department of Biochemistry, College of Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Dalia Alammari
- Department of Microbiology and Immunology, Faculty of Medicine, Ibn Sina National College, Jeddah, Saudi Arabia
| | - Mohammad Mobashir
- Department of Microbiology, Tumor and Cell Biology (MTC) Karolinska Institute, Novels väg 16, 17165 Solna, Swedan.,Department of Computer Science and Software Engineering Leader, Data Science Research Group, College of Information Technology (CIT), United Arab Emirate University (UAEU), Al Ain 17551, United Arab Emirates
| |
Collapse
|
8
|
Wang M, Bissonnette N, Laterrière M, Dudemaine PL, Gagné D, Roy JP, Zhao X, Sirard MA, Ibeagha-Awemu EM. Methylome and transcriptome data integration reveals potential roles of DNA methylation and candidate biomarkers of cow Streptococcus uberis subclinical mastitis. J Anim Sci Biotechnol 2022; 13:136. [PMCID: PMC9639328 DOI: 10.1186/s40104-022-00779-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Mastitis caused by different pathogens including Streptococcus uberis (S. uberis) is responsible for huge economic losses to the dairy industry. In order to investigate the potential genetic and epigenetic regulatory mechanisms of subclinical mastitis due to S. uberis, the DNA methylome (whole genome DNA methylation sequencing) and transcriptome (RNA sequencing) of milk somatic cells from cows with naturally occurring S. uberis subclinical mastitis and healthy control cows (n = 3/group) were studied.
Results
Globally, the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns. The DNA methylation levels at the promoter, first exon and first intron regions were negatively correlated with the expression level of genes at a whole-genome-wide scale. In general, DNA methylation level was lower in S. uberis-positive group (SUG) than in the control group (CTG). A total of 174,342 differentially methylated cytosines (DMCs) (FDR < 0.05) were identified between SUG and CTG, including 132,237, 7412 and 34,693 DMCs in the context of CpG, CHG and CHH (H = A or T or C), respectively. Besides, 101,612 methylation haplotype blocks (MHBs) were identified, including 451 MHBs that were significantly different (dMHB) between the two groups. A total of 2130 differentially expressed (DE) genes (1378 with up-regulated and 752 with down-regulated expression) were found in SUG. Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with significant changes in their methylation levels and/or gene expression changes (MetGDE genes, MethGET P-value < 0.001). Functional enrichment of genes harboring ≥ 15 DMCs, DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S. uberis infection, especially cytokine activities. Furthermore, discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers, including 6 DE genes, 15 CpG-DMCs and 5 dMHBs that discriminated between SUG and CTG.
Conclusion
The integration of methylome and transcriptome of milk somatic cells suggests the possible involvement of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S. uberis. The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance.
Collapse
|
9
|
An Integrated Analysis of Lactation-Related miRNA and mRNA Expression Profiles in Donkey Mammary Glands. Genes (Basel) 2022; 13:genes13091637. [PMID: 36140805 PMCID: PMC9498803 DOI: 10.3390/genes13091637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Donkey milk is consumed by humans for its nutritional and therapeutic properties. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been implicated in the regulation of milk component synthesis and mammary gland development. However, the regulatory profile of the miRNAs and mRNAs involved in lactation in donkeys is unclear. We performed mRNA-seq and miRNA-seq and constructed coexpression regulatory networks for the mammary glands during the lactating and nonlactating period of jennies. We identified 3144 differentially expressed (DE) mRNAs (987 upregulated mRNAs and 2157 downregulated mRNAs) and 293 DE miRNAs (231 upregulated miRNAs and 62 downregulated miRNAs) in the lactating group compared to the nonlactating group. The DE miRNA target mRNA were significantly associated with pathways related to RNA polymerase, glycosphingolipid biosynthesis, mRNA surveillance, ribosome biogenesis in eukaryotes, glycerophospholipid metabolism, Ras signaling, and the fly hippo signaling pathway. The mRNA–miRNA coregulation analysis showed that novel-m0032-3p, miR-195, miR-26-5p, miR-23-3p, miR-674-3p, and miR-874-3p are key miRNAs that target mRNAs involved in immunity and milk lipid, protein, and vitamin metabolism in the jenny mammary gland. Our results improve the current knowledge of the molecular mechanisms regulating bioactive milk component metabolism in the mammary glands and could be used to improve milk production in donkeys.
Collapse
|
10
|
Krishna N, Vishwakarma S, Katara P. Identification and annotation of milk associated genes from milk somatic cells using expression and RNA-seq data. Bioinformation 2022; 18:703-709. [PMID: 37323558 PMCID: PMC10266364 DOI: 10.6026/97320630018703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 09/20/2023] Open
Abstract
It is of interest to identify and annotate milk associated genes using expression profiling and RNA-Seq data from milk somatic cells. RNA-Seq data was pre-processed and mapping was done to identify differentially expressed genes (DEG). The functional insights about the up and down regulated genes were gleaned using the protein-protein interaction Network in the STRING database followed by CytoHubba analysis in Cytoscope. Gene ontology, annotation and pathway enrichment was completed using ShinyGO, David tool and QTL analysis. These analysis shows that 21 genes are linked with the secretion of milk.
Collapse
Affiliation(s)
- Neelam Krishna
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| | - Shraddha Vishwakarma
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| | - Pramod Katara
- Computational Omics Lab, Centre of Bioinformatics, University of Allahabad, Prayagraj - 211002, India
| |
Collapse
|
11
|
Moradi MH, Mahmodi R, Farahani AHK, Karimi MO. Genome-wide evaluation of copy gain and loss variations in three Afghan sheep breeds. Sci Rep 2022; 12:14286. [PMID: 35996004 PMCID: PMC9395407 DOI: 10.1038/s41598-022-18571-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
Copy number variation (CNV) is one of the main sources of variation between different individuals that has recently attracted much researcher interest as a major source for heritable variation in complex traits. The aim of this study was to identify CNVs in Afghan indigenous sheep consisting of three Arab, Baluchi, and Gadik breeds using genomic arrays containing 53,862 single nucleotide polymorphism (SNP) markers. Data were analyzed using the Hidden Markov Model (HMM) of PennCNV software. In this study, out of 45 sheep studied, 97.8% (44 animals) have shown CNVs. In total, 411 CNVs were observed for autosomal chromosomes and the entire sequence length of around 144 Mb was identified across the genome. The average number of CNVs per each sheep was 9.13. The identified CNVs for Arab, Baluchi, and Gadik breeds were 306, 62, and 43, respectively. After merging overlapped regions, a total of 376 copy number variation regions (CNVR) were identified, which are 286, 50, and 40 for Arab, Baluchi, and Gadik breeds, respectively. Bioinformatics analysis was performed to identify the genes and QTLs reported in these regions and the biochemical pathways involved by these genes. The results showed that many of these CNVRs overlapped with the genes or QTLs that are associated with various pathways such as immune system development, growth, reproduction, and environmental adaptions. Furthermore, to determine a genome-wide pattern of selection signatures in Afghan sheep breeds, the unbiased estimates of FST was calculated and the results indicated that 37 of the 376 CNVRs (~ 10%) have been also under selection signature, most of those overlapped with the genes influencing production, reproduction and immune system. Finally, the statistical methods used in this study was applied in an external dataset including 96 individuals of the Iranian sheep breed. The results indicated that 20 of the 114 CNVRs (18%) identified in Iranian sheep breed were also identified in our study, most of those overlapped with the genes influencing production, reproduction and immune system. Overall, this is the first attempts to develop the genomic map of loss and gain variation in the genome of Afghan indigenous sheep breeds, and may be important to shed some light on the genomic regions associated with some economically important traits in these breeds.
Collapse
Affiliation(s)
- Mohammad Hossein Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Roqiah Mahmodi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | | | - Mohammad Osman Karimi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Herat University, Herat, Afghanistan
| |
Collapse
|
12
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
13
|
Liang Y, Gao Q, Wang H, Guo M, Arbab AAI, Nazar M, Li M, Yang Z, Karrow NA, Mao Y. Identification and Characterization of Circular RNAs in Mammary Tissue from Holstein Cows at Early Lactation and Non-Lactation. Biomolecules 2022; 12:478. [PMID: 35327670 PMCID: PMC8946036 DOI: 10.3390/biom12030478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, circular RNAs (circRNAs) from Holstein cow mammary tissues were identified and compared between early lactation and non-lactation. After analysis, 10,684 circRNAs were identified, ranging from 48 to 99,406 bp, and the average size was 882 bp. The circRNAs were mainly distributed on chromosomes 1 to 11, and 89.89% of the circRNAs belonged to sense-overlapping circRNA. The exons contained with circRNAs ranged from 1 to 47 and were concentrated from 1 to 5. Compared with the non-lactating cows, 87 circRNAs were significantly differentially expressed in the peak lactation cows. There were 68 upregulated circRNAs and 19 downregulated circRNAs. Enrichment analysis of circRNAs showed that GO analysis mainly focused on immune response, triglyceride transport, T cell receptor signaling pathway, etc. Pathway analysis mainly focused on cytokine-cytokine receptor interaction, T helper 17 cell differentiation, fatty acid biosynthesis, the JAK-STAT signaling pathway, etc. Specific primers were designed for two proximal ends of the circRNA junction sites to allow for PCR validation of four randomly selected circRNAs and carry out circRNA-miRNA interaction research. This study revealed the expression profile and characteristics of circRNAs in mammary tissue from Holstein cows at early lactation and non-lactation, thus providing rich information for the study of circRNA functions and mechanisms, as well as potential candidate miRNA genes for studying lactation in Holstein cows.
Collapse
Affiliation(s)
- Yan Liang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Qisong Gao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Haiyang Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Mengling Guo
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Abdelaziz Adam Idriss Arbab
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Biomedical Research Institute, Darfur University College, Nyala 63313, Sudan
| | - Mudasir Nazar
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Mingxun Li
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
| | - Zhangping Yang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Niel A. Karrow
- Center for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Yongjiang Mao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, Department of Animal Breeding and Production, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.L.); (Q.G.); (H.W.); (M.G.); (A.A.I.A.); (M.N.); (M.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
14
|
Zhang Y, Cai W, Li Q, Wang Y, Wang Z, Zhang Q, Xu L, Xu L, Hu X, Zhu B, Gao X, Chen Y, Gao H, Li J, Zhang L. Transcriptome Analysis of Bovine Rumen Tissue in Three Developmental Stages. Front Genet 2022; 13:821406. [PMID: 35309117 PMCID: PMC8928727 DOI: 10.3389/fgene.2022.821406] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/21/2022] [Indexed: 01/23/2023] Open
Abstract
Rumen development is a crucial physiological challenge for ruminants. However, the molecular mechanism regulating rumen development has not been clearly elucidated. In this study, we investigated genes involved in rumen development in 13 rumen tissues from three developmental stages (birth, youth, and adult) using RNA sequencing. We identified that 6,048 genes were differentially expressed among three developmental stages. Using weighted correlation network analysis, we found that 12 modules were significantly associated with developmental stages. Functional annotation and protein–protein interaction (PPI) network analysis revealed that CCNB1, CCNB2, IGF1, IGF2, HMGCL, BDH1, ACAT1, HMGCS2, and CREBBP involved in rumen development. Integrated transcriptome with GWAS information of carcass weight (CW), stomach weight (SW), marbling score (MS), backfat thickness (BFT), ribeye area (REA), and lean meat weight (LMW), we found that upregulated DEGs (fold change 0∼1) in birth–youth comparison were significantly enriched with GWAS signals of MS, downregulated DEGs (fold change >3) were significantly enriched with GWAS signals of SW, and fold change 0∼1 up/downregulated DEGs in birth–adult comparison were significantly enriched with GWAS signals of CW, LMW, REA, and BFT. Furthermore, we found that GWAS signals for CW, LMW, and REA were enriched in turquoise module, and GWAS signals for CW was enriched in lightgreen module. Our study provides novel insights into the molecular mechanism underlying rumen development in cattle and highlights an integrative analysis for illustrating the genetic architecture of beef complex traits.
