1
|
Callegari F, Brofiga M, Tedesco M, Massobrio P. Electrophysiological features of cortical 3D networks are deeply modulated by scaffold properties. APL Bioeng 2024; 8:036112. [PMID: 39193551 PMCID: PMC11348497 DOI: 10.1063/5.0214745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Three-dimensionality (3D) was proven essential for developing reliable models for different anatomical compartments and many diseases. However, the neuronal compartment still poses a great challenge as we still do not understand precisely how the brain computes information and how the complex chain of neuronal events can generate conscious behavior. Therefore, a comprehensive model of neuronal tissue has not yet been found. The present work was conceived in this framework: we aimed to contribute to what must be a collective effort by filling in some information on possible 3D strategies to pursue. We compared directly different kinds of scaffolds (i.e., PDMS sponges, thermally crosslinked hydrogels, and glass microbeads) in their effect on neuronal network activity recorded using micro-electrode arrays. While the overall rate of spiking activity remained consistent, the type of scaffold had a notable impact on bursting dynamics. The frequency, density of bursts, and occurrence of random spikes were all affected. The examination of inter-burst intervals revealed distinct burst generation patterns unique to different scaffold types. Network burst propagation unveiled divergent trends among configurations. Notably, it showed the most differences, underlying that functional variations may arise from a different 3D spatial organization. This evidence suggests that not all 3D neuronal constructs can sustain the same level of richness of activity. Furthermore, we commented on the reproducibility, efficacy, and scalability of the methods, where the beads still offer superior performances. By comparing different 3D scaffolds, our results move toward understanding the best strategies to develop functional 3D neuronal units for reliable pre-clinical studies.
Collapse
Affiliation(s)
- Francesca Callegari
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | | | - Mariateresa Tedesco
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | | |
Collapse
|
2
|
Buentello DC, Garcia-Corral M, Trujillo-de Santiago G, Alvarez MM. Neuron(s)-on-a-Chip: A Review of the Design and Use of Microfluidic Systems for Neural Tissue Culture. IEEE Rev Biomed Eng 2024; 17:243-263. [PMID: 36301779 DOI: 10.1109/rbme.2022.3217486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neuron-on-chip (NoC) systems-microfluidic devices in which neurons are cultured-have become a promising alternative to replace or minimize the use of animal models and have greatly facilitated in vitro research. Here, we review and discuss current developments in neuron-on-chip platforms, with a particular emphasis on existing biological models, culturing techniques, biomaterials, and topologies. We also discuss how the architecture, flow, and gradients affect neuronal growth, differentiation, and development. Finally, we discuss some of the most recent applications of NoCs in fundamental research (i.e., studies on the effects of electrical, mechanical/topological, or chemical stimuli) and in disease modeling.
Collapse
|
3
|
Lee H, Yi GS, Nam Y. Connectivity and network burst properties of in-vitro neuronal networks induced by a clustered structure with alginate hydrogel patterning. Biomed Eng Lett 2023; 13:659-670. [PMID: 37872997 PMCID: PMC10590365 DOI: 10.1007/s13534-023-00289-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/25/2023] Open
Abstract
Modularity is one of the important structural properties that affect information processing and other functionalities of neuronal networks. Researchers have developed in-vitro clustered network models for reproducing the modularity, but it is still challenging to control the segregation and integration of several sub-populations of them. We cultured clustered networks with alginate patterning and collected the electrophysiological signals to investigate the changes in functional properties during the development. We built inter-connected neuronal clusters using alginate micro-patterning with a circular shape on the surface of the micro-electrode array. The neuronal clusters were enabled to be connected at 3 or 10 days-in-vitro (DIV) by removing the barrier. The neuronal signals from different types of networks were collected from 16 to 34 DIV, and functional characteristics were examined. Connectivity and burst motif analysis were carried out to find out the relation between the structure and function of the networks. Neuronal networks with clustered structure showed different activity properties from the random networks along the development. The clustered networks had more short-range connections compared to the random networks. In the network burst motif analysis, the clustered networks showed more various patterns and a slower propagation of the activation patterns. In this study, we successfully cultured neuronal networks with clustered structure, and the structure affected the functional properties. The network model suggested in this study will be a good solution for observing the effect of structure on function during their development. Supplementary Information The online version contains supplementary material available at 10.1007/s13534-023-00289-5.
