1
|
Maher AK, Burnham KL, Jones EM, Tan MMH, Saputil RC, Baillon L, Selck C, Giang N, Argüello R, Pillay C, Thorley E, Short CE, Quinlan R, Barclay WS, Cooper N, Taylor GP, Davenport EE, Dominguez-Villar M. Transcriptional reprogramming from innate immune functions to a pro-thrombotic signature by monocytes in COVID-19. Nat Commun 2022; 13:7947. [PMID: 36572683 PMCID: PMC9791976 DOI: 10.1038/s41467-022-35638-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 12/14/2022] [Indexed: 12/27/2022] Open
Abstract
Although alterations in myeloid cells have been observed in COVID-19, the specific underlying mechanisms are not completely understood. Here, we examine the function of classical CD14+ monocytes in patients with mild and moderate COVID-19 during the acute phase of infection and in healthy individuals. Monocytes from COVID-19 patients display altered expression of cell surface receptors and a dysfunctional metabolic profile that distinguish them from healthy monocytes. Secondary pathogen sensing ex vivo leads to defects in pro-inflammatory cytokine and type-I IFN production in moderate COVID-19 cases, together with defects in glycolysis. COVID-19 monocytes switch their gene expression profile from canonical innate immune to pro-thrombotic signatures and are functionally pro-thrombotic, both at baseline and following ex vivo stimulation with SARS-CoV-2. Transcriptionally, COVID-19 monocytes are characterized by enrichment of pathways involved in hemostasis, immunothrombosis, platelet aggregation and other accessory pathways to platelet activation and clot formation. These results identify a potential mechanism by which monocyte dysfunction may contribute to COVID-19 pathology.
Collapse
Affiliation(s)
- Allison K Maher
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Katie L Burnham
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma M Jones
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Michelle M H Tan
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Rocel C Saputil
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Laury Baillon
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Claudia Selck
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Nicolas Giang
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Rafael Argüello
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clio Pillay
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Emma Thorley
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Charlotte-Eve Short
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Rachael Quinlan
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Wendy S Barclay
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Nichola Cooper
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Graham P Taylor
- Department of Infectious Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Emma E Davenport
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | |
Collapse
|
2
|
Sharma S, Tyagi T, Antoniak S. Platelet in thrombo-inflammation: Unraveling new therapeutic targets. Front Immunol 2022; 13:1039843. [PMID: 36451834 PMCID: PMC9702553 DOI: 10.3389/fimmu.2022.1039843] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
In the broad range of human diseases, thrombo-inflammation appears as a clinical manifestation. Clinically, it is well characterized in context of superficial thrombophlebitis that is recognized as thrombosis and inflammation of superficial veins. However, it is more hazardous when developed in the microvasculature of injured/inflamed/infected tissues and organs. Several diseases like sepsis and ischemia-reperfusion can cause formation of microvascular thrombosis subsequently leading to thrombo-inflammation. Thrombo-inflammation can also occur in cases of antiphospholipid syndrome, preeclampsia, sickle cell disease, bacterial and viral infection. One of the major contributors to thrombo-inflammation is the loss of normal anti-thrombotic and anti-inflammatory potential of the endothelial cells of vasculature. This manifest itself in the form of dysregulation of the coagulation pathway and complement system, pathologic platelet activation, and increased recruitment of leukocyte within the microvasculature. The role of platelets in hemostasis and formation of thrombi under pathologic and non-pathologic conditions is well established. Platelets are anucleate cells known for their essential role in primary hemostasis and the coagulation pathway. In recent years, studies provide strong evidence for the critical involvement of platelets in inflammatory processes like acute ischemic stroke, and viral infections like Coronavirus disease 2019 (COVID-19). This has encouraged the researchers to investigate the contribution of platelets in the pathology of various thrombo-inflammatory diseases. The inhibition of platelet surface receptors or their intracellular signaling which mediate initial platelet activation and adhesion might prove to be suitable targets in thrombo-inflammatory disorders. Thus, the present review summarizes the concept and mechanism of platelet signaling and briefly discuss their role in sterile and non-sterile thrombo-inflammation, with the emphasis on role of platelets in COVID-19 induced thrombo-inflammation. The aim of this review is to summarize the recent developments in deciphering the role of the platelets in thrombo-inflammation and discuss their potential as pharmaceutical targets.