Collapse
Affiliation(s)
- Yapeng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qian Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zezhao Wang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qi Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingyang Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Xu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Animal Husbandry and Veterinary Research, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xin Hu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xue Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijiang Gao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junya Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Junya Li, ; Lupei Zhang,
| | - Lupei Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Junya Li, ; Lupei Zhang,
| |
Collapse
|
15
|
Cai W, Li C, Li J, Song J, Zhang S. Integrated Small RNA Sequencing, Transcriptome and GWAS Data Reveal microRNA Regulation in Response to Milk Protein Traits in Chinese Holstein Cattle. Front Genet 2021; 12:726706. [PMID: 34712266 PMCID: PMC8546187 DOI: 10.3389/fgene.2021.726706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Milk protein is one of the most important economic traits in the dairy industry. Yet, the regulatory network of miRNAs for the synthesis of milk protein in mammary is poorly understood. Samples from 12 Chinese Holstein cows with three high ( ≥ 3.5%) and three low ( ≤ 3.0%) phenotypic values for milk protein percentage in lactation and non-lactation were examined through deep small RNA sequencing. We characterized 388 known and 212 novel miRNAs in the mammary gland. Differentially expressed analysis detected 28 miRNAs in lactation and 52 miRNAs in the non-lactating period with a highly significant correlation with milk protein concentration. Target prediction and correlation analysis identified some key miRNAs and their targets potentially involved in the synthesis of milk protein. We analyzed for enrichments of GWAS signals in miRNAs and their correlated targets. Our results demonstrated that genomic regions harboring DE miRNA genes in lactation were significantly enriched with GWAS signals for milk protein percentage traits and that enrichments within DE miRNA targets were significantly higher than in random gene sets for the majority of milk production traits. This integrated study on the transcriptome and posttranscriptional regulatory profiles between significantly differential phenotypes of milk protein concentration provides new insights into the mechanism of milk protein synthesis, which should reveal the regulatory mechanisms of milk secretion.
Collapse
Affiliation(s)
- Wentao Cai
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
16
|
Use of a short-term nutritional supplementation for transcriptional profiling of liver tissues in sheep. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Fan Y, Han Z, Lu X, Arbab AAI, Nazar M, Yang Y, Yang Z. Short Time-Series Expression Transcriptome Data Reveal the Gene Expression Patterns of Dairy Cow Mammary Gland as Milk Yield Decreased Process. Genes (Basel) 2021; 12:genes12060942. [PMID: 34203058 PMCID: PMC8235497 DOI: 10.3390/genes12060942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/29/2022] Open
Abstract
The existing research on dairy cow mammary gland genes is extensive, but there have been few reports about dynamic changes in dairy cow mammary gland genes as milk yield decrease. For the first time, transcriptome analysis based on short time-series expression miner (STEM) and histological observations were performed using the Holstein dairy cow mammary gland to explore gene expression patterns in this process of decrease (at peak, mid-, and late lactation). Histological observations suggested that the number of mammary acinous cells at peak/mid-lactation was significantly higher than that at mid-/late lactation, and the lipid droplets area secreted by dairy cows was almost unaltered across the three stages of lactation (p > 0.05). Totals of 882 and 1439 genes were differentially expressed at mid- and late lactation, respectively, compared to peak lactation. Function analysis showed that differentially expressed genes (DEGs) were mainly related to apoptosis and energy metabolism (fold change ≥ 2 or fold change ≤ 0.5, p-value ≤ 0.05). Transcriptome analysis based on STEM identified 16 profiles of differential gene expression patterns, including 5 significant profiles (false discovery rate, FDR ≤ 0.05). Function analysis revealed DEGs involved in milk fat synthesis were downregulated in Profile 0 and DEGs in Profile 12 associated with protein synthesis. These findings provide a foundation for future studies on the molecular mechanisms underlying mammary gland development in dairy cows.
Collapse
Affiliation(s)
- Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Mudasir Nazar
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (A.A.I.A.); (M.N.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87979269
| |
Collapse
|
18
|
Jaiswal S, Jagannadham J, Kumari J, Iquebal MA, Gurjar AKS, Nayan V, Angadi UB, Kumar S, Kumar R, Datta TK, Rai A, Kumar D. Genome Wide Prediction, Mapping and Development of Genomic Resources of Mastitis Associated Genes in Water Buffalo. Front Vet Sci 2021; 8:593871. [PMID: 34222390 PMCID: PMC8253262 DOI: 10.3389/fvets.2021.593871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 04/30/2021] [Indexed: 12/16/2022] Open
Abstract
Water buffalo (Bubalus bubalis) are an important animal resource that contributes milk, meat, leather, dairy products, and power for plowing and transport. However, mastitis, a bacterial disease affecting milk production and reproduction efficiency, is most prevalent in populations having intensive selection for higher milk yield, especially where the inbreeding level is also high. Climate change and poor hygiene management practices further complicate the issue. The management of this disease faces major challenges, like antibiotic resistance, maximum residue level, horizontal gene transfer, and limited success in resistance breeding. Bovine mastitis genome wide association studies have had limited success due to breed differences, sample sizes, and minor allele frequency, lowering the power to detect the diseases associated with SNPs. In this work, we focused on the application of targeted gene panels (TGPs) in screening for candidate gene association analysis, and how this approach overcomes the limitation of genome wide association studies. This work will facilitate the targeted sequencing of buffalo genomic regions with high depth coverage required to mine the extremely rare variants potentially associated with buffalo mastitis. Although the whole genome assembly of water buffalo is available, neither mastitis genes are predicted nor TGP in the form of web-genomic resources are available for future variant mining and association studies. Out of the 129 mastitis associated genes of cattle, 101 were completely mapped on the buffalo genome to make TGP. This further helped in identifying rare variants in water buffalo. Eighty-five genes were validated in the buffalo gene expression atlas, with the RNA-Seq data of 50 tissues. The functions of 97 genes were predicted, revealing 225 pathways. The mastitis proteins were used for protein-protein interaction network analysis to obtain additional cross-talking proteins. A total of 1,306 SNPs and 152 indels were identified from 101 genes. Water Buffalo-MSTdb was developed with 3-tier architecture to retrieve mastitis associated genes having genomic coordinates with chromosomal details for TGP sequencing for mining of minor alleles for further association studies. Lastly, a web-genomic resource was made available to mine variants of targeted gene panels in buffalo for mastitis resistance breeding in an endeavor to ensure improved productivity and the reproductive efficiency of water buffalo.
Collapse
Affiliation(s)
- Sarika Jaiswal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Jaisri Jagannadham
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Juli Kumari
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anoop Kishor Singh Gurjar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Varij Nayan
- Indian Council of Agricultural Research (ICAR)-Central Institute for Research on Buffaloes, Hisar, India
| | - Ulavappa B Angadi
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sunil Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Rakesh Kumar
- Animal Biotechnology Centre, Indian Council of Agricultural Research (ICAR)-National Dairy research Institute, Karnal, India
| | - Tirtha Kumar Datta
- Animal Biotechnology Centre, Indian Council of Agricultural Research (ICAR)-National Dairy research Institute, Karnal, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
19
|
Martin Carli JF, Trahan GD, Rudolph MC. Resolving Human Lactation Heterogeneity Using Single Milk-Derived Cells, a Resource at the Ready. J Mammary Gland Biol Neoplasia 2021; 26:3-8. [PMID: 34097179 PMCID: PMC8956113 DOI: 10.1007/s10911-021-09489-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/02/2021] [Indexed: 10/21/2022] Open
Abstract
Single cell RNA sequencing (scRNAseq) of human milk-derived cells (HMDCs) makes highly detailed analyses of the biology of human lactation possible. We explore this powerful application as an exciting tool to inspect the cellular composition of human milk. We point out some important challenges unique to this approach and highlight the importance of collaborations between biologists and well-trained bioinformaticians to utilize these data to their maximum potential. We extend this focus by discussing the first two such studies that describe HMDCs via scRNAseq and a variety of important questions in the field that warrant attention through further research. The stage is set to apply scRNAseq in human lactation biology, potentially leading to new insights regarding the molecular and cellular diversity of human secretory mammary epithelial cells.
Collapse
Affiliation(s)
- Jayne F Martin Carli
- Section of Nutrition, Denver Anschutz Medical Campus Department of Pediatrics, University of Colorado, Aurora, CO, 80045, USA.
| | - G Devon Trahan
- Section of Hematology, Oncology, and Bone Marrow Transplant, Denver Anschutz Medical Campus Department of Pediatrics, University of Colorado, Aurora, CO, 80045, USA
| | - Michael C Rudolph
- Department of Physiology, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| |
Collapse
|
20
|
Lactation Associated Genes Revealed in Holstein Dairy Cows by Weighted Gene Co-Expression Network Analysis (WGCNA). Animals (Basel) 2021; 11:ani11020314. [PMID: 33513831 PMCID: PMC7911360 DOI: 10.3390/ani11020314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/23/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Weighted gene coexpression network analysis (WGCNA) is a novel approach that can quickly analyze the relationships between genes and traits. In the past few years, studies on the gene expression changes of dairy cow mammary glands were only based on transcriptome comparisons between two lactation stages. Few studies focused on the relationships between gene expression of the dairy mammary gland and lactation stage or milk composition in a lactation cycle. In this study, we detected milk yield and composition in a lactation cycle. For the first time, we constructed a gene coexpression network using WGCNA on the basis of 18 gene expression profiles during six stages of a lactation cycle by transcriptome sequencing, generating 10 specific modules. Genes in each module were performed with gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Module–trait relationship analysis showed a series of potential candidates related to milk yield and composition. The current study provides an important theoretical basis for the further molecular breeding of dairy cows. Abstract Weighted gene coexpression network analysis (WGCNA) is a novel approach that can quickly analyze the relationships between genes and traits. In this study, the milk yield, lactose, fat, and protein of Holstein dairy cows were detected in a lactation cycle. Meanwhile, a total of 18 gene expression profiles were detected using mammary glands from six lactation stages (day 7 to calving, −7 d; day 30 post-calving, 30 d; day 90 post-calving, 90 d; day 180 post-calving, 180 d; day 270 post-calving, 270 d; day 315 post-calving, 315 d). On the basis of the 18 profiles, WGCNA identified for the first time 10 significant modules that may be related to lactation stage, milk yield, and the main milk composition content. Genes in the 10 significant modules were examined with gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. The results revealed that the galactose metabolism pathway was a potential candidate for milk yield and milk lactose synthesis. In −7 d, ion transportation was more frequent and cell proliferation related terms became active. In late lactation, the suppressor of cytokine signaling 3 (SOCS3) might play a role in apoptosis. The sphingolipid signaling pathway was a potential candidate for milk fat synthesis. Dairy cows at 315 d were in a period of cell proliferation. Another notable phenomenon was that nonlactating dairy cows had a more regular circadian rhythm after a cycle of lactation. The results provide an important theoretical basis for the further molecular breeding of dairy cows.