Collapse
Affiliation(s)
- Hyungsub Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Gwan-Su Yi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 Republic of Korea
| |
Collapse
|
4
|
Gabriel-Segard T, Rontard J, Miny L, Dubuisson L, Batut A, Debis D, Gleyzes M, François F, Larramendy F, Soriano A, Honegger T, Paul S. Proof-of-Concept Human Organ-on-Chip Study: First Step of Platform to Assess Neuro-Immunological Communication Involved in Inflammatory Bowel Diseases. Int J Mol Sci 2023; 24:10568. [PMID: 37445748 DOI: 10.3390/ijms241310568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are complex chronic inflammatory disorders of the gastrointestinal (GI) tract. Recent evidence suggests that the gut-brain axis may be pivotal in gastrointestinal and neurological diseases, especially IBD. Here, we present the first proof of concept for a microfluidic technology to model bilateral neuro-immunological communication. We designed a device composed of three compartments with an asymmetric channel that allows the isolation of soma and neurites thanks to microchannels and creates an in vitro synaptic compartment. Human-induced pluripotent stem cell-derived cortical glutamatergic neurons were maintained in soma compartments for up to 21 days. We performed a localized addition of dendritic cells (MoDCs) to either the soma or synaptic compartment. The microfluidic device was coupled with microelectrode arrays (MEAs) to assess the impact on the electrophysiological activity of neurons while adding dendritic cells. Our data highlight that an electrophysiologic signal is transmitted between two compartments of glutamatergic neurons linked by synapses in a bottom-up way when soma is exposed to primed dendritic cells. In conclusion, our study authenticates communication between dendritic cells and neurons in inflammatory conditions such as IBD. This platform opens the way to complexification with gut components to reach a device for pharmacological compound screening by blocking the gut-brain axis at a mucosal level and may help patients.
Collapse
Affiliation(s)
- Tristan Gabriel-Segard
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
- Service de Psychiatrie Transversale, Centre Hospitalo-Universitaire de Saint Etienne, Hôpital Nord, 42055 Saint-Etienne, France
| | | | | | | | | | | | | | - Fabien François
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| | | | - Alessandra Soriano
- Internal Medicine Department, Gastroenterology Division and IBD Center, Azienda Unità Sanitaria Locale-IRCCS, 42122 Reggio Emilia, Italy
| | | | - Stéphane Paul
- CIRI-Centre International de Recherche en Infectiologie, Team GIMAP, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR530, CIC 1408 Vaccinology, 42023 Saint-Etienne, France
| |
Collapse
|
5
|
Castiglione H, Vigneron PA, Baquerre C, Yates F, Rontard J, Honegger T. Human Brain Organoids-on-Chip: Advances, Challenges, and Perspectives for Preclinical Applications. Pharmaceutics 2022; 14:2301. [PMID: 36365119 PMCID: PMC9699341 DOI: 10.3390/pharmaceutics14112301] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 09/26/2023] Open
Abstract
There is an urgent need for predictive in vitro models to improve disease modeling and drug target identification and validation, especially for neurological disorders. Cerebral organoids, as alternative methods to in vivo studies, appear now as powerful tools to decipher complex biological processes thanks to their ability to recapitulate many features of the human brain. Combining these innovative models with microfluidic technologies, referred to as brain organoids-on-chips, allows us to model the microenvironment of several neuronal cell types in 3D. Thus, this platform opens new avenues to create a relevant in vitro approach for preclinical applications in neuroscience. The transfer to the pharmaceutical industry in drug discovery stages and the adoption of this approach by the scientific community requires the proposition of innovative microphysiological systems allowing the generation of reproducible cerebral organoids of high quality in terms of structural and functional maturation, and compatibility with automation processes and high-throughput screening. In this review, we will focus on the promising advantages of cerebral organoids for disease modeling and how their combination with microfluidic systems can enhance the reproducibility and quality of these in vitro models. Then, we will finish by explaining why brain organoids-on-chips could be considered promising platforms for pharmacological applications.