Collapse
Affiliation(s)
- Swati Sharma
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Tarun Tyagi
- Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT, United States
| | - Silvio Antoniak
- UNC Blood Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
3
|
Matthay ZA, Hellmann ZJ, Nunez-Garcia B, Fields AT, Cuschieri J, Neal MD, Berger JS, Luttrell-Williams E, Knudson MM, Cohen MJ, Callcut RA, Kornblith LZ. Postinjury platelet aggregation and venous thromboembolism. J Trauma Acute Care Surg 2022; 93:604-612. [PMID: 35444156 PMCID: PMC9585095 DOI: 10.1097/ta.0000000000003655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Posttraumatic venous thromboembolism (VTE) remains prevalent in severely injured patients despite chemoprophylaxis. Importantly, although platelets are central to thrombosis, they are not routinely targeted in prevention of posttraumatic VTE. Furthermore, platelets from injured patients show ex vivo evidence of increased activation yet impaired aggregation, consistent with functional exhaustion. However, the relationship of this platelet functional phenotype with development of posttraumatic VTE is unknown. We hypothesized that, following injury, impaired ex vivo platelet aggregation (PA) is associated with the development of posttraumatic VTE. METHODS We performed a secondary analysis of 133 severely injured patients from a prospective observational study investigating coagulation and inflammation (2011-2019). Platelet aggregation in response to stimulation with adenosine diphosphate (ADP), collagen, and thrombin was measured at presentation (preresuscitation) and 24 hours (postresuscitation). Viscoelastic clot strength and lysis were measured in parallel by thromboelastography. Multivariable regression examined relationships between PA at presentation, 24 hours, and the change (δ) in PA between presentation and 24 hours with development of VTE. RESULTS The 133 patients were severely injured (median Injury Severity Score, 25), and 14% developed VTE (all >48 hours after admission). At presentation, platelet count and PA were not significantly different between those with and without incident VTE. However, at 24 hours, those who subsequently developed VTE had significantly lower platelet counts (126 × 10 9 /L vs. 164 × 10 9 /L, p = 0.01) and lower PA in response to ADP ( p < 0.05), collagen ( p < 0.05), and thrombin ( p = 0.06). Importantly, the magnitude of decrease in PA (δ) from presentation to 24 hours was independently associated with development of VTE (adjusted odds ratios per 10 aggregation unit decrease: δ-ADP, 1.31 [ p = 0.03]; δ-collagen, 1.36 [ p = 0.01]; δ-thrombin, 1.41 [ p < 0.01]). CONCLUSION Severely injured patients with decreasing ex vivo measures of PA despite resuscitation have an increased risk of developing VTE. This may have implications for predicting development of VTE and for studying platelet targeted chemoprophylaxis regimens. LEVEL OF EVIDENCE Prognostic/Epidemiological; Level III.
Collapse
Affiliation(s)
- Zachary A. Matthay
- Department of Surgery, Zuckerberg San Francisco General Hospital/University of California San Francisco, San Francisco, CA
| | | | - Brenda Nunez-Garcia
- Department of Surgery, Zuckerberg San Francisco General Hospital/University of California San Francisco, San Francisco, CA
| | - Alexander T. Fields
- Department of Surgery, Zuckerberg San Francisco General Hospital/University of California San Francisco, San Francisco, CA
| | - Joseph Cuschieri
- Department of Surgery, Zuckerberg San Francisco General Hospital/University of California San Francisco, San Francisco, CA
| | - Matthew D. Neal
- Department of Surgery, University of Pittsburg, Pittsburg, PA
| | - Jeffrey S. Berger
- Department of Medicine, New York University Grossman School of Medicine, New York, NY
| | | | - M. Margaret Knudson
- Department of Surgery, Zuckerberg San Francisco General Hospital/University of California San Francisco, San Francisco, CA
| | | | | | - Lucy Z. Kornblith
- Department of Surgery, Zuckerberg San Francisco General Hospital/University of California San Francisco, San Francisco, CA
| |
Collapse
|
4
|
Dix C, Zeller J, Stevens H, Eisenhardt SU, Shing KSCT, Nero TL, Morton CJ, Parker MW, Peter K, McFadyen JD. C-reactive protein, immunothrombosis and venous thromboembolism. Front Immunol 2022; 13:1002652. [PMID: 36177015 PMCID: PMC9513482 DOI: 10.3389/fimmu.2022.1002652] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
C-reactive protein (CRP) is a member of the highly conserved pentraxin superfamily of proteins and is often used in clinical practice as a marker of infection and inflammation. There is now increasing evidence that CRP is not only a marker of inflammation, but also that destabilized isoforms of CRP possess pro-inflammatory and pro-thrombotic properties. CRP circulates as a functionally inert pentameric form (pCRP), which relaxes its conformation to pCRP* after binding to phosphocholine-enriched membranes and then dissociates to monomeric CRP (mCRP). with the latter two being destabilized isoforms possessing highly pro-inflammatory features. pCRP* and mCRP have significant biological effects in regulating many of the aspects central to pathogenesis of atherothrombosis and venous thromboembolism (VTE), by directly activating platelets and triggering the classical complement pathway. Importantly, it is now well appreciated that VTE is a consequence of thromboinflammation. Accordingly, acute VTE is known to be associated with classical inflammatory responses and elevations of CRP, and indeed VTE risk is elevated in conditions associated with inflammation, such as inflammatory bowel disease, COVID-19 and sepsis. Although the clinical data regarding the utility of CRP as a biomarker in predicting VTE remains modest, and in some cases conflicting, the clinical utility of CRP appears to be improved in subsets of the population such as in predicting VTE recurrence, in cancer-associated thrombosis and in those with COVID-19. Therefore, given the known biological function of CRP in amplifying inflammation and tissue damage, this raises the prospect that CRP may play a role in promoting VTE formation in the context of concurrent inflammation. However, further investigation is required to unravel whether CRP plays a direct role in the pathogenesis of VTE, the utility of which will be in developing novel prophylactic or therapeutic strategies to target thromboinflammation.