Collapse
|
21
|
Fan Y, Arbab AAI, Zhang H, Yang Y, Lu X, Han Z, Yang Z. MicroRNA-193a-5p Regulates the Synthesis of Polyunsaturated Fatty Acids by Targeting Fatty Acid Desaturase 1 ( FADS1) in Bovine Mammary Epithelial Cells. Biomolecules 2021; 11:biom11020157. [PMID: 33504005 PMCID: PMC7911131 DOI: 10.3390/biom11020157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are seriously threatening to human life and health. Polyunsaturated fatty acids (PUFAs) are known for their role in preventing CVDs. It is beneficial to population health to promote the content of PUFAs in bovine milk. In recent years, limited research based on molecular mechanisms has focused on this field. The biological roles of numerous microRNAs (miRNAs) remain unknown. In this study, a promising and negatively correlated pair of the miRNA (miRNA-193a-5p) and a fatty acid desaturase 1 (FADS1) gene are identified and screened to explore whether they are potential factors of PUFAs’ synthesis in bovine milk. The targeted relationship between miRNA-193a-5p and FADS1 in bovine mammary epithelial cells (BMECs) is demonstrated by dual luciferase reporter assays. qRT-PCR and western blot assays indicate that both the expression of mRNA and the protein FADS1 show a negative correlation with miRNA-193a-5p expression in BMECs. Also, miR-193a-5p expression is positively correlated with the expression of genes associated with milk fatty acid metabolism, including ELOVL fatty acid elongase 6 (ELOVL6) and diacylglycerol O-acyltransferase 2 (DGAT2). The expression of fatty acid desaturase 2 (FADS2) is negatively correlated with miR-193a-5p expression in BMECs. The contents of triglycerides (TAG), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA) have a significant positive correlation with the expression of FADS1 and a significant negative correlation with the expression of miR-193a-5p in BMECs. For the first time, this study confirms that miRNA-193a-5p regulates PUFAs metabolism in BMECs by targeting FADS1, indicating that miRNA-193a-5p and FADS1 are underlying factors that improve PUFAs content in bovine milk.
Collapse
Affiliation(s)
- Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (A.A.I.A.); (H.Z.); (X.L.); (Z.H.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-8797-9269
| |
Collapse
|
22
|
Fan Y, Han Z, Lu X, Zhang H, Arbab AAI, Loor JJ, Yang Y, Yang Z. Identification of Milk Fat Metabolism-Related Pathways of the Bovine Mammary Gland during Mid and Late Lactation and Functional Verification of the ACSL4 Gene. Genes (Basel) 2020; 11:genes11111357. [PMID: 33207796 PMCID: PMC7696932 DOI: 10.3390/genes11111357] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 11/13/2020] [Indexed: 12/26/2022] Open
Abstract
The concentration of bovine milk fat changes regularly with lactation stages. In particular, milk fat percentage is higher in late lactation than mid lactation. Furthermore, milk fat composition is highly subject to a few genes. Thus, transcriptome sequencing was performed to explore the expression patterns of differentially-expressed genes (DEGs) in the parenchymal mammary gland of Holstein dairy cows between mid and late lactation. The 725 DEGs were screened (fold change > 2 and p-value < 0.05), and the peroxisome proliferator-activated receptor (PPAR) signaling pathway associated with lipid synthesis had a significant variation between the two periods (p-value < 0.05). The activation of the PPAR signal pathway may a key factor in the increasing of milk fat content in late lactation compared to mid lactation. Acyl-CoA synthetase long-chain family member 4 (ACSL4), a member of the PPAR signaling pathway, was upregulated in late lactation compared to mid lactation (p < 0.05). ACSL4 catalyzes the activation of long-chain fatty acids for cellular lipid synthesis. However, it remains uncertain that the molecular mechanism of milk fat synthesis is regulated by ACSL4 in dairy cows. Subsequently, the function verification of ACSL4 was performed in bovine mammary epithelial cells (BMECs). The upregulated expression of ACSL4 was accompanied by the increase of the concentration of intracellular triglycerides, whereas knockdown of ACSL4 decreased the concentration of intracellular triglycerides, which demonstrated that ACSL4 plays an important role in modulating milk fat synthesis. In conclusion, the results displayed that ACSL4 expression regulates triglyceride metabolism in ruminant mammary cells.
Collapse
Affiliation(s)
- Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (H.Z.); (A.A.I.A.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (H.Z.); (A.A.I.A.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xubin Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (H.Z.); (A.A.I.A.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Huimin Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (H.Z.); (A.A.I.A.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Abdelaziz Adam Idriss Arbab
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (H.Z.); (A.A.I.A.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Yi Yang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.F.); (Z.H.); (X.L.); (H.Z.); (A.A.I.A.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: ; Tel.: +86-0514-87979269
| |
Collapse
|
23
|
Effect of Heat Stress on Dairy Cow Performance and on Expression of Protein Metabolism Genes in Mammary Cells. Animals (Basel) 2020; 10:ani10112124. [PMID: 33207608 PMCID: PMC7696625 DOI: 10.3390/ani10112124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 01/19/2023] Open
Abstract
Simple Summary Environmental temperatures are increasing, and consequent global warming also has negative effects on dairy cattle farms, which may result in reduced production and poorer milk quality. The protein content of casein, in particular, is important in influencing the coagulation properties of milk and, therefore, the production and quality of cheese. The aim of this study was to assess the effect of heat stress on animal performance and on the expression of selected genes involved in milk protein metabolism. Eight dairy cows were kept under thermoneutral conditions for 8 days. The same animals were then maintained under mild heat stress conditions for an additional 8 days. The results of this study revealed that mild heat stress reduced the feed intake and performance of dairy cows in terms of milk and protein yield, but not the expression of the target genes involved in milk protein metabolism, such as those coding for caseins. Abstract The aim of this study was to assess the effect of heat stress on dairy cow performance and on the expression of selected genes involved in milk protein metabolism. Eight Italian Holstein Friesian cows were kept under thermoneutral conditions (temperature–humidity index (THI) < 72, CON) for 8 days and under mild heat stress conditions (72 < THI < 78, HS) for an additional 8 days. The rectal temperature, feed intake, and milk yield were recorded during the last 3 days of the CON and HS periods. During the same time period, milk samples were collected to assess the composition and expression of selected genes involved in milk protein metabolism. Gene expression analyses were performed on somatic cells from milk, which are representative of mammary tissue. In terms of dairy cow performance, HS resulted in lower milk and protein yields and feed intake but higher rectal temperature than for CON (p < 0.05). Under HS, there were greater abundances of HSPA1A (p < 0.05) and BCL2 (p < 0.05), compared to CON, but similar levels of CSN2 (p > 0.05), CSN3 (p > 0.05), HSPA8 (p > 0.05), and STAT5B (p > 0.05) mRNA. Mild heat stress reduced the performance of dairy cows without affecting the expression of genes coding for caseins.
Collapse
|
24
|
Li C, Zhu J, Shi H, Luo J, Zhao W, Shi H, Xu H, Wang H, Loor JJ. Comprehensive Transcriptome Profiling of Dairy Goat Mammary Gland Identifies Genes and Networks Crucial for Lactation and Fatty Acid Metabolism. Front Genet 2020; 11:878. [PMID: 33101357 PMCID: PMC7545057 DOI: 10.3389/fgene.2020.00878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/17/2020] [Indexed: 11/17/2022] Open
Abstract
Milk fatty acids secreted by the mammary gland are one of the most important determinants of the nutritional value of goat milk. Unlike cow milk, limited data are available on the transcriptome-wide changes across stages of lactation in dairy goats. In this study, goat mammary gland tissue collected at peak lactation, cessation of milking, and involution were analyzed with digital gene expression (DGE) sequencing to generate longitudinal transcript profiles. A total of 51,299 unigenes were identified and further annotated to 12,763 genes, of which 9,131 were differentially expressed across various stages of lactation. Most abundant genes and differentially expressed genes (DEGs) were functionally classified through clusters of euKaryotic Orthologous Groups (KOG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A total of 16 possible expression patterns were uncovered, and 13 genes were deemed novel candidates for regulation of lactation in the goat: POLG, SPTA1, KLC, GIT2, COPS3, PDP, CD31, USP16/29/37, TLL1, NCAPH, ABI2, DNAJC4, and MAPK8IP3. In addition, PLA2, CPT1, PLD, GGA, SRPRB, and AP4S1 are proposed as novel and promising candidates regulating mammary fatty acid metabolism. “Butirosin and neomycin biosynthesis” and “Glyoxylate and dicarboxylate metabolism” were the most impacted pathways, and revealed novel metabolic alterations in lipid metabolism as lactation progressed. Overall, the present study provides new insights into the synthesis and metabolism of fatty acids and lipid species in the mammary gland along with more detailed information on molecular regulation of lactogenesis. The major findings will benefit efforts to further improve milk quality in dairy goats.