Collapse
Affiliation(s)
- Héloïse Castiglione
- NETRI, 69007 Lyon, France
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | - Frank Yates
- Sup’Biotech/CEA-IBFJ-SEPIA, Bâtiment 60, 18 Route du Panorama, 94260 Fontenay-aux-Roses, France
- Sup’Biotech, Ecole D’ingénieurs, 66 Rue Guy Môquet, 94800 Villejuif, France
| | | | | |
Collapse
|
6
|
Habibey R, Rojo Arias JE, Striebel J, Busskamp V. Microfluidics for Neuronal Cell and Circuit Engineering. Chem Rev 2022; 122:14842-14880. [PMID: 36070858 PMCID: PMC9523714 DOI: 10.1021/acs.chemrev.2c00212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Indexed: 02/07/2023]
Abstract
The widespread adoption of microfluidic devices among the neuroscience and neurobiology communities has enabled addressing a broad range of questions at the molecular, cellular, circuit, and system levels. Here, we review biomedical engineering approaches that harness the power of microfluidics for bottom-up generation of neuronal cell types and for the assembly and analysis of neural circuits. Microfluidics-based approaches are instrumental to generate the knowledge necessary for the derivation of diverse neuronal cell types from human pluripotent stem cells, as they enable the isolation and subsequent examination of individual neurons of interest. Moreover, microfluidic devices allow to engineer neural circuits with specific orientations and directionality by providing control over neuronal cell polarity and permitting the isolation of axons in individual microchannels. Similarly, the use of microfluidic chips enables the construction not only of 2D but also of 3D brain, retinal, and peripheral nervous system model circuits. Such brain-on-a-chip and organoid-on-a-chip technologies are promising platforms for studying these organs as they closely recapitulate some aspects of in vivo biological processes. Microfluidic 3D neuronal models, together with 2D in vitro systems, are widely used in many applications ranging from drug development and toxicology studies to neurological disease modeling and personalized medicine. Altogether, microfluidics provide researchers with powerful systems that complement and partially replace animal models.
Collapse
Affiliation(s)
- Rouhollah Habibey
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Jesús Eduardo Rojo Arias
- Wellcome—MRC
Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge
Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Johannes Striebel
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| | - Volker Busskamp
- Department
of Ophthalmology, Universitäts-Augenklinik
Bonn, University of Bonn, Ernst-Abbe-Straße 2, D-53127 Bonn, Germany
| |
Collapse
|
7
|
Parittotokkaporn S. Smartphone generated electrical fields induce axon regrowth within microchannels following injury. Med Eng Phys 2022; 105:103815. [DOI: 10.1016/j.medengphy.2022.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
|
8
|
Hong N, Nam Y. Neurons-on-a-Chip: In Vitro NeuroTools. Mol Cells 2022; 45:76-83. [PMID: 35236782 PMCID: PMC8906998 DOI: 10.14348/molcells.2022.2023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 02/15/2022] [Indexed: 11/27/2022] Open
Abstract
Neurons-on-a-Chip technology has been developed to provide diverse in vitro neuro-tools to study neuritogenesis, synaptogensis, axon guidance, and network dynamics. The two core enabling technologies are soft-lithography and microelectrode array technology. Soft lithography technology made it possible to fabricate microstamps and microfluidic channel devices with a simple replica molding method in a biological laboratory and innovatively reduced the turn-around time from assay design to chip fabrication, facilitating various experimental designs. To control nerve cell behaviors at the single cell level via chemical cues, surface biofunctionalization methods and micropatterning techniques were developed. Microelectrode chip technology, which provides a functional readout by measuring the electrophysiological signals from individual neurons, has become a popular platform to investigate neural information processing in networks. Due to these key advances, it is possible to study the relationship between the network structure and functions, and they have opened a new era of neurobiology and will become standard tools in the near future.