Collapse
Affiliation(s)
- Caroline Dix
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Johannes Zeller
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Hannah Stevens
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Steffen U. Eisenhardt
- Department of Plastic and Hand Surgery, University of Freiburg Medical Centre, Medical Faculty of the University of Freiburg, Freiburg, Germany
| | - Karen S. Cheung Tung Shing
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Tracy L. Nero
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
| | - Craig J. Morton
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Biomedical Manufacturing Program, Clayton, VIC, Australia
| | - Michael W. Parker
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Structural Biology Unit, St. Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
| | - James D. McFadyen
- Department of Haematology, Alfred Hospital, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
- Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: James D. McFadyen,
| |
Collapse
|
5
|
Pluta K, Porębska K, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Targoński R, Krasińska A, Filipiak KJ, Jemielity M, Krasiński Z. Platelet-Leucocyte Aggregates as Novel Biomarkers in Cardiovascular Diseases. BIOLOGY 2022; 11:biology11020224. [PMID: 35205091 PMCID: PMC8869671 DOI: 10.3390/biology11020224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/19/2022] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Simple Summary Cardiovascular diseases are the most common cause of death worldwide. Hence, novel biomarkers are urgently needed to improve diagnosis and treatment. Platelet–leucocyte aggregates are conglomerates of platelets and leucocytes and are widely investigated as biomarkers in cardiovascular diseases. Platelet–leucocytes aggregates are present in health, but increase in patients with cardiovascular risk factors and acute or stable coronary syndromes, making them a potential diagnostic marker. Moreover, platelet–leucocyte aggregates predict outcomes after surgery or percutaneous treatment and could be used to monitor antiplatelet therapy. Emerging data about the participation of platelet–leucocyte aggregates in cardiovascular diseases pathogenesis make them an attractive target for novel therapies. Furthermore, simple detection with conventional flow cytometry provides accurate and reproducible results, although requires specific sample handling. The main task for the future is to determine the standardized protocol to measure blood concentrations of platelet–leucocyte aggregates and subsequently establish their normal range in health and disease. Abstract Platelet–leucocyte aggregates (PLA) are a formation of leucocytes and platelets bound by specific receptors. They arise in the condition of sheer stress, thrombosis, immune reaction, vessel injury, and the activation of leukocytes or platelets. PLA participate in cardiovascular diseases (CVD). Increased levels of PLA were revealed in acute and chronic coronary syndromes, carotid stenosis cardiovascular risk factors. Due to accessible, available, replicable, quick, and low-cost quantifying using flow cytometry, PLA constitute an ideal biomarker for clinical practice. PLA are promising in early diagnosing and estimating prognosis in patients with acute or chronic coronary syndromes treated by percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). PLA were also a reliable marker of platelet activity for monitoring antiplatelet therapy. PLA consist also targets potential therapies in CVD. All of the above potential clinical applications require further studies to validate methods of assay and proof clinical benefits.
Collapse
Affiliation(s)
- Kinga Pluta
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Kinga Porębska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
| | - Tomasz Urbanowicz
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland; (K.P.); (K.P.)
- Correspondence: ; Tel.: +48-22-599-1951
| | - Anna Olasińska-Wiśniewska
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Radosław Targoński
- 1st Department of Cardiology, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Aleksandra Krasińska
- Department of Ophtalmology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, 00-136 Warsaw, Poland;
| | - Marek Jemielity
- Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (M.J.)
| | - Zbigniew Krasiński
- Department of Vascular and Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Sciences, 61-701 Poznan, Poland;
| |
Collapse
|
6
|
Moon MJ, McFadyen JD, Peter K. Caught at the Scene of the Crime: Platelets and Neutrophils Are Conspirators in Thrombosis. Arterioscler Thromb Vasc Biol 2021; 42:63-66. [PMID: 34852641 DOI: 10.1161/atvbaha.121.317187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mitchell J Moon
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.)
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Department of Clinical Hematology (J.D.M.), The Alfred Hospital, Melbourne, Victoria, Australia.,Departments of Medicine (J.D.M., K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Department of Cardiology (K.P.), The Alfred Hospital, Melbourne, Victoria, Australia.,Departments of Medicine (J.D.M., K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Immunology (K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Xue J, Ma D, Jiang J, Liu Y. Diagnostic and Prognostic Value of Immune/Inflammation Biomarkers for Venous Thromboembolism: Is It Reliable for Clinical Practice? J Inflamm Res 2021; 14:5059-5077. [PMID: 34629886 PMCID: PMC8494998 DOI: 10.2147/jir.s327014] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/19/2021] [Indexed: 12/17/2022] Open
Abstract
Venous thromboembolism (VTE), which includes deep vein thrombosis (DVT) and pulmonary embolism (PE), has been an important cause of sudden in-hospital death. Studies have shown that the immune/inflammatory response plays an important role in the pathogenesis of vascular disease, with representative markers in the blood including the neutrophil/lymphocyte ratio (NLR), platelet/lymphocyte ratio (PLR), monocyte/lymphocyte ratio (MLR), systemic immune/inflammatory index (SII), etc. However, there is a variety of immune/inflammatory indicators. Moreover, most previous studies have been single-center investigations involving one or two indicators, with varying nature of cases, number of cases and study objectives, thereby making it difficult to reach consensus conclusions with good clinical guidelines. This article reviews the clinical value of immunoinflammatory indicators for VTE based on previous studies, including the diagnostic and prognostic capabilities. In conclusion, NLR provides promising predictive capability for the onset and prognosis of VTE and deserves extensive application in clinical practice. PLR also has certain diagnostic and prognostic value, but further studies are warranted to identify its reliability and stability. Monocytes, eosinophils and platelet-related indicators show some clinical association with VTE, although the predictive capabilities are mediocre. SII is of promising potential value for VTE and deserves further investigations. This review will provide new clues and valuable clinical guidance for the diagnosis and therapy of VTE.