Collapse
Affiliation(s)
- Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Jiangjiang Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Hengbo Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Wangsheng Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Huifen Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hui Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Xianyang, China.,Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Sichuan Province and Ministry of Education, Southwest Minzu University, Chengdu, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
25
|
Sun S, Li C, Yang D, He Q, Niu H, Luo J, Yang Y, Shi H, Luo J. Identification and characterization of putative ovarian lincRNAs in dairy goats treated for repeated estrous synchronization. Anim Reprod Sci 2020; 221:106537. [PMID: 32861106 DOI: 10.1016/j.anireprosci.2020.106537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 11/19/2022]
Abstract
The goal of this study was to identify and characterize effects of repeated estrous synchronization (ES) treatments on the regulation of ovarian intergenic long non-coding RNAs (lincRNAs) in dairy goats. Six does were randomly assigned to a group administered three ES treatment regimens separated by 2 weeks or to a group administered only one ES treatment regimen (control) at the same time as the third ES treatment in the does administered the three hormonal regimens for ES. The paired-end RNA Sequencing procedures were used to evaluate lincRNAs of ovarian tissues. A total of 134 lincRNAs were differentially abundant between the two treatment groups. Several target genes were annotated and were related to hormone activity, cellular response to hormone stimulus, response to hormone, female pregnancy, as well as regulation of hormone secretion. These genes were noticeably enriched in MAPK, Hippo, estrogen signaling pathways, oocyte meiosis, progesterone-mediated oocyte maturation, ovarian steroidogenesis as well as GnRH signaling pathways. According to the enriched GO terms and KEGG pathways of regulated genes, 13 differentially abundant lincRNAs could be promising candidates for regulating reproductive functions of female goats. Current results indicate that repeated treatments with gonadotropins affected hormone sensitivity, estrogen synthesis, and ovarian function. The results also indicated that when there was imposing of the three hormonal treatment regimens for ES, there were several lincRNAs that could contribute to dysregulation of several genes that are important for reproduction in dairy goats. Findings provide novel insights for further investigation of lncRNAs biological functions in goats.
Collapse
Affiliation(s)
- Shuang Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dikun Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiuya He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huimin Niu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jianing Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yang Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huaiping Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jun Luo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
26
|
Li Q, Liang R, Li Y, Gao Y, Li Q, Sun D, Li J. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages. BMC Genet 2020; 21:72. [PMID: 32646377 PMCID: PMC7346489 DOI: 10.1186/s12863-020-00882-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background RNA-sequencing was performed to explore the bovine liver transcriptomes of Holstein cows to detect potential functional genes related to lactation and milk composition traits in dairy cattle. The bovine transcriptomes of the nine liver samples from three Holstein cows during dry period (50-d prepartum), early lactation (10-d postpartum), and peak of lactation (60-d postpartum) were sequenced using the Illumina HiSeq 2500 platform. Results A total of 204, 147 and 81 differentially expressed genes (DEGs, p < 0.05, false discovery rate q < 0.05) were detected in early lactation vs. dry period, peak of lactation vs. dry period, and peak of lactation vs. early lactation comparison groups, respectively. Gene ontology and KEGG pathway analysis showed that these DEGs were significantly enriched in specific biological processes related to metabolic and biosynthetic and signaling pathways of PPAR, AMPK and p53 (p < 0.05). Ten genes were identified as promising candidates affecting milk yield, milk protein and fat traits in dairy cattle by using an integrated analysis of differential gene expression, previously reported quantitative trait loci (QTL), data from genome-wide association studies (GWAS), and biological function information. These genes were APOC2, PPP1R3B, PKLR, ODC1, DUSP1, LMNA, GALE, ANGPTL4, LPIN1 and CDKN1A. Conclusion This study explored the complexity of the liver transcriptome across three lactation periods in dairy cattle by performing RNA sequencing. Integrated analysis of DEGs and reported QTL and GWAS data allowed us to find ten key candidate genes influencing milk production traits.
Collapse
Affiliation(s)
- Qian Li
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China.,Hebei Animal Husbandry and Veterinary Institute, Baoding, 071000, China
| | - Ruobing Liang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yan Li
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071001, China
| | - Yanxia Gao
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China
| | - Qiufeng Li
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China
| | - Dongxiao Sun
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory of Animal Breeding, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, China.
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Lekai South Street, Baoding, 071001, China.
| |
Collapse
|
27
|
Wang J, Zhou H, Hickford JGH, Hao Z, Shen J, Luo Y, Hu J, Liu X, Li S. Comparison of the Transcriptome of the Ovine Mammary Gland in Lactating and Non-lactating Small-Tailed Han Sheep. Front Genet 2020; 11:472. [PMID: 32508880 PMCID: PMC7253648 DOI: 10.3389/fgene.2020.00472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/16/2020] [Indexed: 12/24/2022] Open
Abstract
Small-Tailed Han (STH) sheep are known for their high fecundity, but the survival of lambs is compromised and influences the commercial return from farming these sheep, with this being attributed in part to starvation from insufficient milk production by the ewes. In this study, the transcriptome profiles of the mammary gland of lactating and non-lactating STH ewes were investigated using paired-end RNA sequencing (RNA-Seq). An average of 14,447 genes were found to be expressed at peak-lactation in the STH sheep, while 15,146 genes were expressed in non-lactating ewes. A total of 4,003 differentially expressed genes (DEGs) were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEGs were associated with a wide range of cellular components, biological processes and metabolic pathways, including binding activities, signaling pathways, cellular structures, and immune responses. The most highly expressed genes at peak-lactation included CSN2, LGB, LALBA, CSN1S1, CSN1S2, and CSN3, and the 10 most highly expressed genes accounted for 61.37% of the total Reads Per Kilobase of transcript, per Million mapped reads (RPKM). The most highly expressed genes in the mammary gland of non-lactating ewes included IgG, THYMB4X, EEF1A1, IgA, and APOE, and the 10 most highly expressed genes accounted for only 12.97% of the total gene RPKM values. This suggests that the sheep mammary gland undergoes a substantial development in milk protein synthesis infrastructure and promotion of protein transportation during lactation.
Collapse
Affiliation(s)
- Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Huitong Zhou
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Jon G H Hickford
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Gene-Marker Laboratory, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln, New Zealand
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
28
|
Han Z, Fan Y, Yang Z, Loor JJ, Yang Y. Mammary Transcriptome Profile during Peak and Late Lactation Reveals Differentially Expression Genes Related to Inflammation and Immunity in Chinese Holstein. Animals (Basel) 2020; 10:ani10030510. [PMID: 32204353 PMCID: PMC7143190 DOI: 10.3390/ani10030510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Milk somatic cell count, referring to the total number of somatic cells per milliliter of bovine milk, changes regularly during the lactation cycle. The somatic cell count of healthy cows is usually higher in late lactation than in peak lactation. When the inflammatory response in dairy cow mammary gland becomes more intense, the milk somatic cell count increases together with the reduction of milk quality and yield. Autoimmunity was thought to play an important role in the prevention of mastitis in late lactation of dairy cattle. However, the underlying mechanisms related to the gene expression levels during the process remain unknown. In this study, transcriptome sequencing was performed to screen the differentially expressed genes related to the inflammation and immunity in healthy Chinese Holstein mammary glands. Our findings are helpful to understand the physiological functions of mammary inflammation of Chinese Holstein during late lactation. Abstract Somatic cell count (SCC) in milk is widely used in the dairy industry, as an indicator of the health of mammary gland. While the SCC of dairy cattle was higher in late lactation than in peak lactation, its association with gene expressions of mammary gland were largely unknown. In this study, a transcriptomic sequencing approach and bioinformatics analysis were used to investigate the differential expressed genes (DEGs) associated with inflammation and immunity between peak and late periods of lactation in Chinese Holstein. A total of 446 DEGs (padj < 0.05 and fold change >2) were identified, 50 of which belonged to seven pathways and five terms related to inflammation and immunity. Our data suggested that the activation of nuclear transcription factor-κB (NF-κB) pathway and Toll-like receptor signaling pathway caused inflammatory response, and the activation of chemokine signaling pathway and cytokine–cytokine receptor interaction signaling pathway caused a protective immune response to ensure dairy cows health during late lactation. Our findings deepen the understanding of the molecular mechanism and physiological functions of mammary inflammation in Chinese Holstein during late lactation.
Collapse
Affiliation(s)
- Ziyin Han
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (Y.F.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yongliang Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (Y.F.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.H.); (Y.F.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Z.Y.); (Y.Y.); Tel.: +86-0514-87979269 (Z.Y.); Tel.: +86-0514-87977081 (Y.Y.)
| | - Juan J. Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Yi Yang
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou 225009, China
- Correspondence: (Z.Y.); (Y.Y.); Tel.: +86-0514-87979269 (Z.Y.); Tel.: +86-0514-87977081 (Y.Y.)
| |
Collapse
|
29
|
Li C, Cai W, Liu S, Zhou C, Yin H, Sun D, Zhang S. SERPINA1 gene identified in RNA-Seq showed strong association with milk protein concentration in Chinese Holstein cows. PeerJ 2020; 8:e8460. [PMID: 32140298 PMCID: PMC7045893 DOI: 10.7717/peerj.8460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/26/2019] [Indexed: 12/03/2022] Open
Abstract
The detection of candidate genes and mutations associated with phenotypic traits is important for livestock animals. A previous RNA-Seq study revealed that SERPINA1 gene was a functional candidate that may affect milk protein concentration in dairy cows. To further confirm the genetic effect of SERPINA1 on milk protein traits, genetic polymorphisms were identified and genotype-phenotype associations were performed in a large Chinese Holstein cattle population. The entire coding region and the 5′-regulatory region (5′-UTR) of SERPINA1 was sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed model with a population encompassing 1,027 Chinese Holstein cows. A total of four SNPs were identified in SERPINA1, among which rs210222822 and rs41257068 presented in exons, rs207601878 presented in an intron, and rs208607693 was in the 5′-UTR. Analyses of pairwise D′ measures of linkage disequilibrium (LD) showed strong linkage among these four SNPs (D′ = 0.99–1.00), and a 9 Kb haplotype block involving three main haplotypes with GTGT, CCCC and CCGT was inferred. An association study revealed that all four single SNPs and their haplotypes had significant genetic effects on milk protein percentage, milk protein yield and milk yield (P = 0.0458 − < 0.0001). The phenotypic variance ratio for all 11 significant SNP-trait pairs ranged from 1.01% to 7.54%. The candidate gene of SERPINA1 revealed by our previous RNA-Seq study was confirmed to have pronounced effect on milk protein traits on a genome level. Two SNPs (rs208607693 and rs210222822) presented phenotypic variances of approximately 7% and may be used as key or potential markers to assist selection for new lines of cows with high protein concentration.