Collapse
Affiliation(s)
- Nari Hong
- Department of Information and Communication Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea
| | - Yoonkey Nam
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KAIST Institute for Institute for Health Science and Technology, KAIST, Daejeon 34141, Korea
| |
Collapse
|
9
|
Maisonneuve BGC, Libralesso L, Miny L, Batut A, Rontard J, Gleyzes M, Boudra B, Viera J, Debis D, Larramendy F, Jost V, Honegger T. Deposition chamber technology as building blocks for a standardized brain-on-chip framework. MICROSYSTEMS & NANOENGINEERING 2022; 8:86. [PMID: 35924033 PMCID: PMC9339542 DOI: 10.1038/s41378-022-00406-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 05/06/2023]
Abstract
The in vitro modeling of human brain connectomes is key to exploring the structure-function relationship of the central nervous system. Elucidating this intricate relationship will allow better studying of the pathological mechanisms of neurodegeneration and hence result in improved drug screenings for complex neurological disorders, such as Alzheimer's and Parkinson diseases. However, currently used in vitro modeling technologies lack the potential to mimic physiologically relevant neural structures. Herein, we present an innovative microfluidic design that overcomes one of the current limitations of in vitro brain models: their inability to recapitulate the heterogeneity of brain regions in terms of cellular density and number. This device allows the controlled and uniform deposition of any cellular population within unique plating chambers of variable size and shape. Through the fine tuning of the hydrodynamic resistance and cell deposition rate, the number of neurons seeded in each plating chamber can be tailored from a thousand up to a million. By applying our design to so-called neurofluidic devices, we offer novel neuro-engineered microfluidic platforms that can be strategically used as organ-on-a-chip platforms for neuroscience research. These advances provide essential enhancements to in vitro platforms in the quest to provide structural architectures that support models for investigating human neurodegenerative diseases.
Collapse
Affiliation(s)
| | - L. Libralesso
- University Grenoble Alpes, CNRS, GSCOP, 38000 Grenoble, France
| | | | | | | | | | | | | | | | - F. Larramendy
- University Grenoble Alpes, CNRS, LTM, 38000 Grenoble, France
- NETRI, 69007 Lyon, France
| | - V. Jost
- University Grenoble Alpes, CNRS, GSCOP, 38000 Grenoble, France
| | - T. Honegger
- University Grenoble Alpes, CNRS, LTM, 38000 Grenoble, France
- NETRI, 69007 Lyon, France
| |
Collapse
|
10
|
Bang S, Hwang KS, Jeong S, Cho IJ, Choi N, Kim J, Kim HN. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater 2021; 132:379-400. [PMID: 34157452 DOI: 10.1016/j.actbio.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The neural circuits of the central nervous system are the regulatory pathways for feeling, motion control, learning, and memory, and their dysfunction is closely related to various neurodegenerative diseases. Despite the growing demand for the unraveling of the physiology and functional connectivity of the neural circuits, their fundamental investigation is hampered because of the inability to access the components of neural circuits and the complex microenvironment. As an alternative approach, in vitro human neural circuits show principles of in vivo human neuronal circuit function. They allow access to the cellular compartment and permit real-time monitoring of neural circuits. In this review, we summarize recent advances in reconstituted in vitro neural circuits using engineering techniques. To this end, we provide an overview of the fabrication techniques and methods for stimulation and measurement of in vitro neural circuits. Subsequently, representative examples of in vitro neural circuits are reviewed with a particular focus on the recapitulation of structures and functions observed in vivo, and we summarize their application in the study of various brain diseases. We believe that the in vitro neural circuits can help neuroscience and the neuropharmacology. STATEMENT OF SIGNIFICANCE: Despite the growing demand to unravel the physiology and functional connectivity of the neural circuits, the studies on the in vivo neural circuits are frequently limited due to the poor accessibility. Furthermore, single neuron-based analysis has an inherent limitation in that it does not reflect the full spectrum of the neural circuit physiology. As an alternative approach, in vitro engineered neural circuit models have arisen because they can recapitulate the structural and functional characteristics of in vivo neural circuits. These in vitro neural circuits allow the mimicking of dysregulation of the neural circuits, including neurodegenerative diseases and traumatic brain injury. Emerging in vitro engineered neural circuits will provide a better understanding of the (patho-)physiology of neural circuits.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
11
|
Brofiga M, Pisano M, Raiteri R, Massobrio P. On the road to the brain-on-a-chip: a review on strategies, methods, and applications. J Neural Eng 2021; 18. [PMID: 34280903 DOI: 10.1088/1741-2552/ac15e4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
The brain is the most complex organ of our body. Such a complexity spans from the single-cell morphology up to the intricate connections that hundreds of thousands of neurons establish to create dense neuronal networks. All these components are involved in the genesis of the rich patterns of electrophysiological activity that characterize the brain. Over the years, researchers coming from different disciplines developedin vitrosimplified experimental models to investigate in a more controllable and observable way how neuronal ensembles generate peculiar firing rhythms, code external stimulations, or respond to chemical drugs. Nowadays, suchin vitromodels are namedbrain-on-a-chippointing out the relevance of the technological counterpart as artificial tool to interact with the brain: multi-electrode arrays are well-used devices to record and stimulate large-scale developing neuronal networks originated from dissociated cultures, brain slices, up to brain organoids. In this review, we will discuss the state of the art of the brain-on-a-chip, highlighting which structural and biological features a realisticin vitrobrain should embed (and how to achieve them). In particular, we identified two topological features, namely modular and three-dimensional connectivity, and a biological one (heterogeneity) that takes into account the huge number of neuronal types existing in the brain. At the end of this travel, we will show how 'far' we are from the goal and how interconnected-brain-regions-on-a-chip is the most appropriate wording to indicate the current state of the art.