Collapse
Affiliation(s)
- Junshuai Xue
- Department of General Surgery, Vascular Surgery, Shandong University Qilu Hospital, Jinan City, Shandong Province, People's Republic of China
| | - Delin Ma
- Department of General Surgery, Shandong University Qilu Hospital, Jinan City, Shandong Province, People's Republic of China
| | - Jianjun Jiang
- Department of General Surgery, Vascular Surgery, Shandong University Qilu Hospital, Jinan City, Shandong Province, People's Republic of China
| | - Yang Liu
- Department of General Surgery, Vascular Surgery, Shandong University Qilu Hospital, Jinan City, Shandong Province, People's Republic of China
| |
Collapse
|
8
|
Gao LN, Li Q, Xie JQ, Yang WX, You CG. Immunological analysis and differential genes screening of venous thromboembolism. Hereditas 2021; 158:2. [PMID: 33388092 PMCID: PMC7778808 DOI: 10.1186/s41065-020-00166-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/06/2020] [Indexed: 12/04/2022] Open
Abstract
Purpose To explore the pathogenesis of venous thromboembolism (VTE) and provide bioinformatics basis for the prevention and treatment of VTE. Methods The R software was used to obtain the gene expression profile data of GSE19151, combining with the CIBERSORT database, obtain immune cells and differentially expressed genes (DEGs) of blood samples of VTE patients and normal control, and analyze DEGs for GO analysis and KEGG pathway enrichment analysis. Then, the protein-protein interaction (PPI) network was constructed by using the STRING database, the key genes (hub genes) and immune differential genes were screened by Cytoscape software, and the transcription factors (TFs) regulating hub genes and immune differential genes were analyzed by the NetworkAnalyst database. Results Compared with the normal group, monocytes and resting mast cells were significantly expressed in the VTE group, while regulatory T cells were significantly lower. Ribosomes were closely related to the occurrence of VTE. 10 hub genes and immune differential genes were highly expressed in VTE. MYC, SOX2, XRN2, E2F1, SPI1, CREM and CREB1 can regulate the expressions of hub genes and immune differential genes. Conclusions Ribosomal protein family genes are most relevant to the occurrence and development of VTE, and the immune differential genes may be the key molecules of VTE, which provides new ideas for further explore the pathogenesis of VTE.
Collapse
Affiliation(s)
- Li-Na Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730030, China
| | - Jian-Qin Xie
- Department of Anesthesiology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Wan-Xia Yang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
9
|
Hsu LW, Chen PW, Chang WT, Lee WH, Liu PY. The Role of ROCK in Platelet-Monocyte Collaborative Induction of Thromboinflammation during Acute Coronary Syndrome. Thromb Haemost 2020; 120:1417-1431. [PMID: 32877952 DOI: 10.1055/s-0040-1714278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Arterial thrombosis is initiated by atherosclerotic plaque damage, prothrombotic material release and platelet aggregation. Platelets are primary mediators involved in thrombosis and cooperate with vascular and immune cells. OBJECTIVE Herein, we investigated how activated platelets interacted with monocytes in atherothrombosis. METHODS AND RESULTS We collected patients' blood from coronary arteries during percutaneous coronary intervention and measured platelet activity. Platelets from coronary arteries had higher pseudopodium expression and activity in patients with acute coronary syndrome (ACS). Ribosome profiling of platelets from coronary blood mapped a vigorous upregulation of Rho GTPases and their downstream effectors. RhoA activated downstream Rho-associated coiled-coil containing protein kinase (ROCK), and ROCK increased surface P-selectin in coronary blood platelets. The interaction between platelets and monocytes was observed in vitro, and was found in ruptured coronary plaques of ACS. Further we found that activated platelets promoted monocytes transmigration, which could be suppressed in the presence of ROCK inhibitors. The increased surface P-selectin on thrombin-induced platelets interacted with monocytes to upregulate monocyte chemokine receptor 2 (CCR2) expression via the ROCK pathway. The expression of CCR2 was higher in monocyte-platelet aggregates than in monocytes without platelets. Finally, using the Asian Screening Array BeadChip, we identified single-nucleotide polymorphism (SNP) associated with cardiovascular events. Notably, patients having homozygous major alleles of the RHOA SNP rs11706370 presented with higher risks of cardiovascular events. CONCLUSION Through ROCK-activated cytoskeleton remodeling and P-selectin expression, platelets were recruited and interacted synergistically with high CCR2-expressing monocytes to induce thromboinflammation in atherothrombosis.