Collapse
Affiliation(s)
- Cong Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.,Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wentao Cai
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shuli Liu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenghao Zhou
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Dongxiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Li C, Cai W, Liu S, Zhou C, Cao M, Yin H, Sun D, Zhang S, Loor JJ. Association of UDP-galactose-4-epimerase with milk protein concentration in the Chinese Holstein population. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1725-1731. [PMID: 32106650 PMCID: PMC7649079 DOI: 10.5713/ajas.19.0549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/14/2020] [Indexed: 01/20/2023]
Abstract
Objective An initial RNA-Sequencing study revealed that UDP-galactose-4-epimerase (GALE) was one of the most promising candidates for milk protein concentration in Chinese Holstein cattle. This enzyme catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. To further validate the genetic effect of GALE on milk protein traits, genetic variations were identified, and genotypes-phenotypes associations were performed. Methods The entire coding region and the 5′-regulatory region (5′-UTR) of GALE were re-sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed linear animal model with a population encompassing 1,027 Chinese Holstein cows. Results A total of three variants in GALE were identified, including two novel variants (g.2114 A>G and g.2037 G>A) in the 5′-UTR and one previously reported variant (g.3836 G>C) in an intron. All three single nucleotide polymorphisms (SNPs) were associated with milk yield (p<0.0001), fat yield (p = 0.0006 to <0.0001), protein yield (p = 0.0232 to <0.0001) and protein percentage (p<0.0001), while no significant associations were detected between the SNPs and fat percentage. A strong linkage disequilibrium (D’ = 0.96 to 1.00) was observed among all three SNPs, and a 5 Kb haplotype block involving three main haplotypes with GAG, AGC, and AGG was formed. The results of haplotype association analyses were consistent with the results of single locus association analysis (p<0.0001). The phenotypic variance ratio above 3.00% was observed for milk protein yield that was explained by SNP-g.3836G >C. Conclusion Overall, our findings provided new insights into the polymorphic variations in bovine GALE gene and their associations with milk protein concentration. The data indicate their potential uses for marker-assisted breeding or genetic selection schemes.
Collapse
Affiliation(s)
- Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wentao Cai
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Shuli Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Chenghao Zhou
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Mingyue Cao
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Hongwei Yin
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Dongxiao Sun
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Shengli Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Genetics and Breeding of Ministry of Agriculture, National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing 100193, China
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
31
|
Naderi S, Moradi MH, Farhadian M, Yin T, Jaeger M, Scheper C, Korkuc P, Brockmann GA, König S, May K. Assessing selection signatures within and between selected lines of dual-purpose black and white and German Holstein cattle. Anim Genet 2020; 51:391-408. [PMID: 32100321 DOI: 10.1111/age.12925] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2020] [Indexed: 12/29/2022]
Abstract
The aim of this study was to detect selection signatures considering cows from the German Holstein (GH) and the local dual-purpose black and white (DSN) population, as well as from generated sub-populations. The 4654 GH and 261 DSN cows were genotyped with the BovineSNP50 Genotyping BeadChip. The geographical herd location was used as an environmental descriptor to create the East-DSN and West-DSN sub-populations. In addition, two further sub-populations of GH cows were generated, using the extreme values for solutions of residual effects of cows for the claw disorder dermatitis digitalis. These groups represented the most susceptible and most resistant cows. We used cross-population extended haplotype homozygosity methodology (XP-EHH) to identify the most recent selection signatures. Furthermore, we calculated Wright's fixation index (FST ). Chromosomal segments for the top 0.1 percentile of negative or positive XP-EHH scores were studied in detail. For gene annotations, we used the Ensembl database and we considered a window of 250 kbp downstream and upstream of each core SNP corresponding to peaks of XP-EHH. In addition, functional interactions among potential candidate genes were inferred via gene network analyses. The most outstanding XP-EHH score was on chromosome 12 (at 77.34 Mb) for DSN and on chromosome 20 (at 36.29-38.42 Mb) for GH. Selection signature locations harbored QTL for several economically important milk and meat quality traits, reflecting the different breeding goals for GH and DSN. The average FST value between GH and DSN was quite low (0.068), indicating shared founders. For group stratifications according to cow health, several identified potential candidate genes influence disease resistance, especially to dermatitis digitalis.
Collapse
Affiliation(s)
- S Naderi
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - M H Moradi
- Department of Animal Sciences, Arak University, Shahid Beheshti Street, Arak, Iran
| | - M Farhadian
- Department of Animal Science, University of Tabriz, 29 Bahman Boulevard, Tabriz, Iran
| | - T Yin
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - M Jaeger
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - C Scheper
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - P Korkuc
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Invalidenstr. 42, Berlin, D-10115, Germany
| | - G A Brockmann
- Albrecht Daniel Thaer Institute for Agricultural and Horticultural Sciences, Humboldt University Berlin, Invalidenstr. 42, Berlin, D-10115, Germany
| | - S König
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| | - K May
- Institute of Animal Breeding and Genetics, Justus-Liebig University Giessen, Ludwigstr. 21b, Giessen, Germany
| |
Collapse
|
32
|
Ghoreishifar SM, Moradi-Shahrbabak H, Fallahi MH, Jalil Sarghale A, Moradi-Shahrbabak M, Abdollahi-Arpanahi R, Khansefid M. Genomic measures of inbreeding coefficients and genome-wide scan for runs of homozygosity islands in Iranian river buffalo, Bubalus bubalis. BMC Genet 2020; 21:16. [PMID: 32041535 PMCID: PMC7011551 DOI: 10.1186/s12863-020-0824-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/04/2020] [Indexed: 01/06/2023] Open
Abstract
Background Consecutive homozygous fragments of a genome inherited by offspring from a common ancestor are known as runs of homozygosity (ROH). ROH can be used to calculate genomic inbreeding and to identify genomic regions that are potentially under historical selection pressure. The dataset of our study consisted of 254 Azeri (AZ) and 115 Khuzestani (KHZ) river buffalo genotyped for ~ 65,000 SNPs for the following two purposes: 1) to estimate and compare inbreeding calculated using ROH (FROH), excess of homozygosity (FHOM), correlation between uniting gametes (FUNI), and diagonal elements of the genomic relationship matrix (FGRM); 2) to identify frequently occurring ROH (i.e. ROH islands) for our selection signature and gene enrichment studies. Results In this study, 9102 ROH were identified, with an average number of 21.2 ± 13.1 and 33.2 ± 15.9 segments per animal in AZ and KHZ breeds, respectively. On average in AZ, 4.35% (108.8 ± 120.3 Mb), and in KHZ, 5.96% (149.1 ± 107.7 Mb) of the genome was autozygous. The estimated inbreeding values based on FHOM, FUNI and FGRM were higher in AZ than they were in KHZ, which was in contrast to the FROH estimates. We identified 11 ROH islands (four in AZ and seven in KHZ). In the KHZ breed, the genes located in ROH islands were enriched for multiple Gene Ontology (GO) terms (P ≤ 0.05). The genes located in ROH islands were associated with diverse biological functions and traits such as body size and muscle development (BMP2), immune response (CYP27B1), milk production and components (MARS, ADRA1A, and KCTD16), coat colour and pigmentation (PMEL and MYO1A), reproductive traits (INHBC, INHBE, STAT6 and PCNA), and bone development (SUOX). Conclusion The calculated FROH was in line with expected higher inbreeding in KHZ than in AZ because of the smaller effective population size of KHZ. Thus, we find that FROH can be used as a robust estimate of genomic inbreeding. Further, the majority of ROH peaks were overlapped with or in close proximity to the previously reported genomic regions with signatures of selection. This tells us that it is likely that the genes in the ROH islands have been subject to artificial or natural selection.
Collapse
Affiliation(s)
- Seyed Mohammad Ghoreishifar
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Hossein Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran.
| | - Mohammad Hossein Fallahi
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Ali Jalil Sarghale
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Mohammad Moradi-Shahrbabak
- Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, 31587-11167, Iran
| | - Rostam Abdollahi-Arpanahi
- Departments of Animal and Poultry Science, College of Aburaihan, University of Tehran, Pakdasht, 33916-53755, Iran
| | - Majid Khansefid
- AgriBio Centre for AgriBioscience, Agriculture Victoria, Bundoora, VIC, 3083, Australia
| |
Collapse
|
33
|
Elolimy AA, Abdel-Hamied E, Hu L, McCann JC, Shike DW, Loor JJ. RAPID COMMUNICATION: Residual feed intake in beef cattle is associated with differences in protein turnover and nutrient transporters in ruminal epithelium. J Anim Sci 2019; 97:2181-2187. [PMID: 30806449 DOI: 10.1093/jas/skz080] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/21/2019] [Indexed: 12/20/2022] Open
Abstract
Residual feed intake (RFI) is a widely used measure of feed efficiency in cattle. Although the precise biologic mechanisms associated with improved feed efficiency are not well-known, most-efficient steers (i.e., with low RFI coefficient) downregulate abundance of proteins controlling protein degradation in skeletal muscle. Whether cellular mechanisms controlling protein turnover in ruminal tissue differ by RFI classification is unknown. The aim was to investigate associations between RFI and signaling through the mechanistic target of rapamycin (MTOR) and ubiquitin-proteasome pathways in ruminal epithelium. One hundred and forty-nine Red Angus cattle were allocated to 3 contemporary groups according to sex and herd origin. Animals were offered a finishing diet for 70 d to calculate the RFI coefficient for each. Within each group, the 2 most-efficient (n = 6) and least-efficient animals (n = 6) were selected. Compared with least-efficient animals, the most-efficient animals consumed less feed (P < 0.05; 18.36 vs. 23.39 kg/d DMI). At day 70, plasma samples were collected for insulin concentration analysis. Ruminal epithelium was collected immediately after slaughter to determine abundance and phosphorylation status of 29 proteins associated with MTOR, ubiquitin-proteasome, insulin signaling, and glucose and amino acid transport. Among the proteins involved in cellular protein synthesis, most-efficient animals had lower (P ≤ 0.05) abundance of MTOR, p-MTOR, RPS6KB1, EIF2A, EEF2K, AKT1, and RPS6KB1, whereas MAPK3 tended (P = 0.07) to be lower. In contrast, abundance of p-EEF2K, p-EEF2K:EEF2K, and p-EIF2A:EIF2A in most-efficient animals was greater (P ≤ 0.05). Among proteins catalyzing steps required for protein degradation, the abundance of UBA1, NEDD4, and STUB1 was lower (P ≤ 0.05) and MDM2 tended (P = 0.06) to be lower in most-efficient cattle. Plasma insulin and ruminal epithelium insulin signaling proteins did not differ (P > 0.05) between RFI groups. However, abundance of the insulin-responsive glucose transporter SLC2A4 and the amino acid transporters SLC1A3 and SLC1A5 also was lower (P ≤ 0.05) in most-efficient cattle. Overall, the data indicate that differences in signaling mechanisms controlling protein turnover and nutrient transport in ruminal epithelium are components of feed efficiency in beef cattle.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Emad Abdel-Hamied
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Animal Medicine Department, Beni-Suef University, Beni-Suef, Egypt
| | - Liangyu Hu
- Department of Animal Sciences, University of Illinois, Urbana, IL.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, P.R. China
| | - Joshua C McCann
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, IL
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana, IL.,Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, IL
| |
Collapse
|
34
|
Bioinformatics analysis of candidate genes for milk production traits in water buffalo (Bubalus bubalis). Trop Anim Health Prod 2019; 52:63-69. [DOI: 10.1007/s11250-019-01984-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/19/2019] [Indexed: 12/11/2022]
|
35
|
Vijayakumar P, Bakyaraj S, Singaravadivelan A, Vasanthakumar T, Suresh R. Meta-analysis of mammary RNA seq datasets reveals the molecular understanding of bovine lactation biology. Genome 2019; 62:489-501. [PMID: 31071269 DOI: 10.1139/gen-2018-0144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A better understanding of the biology of lactation, both in terms of gene expression and the identification of candidate genes for the production of milk and its components, is made possible by recent advances in RNA seq technology. The purpose of this study was to understand the synthesis of milk components and the molecular pathways involved, as well as to identify candidate genes for milk production traits within whole mammary transcriptomic datasets. We performed a meta-analysis of publically available RNA seq transcriptome datasets of mammary tissue/milk somatic cells. In total, 11 562 genes were commonly identified from all RNA seq based mammary gland transcriptomes. Functional annotation of commonly expressed genes revealed the molecular processes that contribute to the synthesis of fats, proteins, and lactose in mammary secretory cells and the molecular pathways responsible for milk synthesis. In addition, we identified several candidate genes responsible for milk production traits and constructed a gene regulatory network for RNA seq data. In conclusion, this study provides a basic understanding of the lactation biology of cows at the gene expression level.