Collapse
Affiliation(s)
- Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Marietta Pisano
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy
| | - Roberto Raiteri
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,CNR- Institute of Biophysics, Genova, Italy
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genova, Genova, Italy.,National Institute for Nuclear Physics (INFN), Genova, Italy
| |
Collapse
|
12
|
Interaction of micropatterned topographical and biochemical cues to direct neurite growth from spiral ganglion neurons. Hear Res 2021; 409:108315. [PMID: 34343850 DOI: 10.1016/j.heares.2021.108315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/07/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
Functional outcomes with neural prosthetic devices, such as cochlear implants, are limited in part due to physical separation between the stimulating elements and the neurons they stimulate. One strategy to close this gap aims to precisely guide neurite regeneration to position the neurites in closer proximity to electrode arrays. Here, we explore the ability of micropatterned biochemical and topographic guidance cues, singly and in combination, to direct the growth of spiral ganglion neuron (SGN) neurites, the neurons targeted by cochlear implants. Photopolymerization of methacrylate monomers was used to form unidirectional topographical features of ridges and grooves in addition to multidirectional patterns with 90o angle turns. Microcontact printing was also used to create similar uni- and multi-directional patterns of peptides on polymer surfaces. Biochemical cues included peptides that facilitate (laminin, LN) or repel (EphA4-Fc) neurite growth. On flat surfaces, SGN neurites preferentially grew on LN-coated stripes and avoided EphA4-Fc-coated stripes. LN or EphA4-Fc was selectively adsorbed onto the ridges or grooves to test the neurite response to a combination of topographical and biochemical cues. Coating the ridges with EphA4-Fc and grooves with LN lead to enhanced SGN alignment to topographical patterns. Conversely, EphA4-Fc coating on the grooves or LN coating on the ridges tended to disrupt alignment to topographical patterns. SGN neurites respond to combinations of topographical and biochemical cues and surface patterning that leverages both cues enhance guided neurite growth.
Collapse
|
13
|
Bae M, Yi HG, Jang J, Cho DW. Microphysiological Systems for Neurodegenerative Diseases in Central Nervous System. MICROMACHINES 2020; 11:E855. [PMID: 32947879 PMCID: PMC7570039 DOI: 10.3390/mi11090855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/13/2020] [Accepted: 09/14/2020] [Indexed: 12/19/2022]
Abstract
Neurodegenerative diseases are among the most severe problems in aging societies. Various conventional experimental models, including 2D and animal models, have been used to investigate the pathogenesis of (and therapeutic mechanisms for) neurodegenerative diseases. However, the physiological gap between humans and the current models remains a hurdle to determining the complexity of an irreversible dysfunction in a neurodegenerative disease. Therefore, preclinical research requires advanced experimental models, i.e., those more physiologically relevant to the native nervous system, to bridge the gap between preclinical stages and patients. The neural microphysiological system (neural MPS) has emerged as an approach to summarizing the anatomical, biochemical, and pathological physiology of the nervous system for investigation of neurodegenerative diseases. This review introduces the components (such as cells and materials) and fabrication methods for designing a neural MPS. Moreover, the review discusses future perspectives for improving the physiological relevance to native neural systems.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agricultural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Chungam-ro, Nam-gu, Pohang 37673, Korea;
- Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
14
|
Crowe JA, El-Tamer A, Nagel D, Koroleva AV, Madrid-Wolff J, Olarte OE, Sokolovsky S, Estevez-Priego E, Ludl AA, Soriano J, Loza-Alvarez P, Chichkov BN, Hill EJ, Parri HR, Rafailov EU. Development of two-photon polymerised scaffolds for optical interrogation and neurite guidance of human iPSC-derived cortical neuronal networks. LAB ON A CHIP 2020; 20:1792-1806. [PMID: 32314760 DOI: 10.1039/c9lc01209e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent progress in the field of human induced pluripotent stem cells (iPSCs) has led to the efficient production of human neuronal cell models for in vitro study. This has the potential to enable the understanding of live human cellular and network function which is otherwise not possible. However, a major challenge is the generation of reproducible neural networks together with the ability to interrogate and record at the single cell level. A promising aid is the use of biomaterial scaffolds that would enable the development and guidance of neuronal networks in physiologically relevant architectures and dimensionality. The optimal scaffold material would need to be precisely fabricated with submicron resolution, be optically transparent, and biocompatible. Two-photon polymerisation (2PP) enables precise microfabrication of three-dimensional structures. In this study, we report the identification of two biomaterials that support the growth and differentiation of human iPSC-derived neural progenitors into functional neuronal networks. Furthermore, these materials can be patterned to induce alignment of neuronal processes and enable the optical interrogation of individual cells. 2PP scaffolds with tailored topographies therefore provide an effective method of producing defined in vitro human neural networks for application in influencing neurite guidance and complex network activity.