Collapse
Affiliation(s)
- Ling-Wei Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wei Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Ting Chang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cardiology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Wen-Huang Lee
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ping-Yen Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Esparza O, Higa K, Davizon-Castillo P. Molecular and functional characteristics of megakaryocytes and platelets in aging. Curr Opin Hematol 2020; 27:302-310. [PMID: 32740036 PMCID: PMC11776438 DOI: 10.1097/moh.0000000000000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Advances in medical care and preventive measures have contributed to increasing life expectancy. Therefore, it is critical to expand our understanding of the physiological and pathophysiological adaptations of the hematological system in aging. We highlight and review the findings from recent investigations aimed at understanding the effects of aging on megakaryocytes and platelets. RECENT FINDINGS Biochemical and transcriptomic studies of megakaryocytes and platelets from older humans and mice have advanced our understanding of the molecular and functional characteristics of megakaryocytes and platelets during aging. These studies have led to the identification of metabolic and inflammatory pathways associated with the generation of hyperreactive platelets that may significantly contribute to the high incidence of thrombosis in aging. SUMMARY By increasing our research efforts to understand and identify the characteristics of megakaryocytes and platelets in aging, we will increase our potential to develop novel therapies aimed at decreasing the incidence of aging-associated thrombosis. These efforts will also serve as a foundation to better understand the role of megakaryocytes and platelets in other age-related hematological conditions with high thrombotic risk such as clonal hematopoiesis of indeterminate potential and myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Orlando Esparza
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
| | - Kelly Higa
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Pavel Davizon-Castillo
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
- Hemophilia and Thrombosis Center, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
11
|
Chen Y, Zhong H, Zhao Y, Luo X, Gao W. Role of platelet biomarkers in inflammatory response. Biomark Res 2020; 8:28. [PMID: 32774856 PMCID: PMC7397646 DOI: 10.1186/s40364-020-00207-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Beyond hemostasis, thrombosis and wound healing, it is becoming increasingly clear that platelets play an integral role in inflammatory response and immune regulation. Platelets recognize pathogenic microorganisms and secrete various immunoregulatory cytokines and chemokines, thus facilitating a variety of immune effects and regulatory functions. In this review, we discuss recent advances in signaling of platelet activation-related biomarkers in inflammatory settings and application prospects to apply for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Yufei Chen
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Haoxuan Zhong
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Yikai Zhao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Xinping Luo
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| | - Wen Gao
- Department of Cardiology, Huashan Hospital, Fudan University, No.12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040 China
| |
Collapse
|
12
|
Iyer KS, Dayal S. Modulators of platelet function in aging. Platelets 2020; 31:474-482. [PMID: 31524038 PMCID: PMC7141765 DOI: 10.1080/09537104.2019.1665641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/13/2022]
Abstract
Platelets are small, anucleated effector cells that play an important role in linking the hemostatic and inflammatory processes in the body. Platelet function is known to be altered under various inflammatory conditions including aging. A gain in platelet function during aging can increase the risk of thrombotic events, such as stroke and acute myocardial infarction. Anti-platelet therapy is designed to reduce risk of serious cerebrovascular and cardiovascular events, but the adverse consequences of therapy, such as risk for bleeding increases with aging as well. Age-associated comorbidities such as obesity, diabetes, and hyperlipidemia also contribute to increased platelet activity and thus can enhance the risk of thrombosis. Therefore, identification of unique mechanisms of platelet dysfunction in aging and in age-associated comorbidities is warranted to design novel antiplatelet drugs. This review outlines some of the current areas of research on aging-related mechanisms of platelet hyperactivity and addresses the clinical urgency for designing anti-platelet therapies toward novel molecular targets in the aging population.
Collapse
Affiliation(s)
- Krishna S Iyer
- Department of Internal Medicine, University of Iowa , Iowa city, USA
| | - Sanjana Dayal
- Department of Internal Medicine, University of Iowa , Iowa city, USA
| |
Collapse
|
13
|
Frey C, Koliopoulou AG, Montenont E, Tolley ND, Javan H, McKellar SH, Drakos SG, Selzman CH, Rondina MT. Longitudinal assessment of the platelet transcriptome in advanced heart failure patients following mechanical unloading. Platelets 2020; 31:952-959. [PMID: 31934818 DOI: 10.1080/09537104.2020.1714573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Patients with heart failure (HF) and left ventricular assist devices (LVAD) have dysregulated thrombo-inflammatory responses, mediated in part by platelets. While studies of platelet activation have been undertaken in HF, changes in the platelet transcriptome in HF patients following mechanical unloading with an LVAD have not been investigated. We prospectively enrolled and longitudinally followed advanced HF patients (n = 32) for a mean of 57 months post-LVAD implantation. For comparison, healthy donors were also enrolled (n = 20). Platelets were hyperactive in HF, as evidenced by significantly increased formation of circulating platelet-monocyte aggregate formation. Platelet transcriptome interrogation by next-generation RNA-sequencing identified that the expression of numerous genes (n = 588) was significantly (FDR < 0.05) altered in HF patients prior to LVAD implantation. Differentially expressed genes were predicted to have roles in angiogenesis, immune and inflammatory responses, apoptosis, and cardiac muscle contraction. 90 days following LVAD implantation, the majority (80%) of differentially expressed genes in HF patients normalized, as compared to the platelet transcriptomes of healthy donors. In conclusion, advanced HF is associated with marked alterations in the platelet transcriptome. While LVAD implantation to off load the failing heart results in resolution in the majority of differentially expressed genes, a subset of the platelet transcriptome remains persistently altered.
Collapse
Affiliation(s)
- Callie Frey
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA
| | - Antigoni G Koliopoulou
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA
| | - Emilie Montenont
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA
| | - Neal D Tolley
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA
| | - Hadi Javan
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA
| | - Stephen H McKellar
- Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA
| | - Stavros G Drakos
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute , Salt Lake City, Utah.,Departments of Internal Medicine and Pathology, University of Utah , Salt Lake City, Utah, USA
| | - Craig H Selzman
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA.,Department of Surgery, Division of Cardiothoracic Surgery, University of Utah , Salt Lake City, Utah, USA.,Nora Eccles Harrison Cardiovascular Research and Training Institute , Salt Lake City, Utah
| | - Matthew T Rondina
- University of Utah Molecular Medicine Program , Salt Lake City, Utah, USA.,Departments of Internal Medicine and Pathology, University of Utah , Salt Lake City, Utah, USA.,Department of Internal Medicine and GRECC, Salt Lake City, Utah, USA
| |
Collapse
|
14
|
Rayes J, Bourne JH, Brill A, Watson SP. The dual role of platelet-innate immune cell interactions in thrombo-inflammation. Res Pract Thromb Haemost 2020; 4:23-35. [PMID: 31989082 PMCID: PMC6971330 DOI: 10.1002/rth2.12266] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Beyond their role in hemostasis and thrombosis, platelets are increasingly recognized as key regulators of the inflammatory response under sterile and infectious conditions. Both platelet receptors and secretion are critical for these functions and contribute to their interaction with the endothelium and innate immune system. Platelet-leukocyte interactions are increased in thrombo-inflammatory diseases and are sensitive biomarkers for platelet activation and targets for the development of new therapies. The crosstalk between platelets and innate immune cells promotes thrombosis, inflammation, and tissue damage. However, recent studies have shown that these interactions also regulate the resolution of inflammation, tissue repair, and wound healing. Many of the platelet and leukocyte receptors involved in these bidirectional interactions are not selective for a subset of immune cells. However, specific heterotypic interactions occur in different vascular beds and inflammatory conditions, raising the possibility of disease- and organ-specific pathways of intervention. In this review, we highlight and discuss prominent and emerging interrelationships between platelets and innate immune cells and their dual role in the regulation of the inflammatory response in sterile and infectious thrombo-inflammatory diseases. A better understanding of the functional relevance of these interactions in different vascular beds may provide opportunities for successful therapeutic interventions to regulate the development, progression, and chronicity of various pathological processes.