Collapse
Affiliation(s)
- Periyasamy Vijayakumar
- a Veterinary College and Research Institute, TANUVAS, Orathanadu-614 625, Thanjavur, Tamil Nadu, India
| | - Sanniyasi Bakyaraj
- b College of Poultry Production and Management, TANUVAS, Hosur-635 110, Krishnagiri, Tamil Nadu, India
| | | | - Thangavelu Vasanthakumar
- a Veterinary College and Research Institute, TANUVAS, Orathanadu-614 625, Thanjavur, Tamil Nadu, India
| | - Ramalingam Suresh
- a Veterinary College and Research Institute, TANUVAS, Orathanadu-614 625, Thanjavur, Tamil Nadu, India
| |
Collapse
|
36
|
Sun HZ, Plastow G, Guan LL. Invited review: Advances and challenges in application of feedomics to improve dairy cow production and health. J Dairy Sci 2019; 102:5853-5870. [PMID: 31030919 DOI: 10.3168/jds.2018-16126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/02/2019] [Indexed: 12/22/2022]
Abstract
Dairy cattle science has evolved greatly over the past century, contributing significantly to the improvement in milk production achieved today. However, a new approach is needed to meet the increasing demand for milk production and address the increased concerns about animal health and welfare. It is now easy to collect and access large and complex data sets consisting of molecular, physiological, and metabolic data as well as animal-level data (such as behavior). This provides new opportunities to better understand the mechanisms regulating cow performance. The recently proposed concept of feedomics could help achieve this goal by increasing our understanding of interactions between the different components or levels and their impact on animal production. Feedomics is an emerging field that integrates a range of omics technologies (e.g., genomics, epigenomics, transcriptomics, proteomics, metabolomics, metagenomics, and metatranscriptomics) to provide these insights. In this way, we can identify the best strategies to improve overall animal productivity, product quality, welfare, and health. This approach can help research communities elucidate the complex interactions among nutrition, environment, management, animal genetics, metabolism, physiology, and the symbiotic microbiota. In this review, we summarize the outcomes of the most recent research on omics in dairy cows and highlight how an integrated feedomics approach could be applied in the future to improve dairy cow production and health. Specifically, we focus on 2 topics: (1) improving milk yield and milk quality, and (2) understanding metabolic physiology in transition dairy cows, which are 2 important challenges faced by the dairy industry worldwide.
Collapse
Affiliation(s)
- H Z Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - G Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada, T6G 2P5.
| |
Collapse
|
37
|
Arora R, Sharma A, Sharma U, Girdhar Y, Kaur M, Kapoor P, Ahlawat S, Vijh RK. Buffalo milk transcriptome: A comparative analysis of early, mid and late lactation. Sci Rep 2019; 9:5993. [PMID: 30979954 PMCID: PMC6461664 DOI: 10.1038/s41598-019-42513-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/02/2019] [Indexed: 01/01/2023] Open
Abstract
The expression of genes and their regulation during lactation in buffaloes remains less understood. To understand the interplay of various genes and pathways, the milk transcriptome from three lactation stages of Murrah buffalo was analyzed by RNA sequencing. The filtered reads were mapped to the Bubalus bubalis as well as Bos taurus reference assemblies. The average mapping rate to water buffalo and Btau 4.6 reference sequence, was 75.5% and 75.7% respectively. Highly expressed genes (RPKM > 3000), throughout lactation included CSN2, CSN1S1, CSN3, LALBA, SPP1 and TPT1. A total of 12833 transcripts were common across all the stages, while 271, 205 and 418 were unique to early, mid and late lactation respectively. Majority of the genes throughout lactation were linked to biological functions like protein metabolism, transport and immune response. A discernible shift from metabolism in early stage to metabolism and immune response in mid stage, and an increase in immune response functions in late lactation was observed. The results provide information of candidate genes and pathways involved in the different stages of lactation in buffalo. The study also identified 14 differentially expressed and highly connected genes across the three lactation stages, which can be used as candidates for future research.
Collapse
Affiliation(s)
- Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India.
| | - Anju Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Upasna Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Yashila Girdhar
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Mandeep Kaur
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Prerna Kapoor
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| | - Ramesh Kumar Vijh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, 132001, Haryana, India
| |
Collapse
|
38
|
Analysis of differential gene expression of the transgenic pig with overexpression of PGC1α in muscle. Mol Biol Rep 2019; 46:3427-3435. [PMID: 30980266 DOI: 10.1007/s11033-019-04805-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/09/2019] [Indexed: 10/27/2022]
Abstract
In order to better understand the key regulatory mechanisms of PGC1α in muscle fiber type transition, the RNA-seq was used to compare the change of gene expression in gastrocnemius muscles between wild type pigs and transgenic pigs with overexpression of PGC1α gene in muscle. 371 differentially expressed genes (P ≤ 0.05 and Ratio ≥ 2), including 184 up-regulated genes and 187 down-regulated genes, were identified. Five main signaling pathways including metabolic pathways, ECM-receptor interaction, PPAR signaling pathway, adipocytokine signaling pathway and insulin signaling pathway, were authenticated using KEGG pathway analysis. Our results indicate that the fat metabolism pathway plays an important role in the transformation of muscle fiber types regulated by PGC1α.
Collapse
|
39
|
Pokharel K, Weldenegodguad M, Popov R, Honkatukia M, Huuki H, Lindeberg H, Peippo J, Reilas T, Zarovnyaev S, Kantanen J. Whole blood transcriptome analysis reveals footprints of cattle adaptation to sub-arctic conditions. Anim Genet 2019; 50:217-227. [PMID: 30957254 PMCID: PMC6593690 DOI: 10.1111/age.12783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2019] [Indexed: 12/17/2022]
Abstract
Indigenous cattle breeds in northern Eurasia have adapted to harsh climate conditions. The local breeds are important genetic resources with cultural and historical heritages, and therefore, their preservation and genetic characterization are important. In this study, we profiled the whole‐blood transcriptome of two native breeds (Northern Finncattle and Yakutian cattle) and one commercial breed (Holstein) using high‐throughput RNA sequencing. More than 15 000 genes were identified, of which two, 89 and 162 genes were significantly upregulated exclusively in Northern Finncattle, Yakutian cattle and Holstein cattle respectively. The functional classification of these significantly differentially expressed genes identified several biological processes and pathways related to signalling mechanisms, cell differentiation and host–pathogen interactions that, in general, point towards immunity and disease resistance mechanisms. The gene expression pattern observed in Northern Finncattle was more similar to that of Yakutian cattle, despite sharing similar living conditions with the Holstein cattle included in our study. In conclusion, our study identified unique biological processes in these breeds that may have helped them to adapt and survive in northern and sub‐arctic environments.
Collapse
Affiliation(s)
- K Pokharel
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - M Weldenegodguad
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland.,Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, Kuopio, FI-70311, Finland
| | - R Popov
- Yakutian Research Institute of Agriculture (FGBNU Yakutskij NIISH), ul. Bestyzhevo-Marlinskogo 23/1, Yakutsk, 67001, The Sakha Republic (Yakutia), Russia
| | - M Honkatukia
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland.,The Nordic Genetic Resources Center (Nordgen), P.O. Box 115, Ås, NO-1431, Norway
| | - H Huuki
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - H Lindeberg
- Production Systems, Natural Resources Institute Finland (Luke), Halolantie 31A, Maaninka, FI-71750, Finland
| | - J Peippo
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - T Reilas
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| | - S Zarovnyaev
- GBU Saha Agroplem, ul. Ordzhonkidze 20/204, Yakutsk, 67700, The Sakha Republic (Yakutia), Russia
| | - J Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Myllytie 1, Jokioinen, FI-31600, Finland
| |
Collapse
|
40
|
Pareek CS, Sachajko M, Jaskowski JM, Herudzinska M, Skowronski M, Domagalski K, Szczepanek J, Czarnik U, Sobiech P, Wysocka D, Pierzchala M, Polawska E, Stepanow K, Ogłuszka M, Juszczuk-Kubiak E, Feng Y, Kumar D. Comparative Analysis of the Liver Transcriptome among Cattle Breeds Using RNA-seq. Vet Sci 2019; 6:vetsci6020036. [PMID: 30934933 PMCID: PMC6631511 DOI: 10.3390/vetsci6020036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/16/2019] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
Global gene expression in liver transcriptome varies among cattle breeds. The present investigation was aimed to identify the differentially expressed genes (DEGs), metabolic gene networks and metabolic pathways in bovine liver transcriptome of young bulls. In this study, we comparatively analyzed the bovine liver transcriptome of dairy (Polish Holstein Friesian (HF); n = 6), beef (Hereford; n = 6), and dual purpose (Polish-Red; n = 6) cattle breeds. This study identified 895, 338, and 571 significant (p < 0.01) differentially expressed (DE) gene-transcripts represented as 745, 265, and 498 hepatic DE genes through the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-HF versus Polish-Red breeds comparisons, respectively. By combining all breeds comparisons, 75 hepatic DE genes (p < 0.01) were identified as commonly shared among all the three breed comparisons; 70, 160, and 38 hepatic DE genes were commonly shared between the following comparisons: (i) Polish-Red versus Hereford and Polish-HF versus Hereford; (ii) Polish-Red versus Hereford and Polish-HF versus Polish-Red; and (iii) Polish-HF versus Hereford and Polish-HF versus Polish-Red, respectively. A total of 440, 82, and 225 hepatic DE genes were uniquely observed for the Polish-Red versus Hereford, Polish-HF versus Hereford, and Polish-Red versus Polish-HF comparisons, respectively. Gene ontology (GO) analysis identified top-ranked enriched GO terms (p < 0.01) including 17, 16, and 31 functional groups and 151, 61, and 140 gene functions that were DE in all three breed liver transcriptome comparisons. Gene network analysis identified several potential metabolic pathways involved in glutamine family amino-acid, triglyceride synthesis, gluconeogenesis, p38MAPK cascade regulation, cholesterol biosynthesis (Polish-Red versus Hereford); IGF-receptor signaling, catecholamine transport, lipoprotein lipase, tyrosine kinase binding receptor (Polish-HF versus Hereford), and PGF-receptor binding, (Polish-HF versus Polish-Red). Validation results showed that the relative expression values were consistent to those obtained by RNA-seq, and significantly correlated between the quantitative reverse transcription PCR (RT-qPCR) and RNA-seq (Pearson’s r > 0.90). Our results provide new insights on bovine liver gene expressions among dairy versus dual versus beef breeds by identifying the large numbers of DEGs markers submitted to NCBI gene expression omnibus (GEO) accession number GSE114233, which can serve as useful genetic tools to develop the gene assays for trait-associated studies as well as, to effectively implement in genomics selection (GS) cattle breeding programs in Poland.