Collapse
Affiliation(s)
- J A Crowe
- School of Life and Health Sciences, Aston University, B4 7ET Birmingham, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Akther F, Little P, Li Z, Nguyen NT, Ta HT. Hydrogels as artificial matrices for cell seeding in microfluidic devices. RSC Adv 2020; 10:43682-43703. [PMID: 35519701 PMCID: PMC9058401 DOI: 10.1039/d0ra08566a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Hydrogel-based artificial scaffolds and its incorporation with microfluidic devices play a vital role in shifting in vitro models from two-dimensional (2D) cell culture to in vivo like three-dimensional (3D) cell culture
Collapse
Affiliation(s)
- Fahima Akther
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| | - Peter Little
- School of Pharmacy
- The University of Queensland
- Brisbane
- Australia
| | - Zhiyong Li
- School of Mechanical Medical & Process Engineering
- Queensland University of Technology
- Brisbane
- Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre
- Griffith University
- Brisbane
- Australia
| | - Hang T. Ta
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
- Queensland Micro- and Nanotechnology Centre
| |
Collapse
|
16
|
Kim SM, Ueki M, Ren X, Akimoto J, Sakai Y, Ito Y. Micropatterned nanolayers immobilized with nerve growth factor for neurite formation of PC12 cells. Int J Nanomedicine 2019; 14:7683-7694. [PMID: 31571871 PMCID: PMC6756831 DOI: 10.2147/ijn.s217416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nerve regeneration is important for the treatment of degenerative diseases and neurons injured by accidents. Nerve growth factor (NGF) has been previously conjugated to materials for promotion of neurogenesis. MATERIALS AND METHODS Photoreactive gelatin was prepared by chemical coupling of gelatin with azidobenzoic acid (P-gel), and then NGF was immobilized on substrates in the presence or absence of micropatterned photomasks. UV irradiation induced crosslinking reactions of P-gel with itself, NGF, and the plate for immobilization. RESULTS By adjustment of the P-gel concentration, the nanometer-order height of micropatterns was controlled. NGF was quantitatively immobilized with increasing amounts of P-gel. Immobilized NGF induced neurite outgrowth of PC12 cells, a cell line derived from a pheochromocytoma of the rat adrenal medulla, at the same level as soluble NGF. The immobilized NGF showed higher thermal stability than the soluble NGF and was repeatedly used without loss of biological activity. The 3D structure (height of the formed micropattern) regulated the behavior of neurite guidance. As a result, the orientation of neurites was regulated by the stripe pattern width. CONCLUSION The micropattern-immobilized NGF nanolayer biochemically and topologically regulated neurite formation.