Collapse
Affiliation(s)
- Julie Rayes
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
| | - Joshua H. Bourne
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alexander Brill
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
- Department of PathophysiologySechenov First Moscow State Medical University (Sechenov University)MoscowRussia
| | - Steve P. Watson
- Institute of Cardiovascular SciencesCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
- Centre of Membrane Proteins and Receptors (COMPARE)Universities of Birmingham and NottinghamThe MidlandsUK
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Platelets are specialized effector cells that rapidly respond to sites of vascular injury. However, emerging data demonstrate that platelets possess diverse functions that also mediate inflammatory responses and neurological diseases. These functions are relevant to disease processes prevalent among older adults and likely influence susceptibility to thrombotic and inflammatory disorders. RECENT FINDINGS Platelet counts decrease in aged individuals whereas platelet reactivity increases. The platelet transcriptome is altered in aged individuals resulting in altered platelet function and exaggerated inflammation. Platelet signaling to monocytes in aging results in significantly more cytokines because of increased platelet-derived granzyme A. Platelet activation in aging appears to be driven, in part, because of increased reactive oxygen species and activation of the mammalian target of rapamycin pathway. Increased platelet hyperactivity in diseases is associated with aging, such cardiovascular disease and sepsis, exaggerate inflammation and thrombosis. Noncanonical functions of platelets influence the development of neurological diseases including Alzheimer's disease. SUMMARY Although there have been advances dissecting the molecular mechanisms regarding aging-related changes in platelets, many knowledge gaps still remain. Studies filling these gaps are likely to identify new mechanisms driving aging-related changes in platelet gene expression and function, and contributing to injurious thrombo-inflammation in older adults.
Collapse
Affiliation(s)
- Emilie Montenont
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
| | - Matthew T. Rondina
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
- George E. Wahlen VAMC Department of Internal Medicine and GRECC, Salt Lake City, Utah, 84148
| | - Robert A. Campbell
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, 84132
| |
Collapse
|
16
|
Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating Platelets as Mediators of Immunity, Inflammation, and Thrombosis. Circ Res 2019; 122:337-351. [PMID: 29348254 DOI: 10.1161/circresaha.117.310795] [Citation(s) in RCA: 612] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Platelets, non-nucleated blood components first described over 130 years ago, are recognized as the primary cell regulating hemostasis and thrombosis. The vascular importance of platelets has been attributed to their essential role in thrombosis, mediating myocardial infarction, stroke, and venous thromboembolism. Increasing knowledge on the platelets' role in the vasculature has led to many advances in understanding not only how platelets interact with the vessel wall but also how they convey changes in the environment to other circulating cells. In addition to their well-described hemostatic function, platelets are active participants in the immune response to microbial organisms and foreign substances. Although incompletely understood, the immune role of platelets is a delicate balance between its pathogenic response and its regulation of thrombotic and hemostatic functions. Platelets mediate complex vascular homeostasis via specific receptors and granule release, RNA transfer, and mitochondrial secretion that subsequently regulates hemostasis and thrombosis, infection, and innate and adaptive immunity.
Collapse
Affiliation(s)
- Milka Koupenova
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester.
| | - Lauren Clancy
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Heather A Corkrey
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| | - Jane E Freedman
- From the Division of Cardiovascular Medicine, Department of Medicine, University of Massachusetts Medical School, Worcester
| |
Collapse
|
17
|
Absence of Nonclassical Monocytes in Hemolytic Patients: Free Hb and NO-Mediated Mechanism. J Immunol Res 2019; 2019:1409383. [PMID: 31032371 PMCID: PMC6458887 DOI: 10.1155/2019/1409383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/20/2018] [Accepted: 01/22/2019] [Indexed: 12/25/2022] Open
Abstract
In a recent work, we have described the kinetics among the monocyte subsets in the peripheral blood of hemolytic patients including paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD). After engulfing Hb-activated platelets, classical monocytes (CD14+CD16-) significantly transformed into highly inflammatory (CD14+CD16hi) subsets in vitro. An estimated 40% of total circulating monocytes in PNH and 70% in SCD patients existed as CD14+CD16hi subsets. In this study, we show that the nonclassical (CD14dimCD16+) monocyte subsets are nearly absent in patients with PNH or SCD, compared to 10-12% cells in healthy individuals. In mechanism, we have described the unique role of both free Hb and nitric oxide (NO) in reducing number of nonclassical subsets more than classical monocytes. After engulfing Hb-activated platelets, the monocytes including nonclassical subsets acquired rapid cell death within 12 h in vitro. Further, the treatment to monocytes either with the secretome of Hb-activated platelets containing NO and free Hb or purified free Hb along with GSNO (a physiological NO donor) enhanced rapid cell death. Besides, our data from both PNH and SCD patients exhibited a direct correlation between intracellular NO and cell death marker 7AAD in monocytes from the peripheral blood. Our data together suggest that due to the immune surveillance nature, the nonclassical or patrolling monocytes are encountered frequently by Hb-activated platelets, free Hb, and NO in the circulation of hemolytic patients and are predisposed to die rapidly.