Collapse
Affiliation(s)
- Chandra Shekhar Pareek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Mateusz Sachajko
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Jedrzej M Jaskowski
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Magdalena Herudzinska
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Mariusz Skowronski
- Centre of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Krzysztof Domagalski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Torun, Poland.
| | - Urszula Czarnik
- Faculty of Animal Bio-engineering, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Przymeslaw Sobiech
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland.
| | - Dominika Wysocka
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10719 Olsztyn, Poland.
| | - Mariusz Pierzchala
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Ewa Polawska
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Kamila Stepanow
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Magdalena Ogłuszka
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, 05-552 Jastrzębiec, Poland.
| | - Edyta Juszczuk-Kubiak
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland.
| | - Yaping Feng
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08 854, USA.
| | - Dibyendu Kumar
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08 854, USA.
| |
Collapse
|
41
|
Genetic Analyses Confirm SNPs in HSPA8 and ERBB2 are Associated with Milk Protein Concentration in Chinese Holstein Cattle. Genes (Basel) 2019; 10:genes10020104. [PMID: 30704154 PMCID: PMC6409942 DOI: 10.3390/genes10020104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/17/2022] Open
Abstract
Heat shock 70 kDa protein 8 (HSPA8) and erb-b2 receptor tyrosine kinase 2 (ERBB2) were the promising candidates for milk protein concentration in dairy cattle revealed through previous RNA sequencing (RNA-Seq) study. The objective of this post-RNA-Seq study was to confirm genetic effects of HSPA8 and ERBB2 on milk protein concentration in a large Chinese Holstein population and to evaluate the genetic effects of both genes on other milk production traits. There were 2 single-nucleotide polymorphisms (SNPs) identified for HSPA8 and 11 SNPs for ERBB2 by sequencing 17 unrelated Chinese Holstein sires. The SNP-rs136632043 in HSPA8 had significant associations with all five milk production traits (p = 0.0086 to p < 0.0001), whereas SNP-rs132976221 was remarkably associated with three yield traits (p < 0.0001). Nine (ss1996900615, rs109017161, rs109122971, ss1996900614, rs110133654, rs109941438, rs110552983, rs133031530, and rs109763505) of 11 SNPs in ERBB2 were significantly associated with milk protein percentage (p = 0.0177 to p < 0.0001). A 12 Kb haplotype block was formed in ERBB2 and haplotype associations revealed similar effects on milk protein traits. Our findings confirmed the significant genetic effects of HSPA8 and ERBB2 on milk protein concentration and other milk production traits and SNP phenotypic variances above 1% may serve as genetic markers in dairy cattle breeding programs.
Collapse
|
42
|
Identification of genomic regions harboring diversity between Holstein and two local endangered breeds, Modenese and Maremmana. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Zheng X, Ning C, Zhao P, Feng W, Jin Y, Zhou L, Yu Y, Liu J. Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 2018; 101:11061-11073. [PMID: 30268606 DOI: 10.3168/jds.2018-14900] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Abstract
Long noncoding RNA (lncRNA) play a critical role in mammary development and breast cancer biology. Despite their important role in the mammary gland, little is known of the roles of lncRNA in bovine lactation, particularly regarding the molecular processes underlying it. To characterize the role of lncRNA in bovine lactation, 4 samples of Holstein cow mammary gland tissue at peak and late lactation stages were examined after biopsy. We then profiled the transcriptome of the mammary gland using RNA sequencing technology. Further, functional lncRNA-mRNA coexpression pairs were constructed to infer the function of lncRNA using a generalized linear model, followed by gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. More than 1,000 putative lncRNA were identified, 117 of which were differentially expressed between peak and late lactation stages. Bovine lncRNA were shorter, with fewer exon numbers, and expressed at significantly lower levels than protein-coding genes. Seventy-two differentially expressed (DE) lncRNA were coexpressed with 340 different protein-coding genes. The KEGG pathway analysis showed that target mRNA for DE lncRNA were mainly related to lipid and glucose metabolism, including the peroxisome proliferator-activated receptors and 5' adenosine monophosphate-activated protein kinase signaling pathways. Further bioinformatics and integrative analyses revealed that 12 DE lncRNA potentially played important roles in bovine lactation. Our findings provide a valuable resource for future bovine transcriptome studies, facilitate the understanding of bovine lactation biology, and offer functional information for cattle lactation.
Collapse
Affiliation(s)
- X Zheng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - C Ning
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - P Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - W Feng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Jin
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - L Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Y Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - J Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
44
|
Jiangfeng F, Yuzhu L, Sijiu Y, Yan C, Gengquan X, Libin W, Yangyang P, Honghong H. Transcriptional profiling of two different physiological states of the yak mammary gland using RNA sequencing. PLoS One 2018; 13:e0201628. [PMID: 30059556 PMCID: PMC6066247 DOI: 10.1371/journal.pone.0201628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/20/2018] [Indexed: 12/19/2022] Open
Abstract
Yak milk is superior to common cow milk in nutrients including protein, fat and calories. However, the milk yield of the yak is very much lower compared with other dairy bovines. To understand the molecular mechanisms of lactogenesis, lactation and mammary gland development, mammary tissue samples were taken from five yaks during a dry period (DP, n = 3) and lactation period (LP, n = 2). Two types of cDNA sequence libraries that reflected the different physiological states of the mammary gland were constructed using RNA sequencing technology. After removing reads containing adapters, reads containing poly-N and low-quality reads from the raw data, 45,423,478 to 53,274,976 clean reads were obtained from these libraries. A total of 74.72% to 80.65% of the high-quality sequence reads were uniquely aligned to the BosGru v2.0 yak reference genome. Using the DESeq R package, 360 differentially expressed genes were detected between the two groups when the adjusted P value (padj < 0.05) was used as the cutoff value; this included 192 upregulated and 168 downregulated genes in the yak mammary gland tissue of the DP compared to the LP. A gene ontology analysis revealed that the most enriched GO terms were protein binding, multi-organism process, immune system and others. KEGG pathway analysis indicated that the differentially expressed genes were mostly enriched in Hippo signaling, insulin signaling, steroid biosynthesis and others. The analysis of the up- and downregulated genes provides important insights into the molecular events involved in lactogenesis, lactation and mammary gland development and will guide further research to enhance milk yield and optimize the constituents of yak milk.
Collapse
Affiliation(s)
- Fan Jiangfeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
- * E-mail:
| | - Luo Yuzhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Yu Sijiu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Cui Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Xu Gengquan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| | - Wang Libin
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, P. R. China
| | - Pan Yangyang
- Technology and Research Center of Gansu Province for Embryonic Engineering of Bovine and Sheep & Goat, Lanzhou, Gansu, P. R. China
| | - He Honghong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
45
|
Cai W, Li C, Liu S, Zhou C, Yin H, Song J, Zhang Q, Zhang S. Genome Wide Identification of Novel Long Non-coding RNAs and Their Potential Associations With Milk Proteins in Chinese Holstein Cows. Front Genet 2018; 9:281. [PMID: 30105049 PMCID: PMC6077245 DOI: 10.3389/fgene.2018.00281] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 07/09/2018] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules involved in various biological processes. However, their role in milk performance is unknown. Here, whole transcriptome RNA sequencing was used to generate the lncRNA transcriptome profiles in mammary tissue samples from 6 Chinese Holstein cows with 3 extremely high and 3 low milk protein percentage phenotypes. In this study, 6,450 lncRNA transcripts were identified through 5 stringent steps and filtration by coding potential. In total, 31 lncRNAs and 18 novel genes were identified to be differentially expressed in high milk protein samples (HP) relative to low milk protein samples (LP), respectively. Differentially expressed lncRNAs were selected to predict target genes through bioinformatics analysis, followed by the integration of differentially expressed mRNA data, gene function, gene ontology (GO) and pathway, genome wide association study (GWAS) and quantitative trait locus (QTL) information, as well as network analysis to further characterize potential interactions. Several lncRNAs were found (such as XLOC_059976) that could be used as candidate markers for milk protein content prediction. This is the first study to perform global expression profiling of lncRNAs and mRNAs related to milk protein traits in dairy cows. These results provide important information and insights into the synthesis of milk proteins, and potential targets for the future improvement of milk quality.
Collapse
Affiliation(s)
- Wentao Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cong Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shuli Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Chenghao Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongwei Yin
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiuzhou Song
- Department of Animal and Avian Science, University of Maryland, College Park, MD, United States
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Yang S, Wang Y, Wang L, Shi Z, Ou X, Wu D, Zhang X, Hu H, Yuan J, Wang W, Cao F, Liu G. RNA-Seq reveals differentially expressed genes affecting polyunsaturated fatty acids percentage in the Huangshan Black chicken population. PLoS One 2018; 13:e0195132. [PMID: 29672513 PMCID: PMC5908183 DOI: 10.1371/journal.pone.0195132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/16/2018] [Indexed: 12/16/2022] Open
Abstract
Fatty acids metabolic products determine meat quality in chickens. Identifying genes associated with fatty acids composition could provide valuable information for the complex genetic networks of genes with underlying variations in fatty acids synthesis. RNA sequencing (RNA-Seq) was conducted to explore the chicken transcriptome from the thigh muscle tissue of 6 Huangshan Black Chickens with 3 extremely high and low phenotypic values for percentage of polyunsaturated fatty acids (PUFAs). In total, we obtained 41,139,108–44,901,729 uniquely mapped reads, which covered 74.15% of the current annotated transcripts including 18964 mRNA transcripts, across all the six thigh muscle tissue samples. Of these, we revealed 274 differentially expressed genes (DEGs) with a highly significant correlation with polyunsaturated fatty acids percentage between the comparison groups based on the ratio of PUFA/SFA. Gene ontology and pathway analysis indicated that the DEGs were enriched in particular biological processes affecting fatty acids metabolism, biosynthesis of unsaturated fatty acids (USFAs), and cell junction-related pathways. Integrated interpretation of differential gene expression and formerly reported quantitative trait loci (QTL) demonstrated that FADS2, DCN, FRZB, OGN, PRKAG3, LHFP, CHCHD10, CYTL1, FBLN5, and ADGRD1 are the most promising candidate genes affecting polyunsaturated fatty acids percentage.