Collapse
|
18
|
Shih L, Guler N, Syed D, Hopkinson W, McComas KN, Walborn A, Hoppensteadt D, Fareed J, Rondina MT. Postoperative Changes in the Systemic Inflammatory Milieu in Older Surgical Patients. Clin Appl Thromb Hemost 2017; 24:583-588. [PMID: 29258393 PMCID: PMC6714708 DOI: 10.1177/1076029617747412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Dysregulated inflammation is a central component of wound healing following
surgery. We prospectively enrolled older patients (n = 25, age 65 ± 7 years)
undergoing elective total knee arthroplasty or total hip arthroplasty secondary
to advanced osteoarthritis (OA) and healthy controls (n = 48). Inflammatory,
proangiogenic (vascular endothelial growth factor [VEGF], monocyte
chemoattractant protein-1 [MCP-1], and interleukin-8 [IL-8]), and antiangiogenic
(interferon γ [IFN-γ] and IL-4) factors were measured using a high-sensitivity
biochip. Patients with OA had significantly higher baseline VEGF (10.5 ± 1.2
pg/mL vs 4.8 ± 0.2 pg/mL, P < .001), MCP-1
(130.6 ± 7.7 pg/mL vs 88.6 ± 3.9 pg/mL, P <
.0001), and IL-8 (4.0 ± 0.5 pg/mL vs 2.6 ± 0.1 pg/mL, P < .05). Postoperatively, the levels of VEGF (10.5 ± 1.2 pg/mL
vs 18.8 ± 1.5 pg/mL, P < .001) and MCP-1 (130.6
± 7.7 pg/mL vs 153.1 ± 11.5 pg/mL, P < .05)
increased significantly. Baseline and postoperative MCP-1 levels correlated
positively and significantly with age. The levels of IFN-γ and IL-4 (which has
anti-inflammatory properties) did not significantly differ at baseline in
patients with OA compared to controls and did not significantly rise
postoperatively. We conclude that systemic levels of pro-inflammatory and
angiogenic proteins are increased in patients with OA and rise further
postoperatively, while proteins that restrain inflammation and angiogenesis do
not coordinately rise. These findings implicate imbalance in inflammatory
pathways in OA that may contribute to its pathobiology.
Collapse
Affiliation(s)
- Lauren Shih
- 1 Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA.,2 Department of Internal Medicine, University of Washington, Seattle, WA, USA
| | - Nil Guler
- 3 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Daneyal Syed
- 3 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - William Hopkinson
- 3 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Kyra N McComas
- 1 Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Amanda Walborn
- 3 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Debra Hoppensteadt
- 3 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Jawed Fareed
- 3 Department of Pathology, Loyola University Medical Center, Maywood, IL, USA
| | - Matthew T Rondina
- 1 Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA.,4 Department of Pathology, George E. Wahlen VAMC Geriatric Research, Education and Clinical Center, Salt Lake City, UT, USA.,5 Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Campbell RA, Franks Z, Bhatnagar A, Rowley JW, Manne BK, Supiano MA, Schwertz H, Weyrich AS, Rondina MT. Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging. THE JOURNAL OF IMMUNOLOGY 2017; 200:295-304. [PMID: 29167233 DOI: 10.4049/jimmunol.1700885] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/30/2017] [Indexed: 12/13/2022]
Abstract
Dysregulated inflammation is implicated in the pathobiology of aging, yet platelet-leukocyte interactions and downstream cytokine synthesis in aging remains poorly understood. Platelets and monocytes were isolated from healthy younger (age <45, n = 37) and older (age ≥65, n = 30) adults and incubated together under autologous and nonautologous conditions. Synthesis of inflammatory cytokines by monocytes, alone or in the presence of platelets, was examined. Next-generation RNA-sequencing allowed for unbiased profiling of the platelet transcriptome in aging. Basal IL-8 and MCP-1 synthesis by monocytes alone did not differ between older and younger adults. However, in the presence of autologous platelets, monocytes from older adults synthesized greater IL-8 (41 ± 5 versus 9 ± 2 ng/ml, p < 0.0001) and MCP-1 (867 ± 150 versus 216 ± 36 ng/ml, p < 0.0001) than younger adults. Platelets from older adults were sufficient for upregulating the synthesis of inflammatory cytokines by monocytes. Using RNA-sequencing of platelets followed by validation via RT-PCR and immunoblot, we discovered that granzyme A (GrmA), a serine protease not previously identified in human platelets, increases with aging (∼9-fold versus younger adults, p < 0.05) and governs increased IL-8 and MCP-1 synthesis through TLR4 and caspase-1. Inhibiting GrmA reduced excessive IL-8 and MCP-1 synthesis in aging to levels similar to younger adults. In summary, human aging is associated with changes in the platelet transcriptome and proteome. GrmA is present and bioactive in human platelets, is higher in older adults, and controls the synthesis of inflammatory cytokines by monocytes. Alterations in the platelet molecular signature and signaling to monocytes may contribute to dysregulated inflammatory syndromes in older adults.