Collapse
Affiliation(s)
- Shaohua Yang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Ying Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Lulu Wang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Zhaoyuan Shi
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xiaoqian Ou
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Dan Wu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Xinmiao Zhang
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Hao Hu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Jia Yuan
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
| | - Wei Wang
- Agricultural Products Quality and Safety Supervision and Management Bureau, Xuancheng, Anhui, P. R. China
| | - Fuhu Cao
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
- * E-mail: (FC); (GL)
| | - Guoqing Liu
- College of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, P. R. China
- * E-mail: (FC); (GL)
| |
Collapse
|
47
|
Peripolli E, Stafuzza NB, Munari DP, Lima ALF, Irgang R, Machado MA, Panetto JCDC, Ventura RV, Baldi F, da Silva MVGB. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genomics 2018; 19:34. [PMID: 29316879 PMCID: PMC5759835 DOI: 10.1186/s12864-017-4365-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/04/2017] [Indexed: 11/10/2022] Open
Abstract
Background Runs of homozygosity (ROH) are continuous homozygous segments of the DNA sequence. They have been applied to quantify individual autozygosity and used as a potential inbreeding measure in livestock species. The aim of the present study was (i) to investigate genome-wide autozygosity to identify and characterize ROH patterns in Gyr dairy cattle genome; (ii) identify ROH islands for gene content and enrichment in segments shared by more than 50% of the samples, and (iii) compare estimates of molecular inbreeding calculated from ROH (FROH), genomic relationship matrix approach (FGRM) and based on the observed versus expected number of homozygous genotypes (FHOM), and from pedigree-based coefficient (FPED). Results ROH were identified in all animals, with an average number of 55.12 ± 10.37 segments and a mean length of 3.17 Mb. Short segments (ROH1–2 Mb) were abundant through the genomes, which accounted for 60% of all segments identified, even though the proportion of the genome covered by them was relatively small. The findings obtained in this study suggest that on average 7.01% (175.28 Mb) of the genome of this population is autozygous. Overlapping ROH were evident across the genomes and 14 regions were identified with ROH frequencies exceeding 50% of the whole population. Genes associated with lactation (TRAPPC9), milk yield and composition (IRS2 and ANG), and heat adaptation (HSF1, HSPB1, and HSPE1), were identified. Inbreeding coefficients were estimated through the application of FROH, FGRM, FHOM, and FPED approaches. FPED estimates ranged from 0.00 to 0.327 and FROH from 0.001 to 0.201. Low to moderate correlations were observed between FPED-FROH and FGRM-FROH, with values ranging from −0.11 to 0.51. Low to high correlations were observed between FROH-FHOM and moderate between FPED-FHOM and FGRM-FHOM. Correlations between FROH from different lengths and FPED gradually increased with ROH length. Conclusions Genes inside ROH islands suggest a strong selection for dairy traits and enrichment for Gyr cattle environmental adaptation. Furthermore, low FPED-FROH correlations for small segments indicate that FPED estimates are not the most suitable method to capture ancient inbreeding. The existence of a moderate correlation between larger ROH indicates that FROH can be used as an alternative to inbreeding estimates in the absence of pedigree records. Electronic supplementary material The online version of this article (10.1186/s12864-017-4365-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisa Peripolli
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Nedenia Bonvino Stafuzza
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil
| | - Danísio Prado Munari
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Ciências Exatas, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Lago Sul, 71605-001, Brazil
| | - André Luís Ferreira Lima
- Centro de Ciências Agrárias, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, 88034-000, Brazil
| | - Renato Irgang
- Centro de Ciências Agrárias, Departamento de Zootecnia e Desenvolvimento Rural, Universidade Federal de Santa Catarina, Florianópolis, 88034-000, Brazil
| | - Marco Antonio Machado
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Lago Sul, 71605-001, Brazil.,Embrapa Gado de Leite, Juiz de Fora, 36038-330, Brazil
| | | | - Ricardo Vieira Ventura
- Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, 13635-900, Brazil.,Beef Improvement Opportunities, Elora, ON, N0B 1S0, Canada.,University of Guelph, Centre for Genetic Improvement of Livestock, ABScBG, Guelph, N1G 2W1, Canada
| | - Fernando Baldi
- Faculdade de Ciências Agrárias e Veterinárias, Departamento de Zootecnia, UNESP Univ Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 14884-900, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ), Lago Sul, 71605-001, Brazil
| | | |
Collapse
|
48
|
Bahbahani H, Salim B, Almathen F, Al Enezi F, Mwacharo JM, Hanotte O. Signatures of positive selection in African Butana and Kenana dairy zebu cattle. PLoS One 2018; 13:e0190446. [PMID: 29300786 PMCID: PMC5754058 DOI: 10.1371/journal.pone.0190446] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/14/2017] [Indexed: 02/02/2023] Open
Abstract
Butana and Kenana are two types of zebu cattle found in Sudan. They are unique amongst African indigenous zebu cattle because of their high milk production. Aiming to understand their genome structure, we genotyped 25 individuals from each breed using the Illumina BovineHD Genotyping BeadChip. Genetic structure analysis shows that both breeds have an admixed genome composed of an even proportion of indicine (0.75 ± 0.03 in Butana, 0.76 ± 0.006 in Kenana) and taurine (0.23 ± 0.009 in Butana, 0.24 ± 0.006 in Kenana) ancestries. We also observe a proportion of 0.02 to 0.12 of European taurine ancestry in ten individuals of Butana that were sampled from cattle herds in Tamboul area suggesting local crossbreeding with exotic breeds. Signatures of selection analyses (iHS and Rsb) reveal 87 and 61 candidate positive selection regions in Butana and Kenana, respectively. These regions span genes and quantitative trait loci (QTL) associated with biological pathways that are important for adaptation to marginal environments (e.g., immunity, reproduction and heat tolerance). Trypanotolerance QTL are intersecting candidate regions in Kenana cattle indicating selection pressure acting on them, which might be associated with an unexplored level of trypanotolerance in this cattle breed. Several dairy traits QTL are overlapping the identified candidate regions in these two zebu cattle breeds. Our findings underline the potential to improve dairy production in the semi-arid pastoral areas of Africa through breeding improvement strategy of indigenous local breeds.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait city, Kuwait
- * E-mail: ,
| | - Bashir Salim
- Department of Parasitology, Faculty of Veterinary Medicine, University of Khartoum Khartoum North, Sudan
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al-Hasa, Kingdom of Saudi Arabia
| | - Fahad Al Enezi
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait city, Kuwait
| | - Joram M. Mwacharo
- Small Ruminant Genomics Group, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| |
Collapse
|
49
|
Transcriptomic profiles of the bovine mammary gland during lactation and the dry period. Funct Integr Genomics 2017; 18:125-140. [PMID: 29275436 DOI: 10.1007/s10142-017-0580-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 12/06/2017] [Accepted: 12/08/2017] [Indexed: 01/22/2023]
Abstract
The initiation and maintenance of lactation are complex phenomena governed by biochemical and endocrine processes in the mammary gland (MG). Although DNA-based approaches have been used to study the onset of lactation, more comprehensive RNA-based techniques may be critical in furthering our understanding of gene alterations that occur to support lactation in the bovine MG. To further determine how gene profiles vary during lactation compared with the dry period, RNA-seq transcriptomic analysis was used to identify differentially expressed genes (DEG) in bovine MG tissues from animals that were lactating and not lactating. A total of 881 DEG (605 upregulated and 276 downregulated) were identified in MG of 3 lactating Chinese Holstein dairy cows versus the 3 dry cows. The subcellular analysis showed that the upregulated genes were most abundantly located in "integral to membrane" and "mitochondrion," and the top number of downregulated genes existed in "nucleus" and "cytoplasm." The functional analysis indicated that the DEG were primarily associated with the support of lactation processes. The genes in higher abundance were most related to "metabolic process," "oxidation-reduction process," "transport" and "signal transduction," protein synthesis-related processes (transcription, translation, protein modifications), and some MG growth-associated processes (cell proliferation/cycle/apoptosis). The downregulated genes were mainly involved in immune-related processes (inflammatory/immune/defense responses). The KEGG analysis suggested that protein synthesis-related pathways (such as protein digestion and absorption; protein processing in endoplasmic reticulum; and glycine, serine, and threonine metabolism) were highly and significantly enriched in the bovine MG of lactating cows compared to dry cows. The results suggested that the dry cows had decreased capacity for protein synthesis, energy generation, and cell growth but enhanced immune response. Collectively, this reduced capacity in dry cows supports the physiological demands of the next lactation and the coordinated metabolic changes that occur to support these demands. A total of 51 identified DEG were validated by RT-PCR, and consistent results were found between RT-PCR and the transcriptomic analysis. This work provides a profile of gene-associated changes that occur during lactation and can be used to facilitate further investigation of the mechanisms underlying lactation in dairy cows.
Collapse
|
50
|
Yang L, Xu L, Zhu B, Niu H, Zhang W, Miao J, Shi X, Zhang M, Chen Y, Zhang L, Gao X, Gao H, Li L, Liu GE, Li J. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese Cattle. Sci Rep 2017; 7:14299. [PMID: 29085051 PMCID: PMC5662686 DOI: 10.1038/s41598-017-14768-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022] Open
Abstract
Copy number variations (CNVs) are defined as deletions, insertions, and duplications between two individuals of a species. To investigate the diversity and population-genetic properties of CNVs and their diverse selection patterns, we performed a genome-wide CNV analysis using high density SNP array in Chinese native cattle. In this study, we detected a total of 13,225 CNV events and 3,356 CNV regions (CNVRs), overlapping with 1,522 annotated genes. Among them, approximately 71.43 Mb of novel CNVRs were detected in the Chinese cattle population for the first time, representing the unique genomic resources in cattle. A new V i statistic was proposed to estimate the region-specific divergence in CNVR for each group based on unbiased estimates of pairwise V ST . We obtained 12 and 62 candidate CNVRs at the top 1% and top 5% of genome-wide V i value thresholds for each of four groups (North, Northwest, Southwest and South). Moreover, we identified many lineage-differentiated CNV genes across four groups, which were associated with several important molecular functions and biological processes, including metabolic process, response to stimulus, immune system, and others. Our findings provide some insights into understanding lineage-differentiated CNVs under divergent selection in the Chinese native cattle.
Collapse
Affiliation(s)
- Liu Yang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Lingyang Xu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Bo Zhu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hong Niu
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wengang Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Miao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xinping Shi
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology, Agricultural University of Hebei, Baoding, Hebei, 071001, China
| | - Ming Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yan Chen
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lupei Zhang
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huijiang Gao
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, Maryland, 20705, USA
| | - Junya Li
- Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|