Collapse
Affiliation(s)
- Robert A Campbell
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112.,Division of General Internal Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132
| | - Zechariah Franks
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112
| | - Anish Bhatnagar
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112
| | - Jesse W Rowley
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112.,Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84132
| | - Bhanu K Manne
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112
| | - Mark A Supiano
- George E. Wahlen Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Salt Lake City, UT 84148.,Division of Geriatrics, School of Medicine, University of Utah, Salt Lake City, UT 84132; and
| | - Hansjorg Schwertz
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112.,Division of Vascular Surgery, School of Medicine, University of Utah, Salt Lake City, UT 84132
| | - Andrew S Weyrich
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112.,Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah, Salt Lake City, UT 84132
| | - Matthew T Rondina
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112; .,Division of General Internal Medicine, Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT 84132.,George E. Wahlen Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Salt Lake City, UT 84148
| |
Collapse
|
20
|
Hao N, Xie X, Zhou Z, Li J, Kang L, Wu H, Guo P, Dang C, Zhang H. Nomogram predicted risk of peripherally inserted central catheter related thrombosis. Sci Rep 2017; 7:6344. [PMID: 28740162 PMCID: PMC5524883 DOI: 10.1038/s41598-017-06609-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 06/14/2017] [Indexed: 12/24/2022] Open
Abstract
The use of peripherally inserted central catheters (PICCs) is increasing rapidly worldwide. A number of patient-related, clinical-related and device-related characteristics might be risk factors for PICC-related thrombosis. We retrospectively reviewed a database of 320 consecutive patients who underwent PICC insertion between December 2014 and December 2015 at the First Affiliated Hospital of Xi’an Jiaotong University to explore the potential associations between risk factors and PICC-associated thrombosis. A novel nomogram for predicting risk was developed based on the data. The nomogram prediction model included ten risk factors that were derived from different relevant estimates. The nomogram prediction model showed good discriminatory power (Harrell’s C-index, 0.709) and a high degree of similarity to actual thrombosis occurring after calibration. Furthermore, principal component analysis was performed to identify the factors that most influence PICC-related thrombosis. Our novel nomogram thrombosis risk prediction model was accurate in predicting PICC-related thrombosis. Karnofsky performance scores, D-dimer and blood platelet levels and previous chemotherapy were principal components. Our findings might help clinicians predict thrombosis risk in individual patients, select proper therapeutic strategies and optimize the timing of anticoagulation therapy.
Collapse
Affiliation(s)
- Nan Hao
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Zhangjian Zhou
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Jieqiong Li
- Department of Nurse, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Li Kang
- Department of Thoracic Surgery Ward 2, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Huili Wu
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Pingli Guo
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China.
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 227W Yanta Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
21
|
Singhal R, Chawla S, Rathore DK, Bhasym A, Annarapu GK, Sharma V, Seth T, Guchhait P. Development of pro-inflammatory phenotype in monocytes after engulfing Hb-activated platelets in hemolytic disorders. Clin Immunol 2016; 175:133-142. [PMID: 28039017 DOI: 10.1016/j.clim.2016.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 10/31/2016] [Accepted: 12/03/2016] [Indexed: 01/31/2023]
Abstract
Monocytes and macrophage combat infections and maintain homeostatic balance by engulfing microbes and apoptotic cells, and releasing inflammatory cytokines. Studies have described that these cells develop anti-inflammatory properties upon recycling the free-hemoglobin (Hb) in hemolytic conditions. While investigating the phenotype of monocytes in two hemolytic disorders-paroxysmal nocturnal hemoglobinuria (PNH) and sickle cell disease (SCD), we observed a high number of pro-inflammatory (CD14+CD16hi) monocytes in these patients. We further investigated in vitro the phenotype of these monocytes and found an estimated 55% of CD14+ cells were transformed into the CD14+CD16hi subset after engulfing Hb-activated platelets. The CD14+CD16hi monocytes, which were positive for both intracellular Hb and CD42b (platelet marker), secreted significant amounts of TNF-α and IL-1β, unlike monocytes treated with only free Hb, which secreted more IL-10. We have shown recently the presence of a high number of Hb-bound hyperactive platelets in patients with both diseases, and further investigated if the monocytes engulfed these activated platelets in vivo. As expected, we found 95% of CD14+CD16hi monocytes with both intracellular Hb and CD42b in both diseases, and they expressed high TNF-α. Furthermore our data showed that these monocytes whether from patients or developed in vitro after treatment with Hb-activated platelets, secreted significant amounts of tissue factor. Besides, these CD14+CD16hi monocytes displayed significantly decreased phagocytosis of E. coli. Our study therefore suggests that this alteration of monocyte phenotype may play a role in the increased propensity to pro-inflammatory/coagulant complications observed in these hemolytic disorders-PNH and SCD.
Collapse
Affiliation(s)
- Rashi Singhal
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal University, Karnataka, India
| | - Sheetal Chawla
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Deepak K Rathore
- Translational Health Science & Technology Institute, National Capital Region Biotech Science Cluster, Faridabad, India
| | - Angika Bhasym
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal University, Karnataka, India
| | - Gowtham K Annarapu
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India; Department of Biotechnology, Manipal University, Karnataka, India
| | - Vandana Sharma
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Tulika Seth
- Department of Hematology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Guchhait
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, India.
| |
Collapse
|