Collapse
Affiliation(s)
- Seong Min Kim
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama351-0198, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo113-8656, Japan
| | - Masashi Ueki
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama351-0198, Japan
| | - Xueli Ren
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama351-0198, Japan
| | - Jun Akimoto
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama351-0198, Japan
| | - Yasuyuki Sakai
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo113-8656, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, Wako, Saitama351-0198, Japan
| |
Collapse
|
17
|
Hesari Z, Mottaghitalab F, Shafiee A, Soleymani M, Dinarvand R, Atyabi F. Application of microfluidic systems for neural differentiation of cells. PRECISION NANOMEDICINE 2019. [DOI: 10.33218/prnano2(4).181127.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neural differentiation of stem cells is an important issue in development of central nervous system. Different methods such as chemical stimulation with small molecules, scaffolds, and microRNA can be used for inducing the differentiation of neural stem cells. However, microfluidic systems with the potential to induce neuronal differentiation have established their reputation in the field of regenerative medicine. Organization of microfluidic system represents a novel model that mimic the physiologic microenvironment of cells among other two and three dimensional cell culture systems. Microfluidic system has patterned and well-organized structure that can be combined with other differentiation techniques to provide optimal conditions for neuronal differentiation of stem cells. In this review, different methods for effective differentiation of stem cells to neuronal cells are summarized. The efficacy of microfluidic systems in promoting neuronal differentiation is also addressed.
Collapse
Affiliation(s)
- Zahra Hesari
- Guilan University of Medical Sciences, Rasht, Iran
| | | | | | | | | | | |
Collapse
|
18
|
Park D, Lee J, Chung JJ, Jung Y, Kim SH. Integrating Organs-on-Chips: Multiplexing, Scaling, Vascularization, and Innervation. Trends Biotechnol 2019; 38:99-112. [PMID: 31345572 DOI: 10.1016/j.tibtech.2019.06.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 12/29/2022]
Abstract
Organs-on-chips (OoCs) have attracted significant attention because they can be designed to mimic in vivo environments. Beyond constructing a single OoC, recent efforts have tried to integrate multiple OoCs to broaden potential applications such as disease modeling and drug discoveries. However, various challenges remain for integrating OoCs towards in vivo-like operation, such as incorporating various connections for integrating multiple OoCs. We review multiplexed OoCs and challenges they face: scaling, vascularization, and innervation. In our opinion, future OoCs will be constructed to have increased predictive power for in vivo phenomena and will ultimately become a mainstream tool for high quality biomedical and pharmaceutical research.
Collapse
Affiliation(s)
- DoYeun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jaeseo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Justin J Chung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Youngmee Jung
- Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Soo Hyun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea; Biomaterials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
19
|
Frimat JP, Luttge R. The Need for Physiological Micro-Nanofluidic Systems of the Brain. Front Bioeng Biotechnol 2019; 7:100. [PMID: 31134196 PMCID: PMC6514106 DOI: 10.3389/fbioe.2019.00100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 04/18/2019] [Indexed: 01/09/2023] Open
Abstract
In this article, we review brain-on-a-chip models and associated underlying technologies. Micro-nanofluidic systems of the brain can utilize the entire spectrum of organoid technology. Notably, there is an urgent clinical need for a physiologically relevant microfluidic platform that can mimic the brain. Brain diseases affect millions of people worldwide, and this number will grow as the size of elderly population increases, thus making brain disease a serious public health problem. Brain disease modeling typically involves the use of in vivo rodent models, which is time consuming, resource intensive, and arguably unethical because many animals are required for a single study. Moreover, rodent models may not accurately predict human diseases, leading to erroneous results, thus rendering animal models poor predictors of human responses to treatment. Various clinical researchers have highlighted this issue, showing that initial physiological descriptions of animal models rarely encompass all the desired human features, including how closely the model captures what is observed in patients. Consequently, such animal models only mimic certain disease aspects, and they are often inadequate for studying how a certain molecule affects various aspects of a disease. Thus, there is a great need for the development of the brain-on-a-chip technology based on which a human brain model can be engineered by assembling cell lines to generate an organ-level model. To produce such a brain-on-a-chip device, selection of appropriate cells lines is critical because brain tissue consists of many different neuronal subtypes, including a plethora of supporting glial cell types. Additionally, cellular network bio-architecture significantly varies throughout different brain regions, forming complex structures and circuitries; this needs to be accounted for in the chip design process. Compartmentalized microenvironments can also be designed within the microphysiological cell culture system to fulfill advanced requirements of a given application. On-chip integration methods have already enabled advances in Parkinson's disease, Alzheimer's disease, and epilepsy modeling, which are discussed herein. In conclusion, for the brain model to be functional, combining engineered microsystems with stem cell (hiPSC) technology is specifically beneficial because hiPSCs can contribute to the complexity of tissue architecture based on their level of differentiation and thereby, biology itself.
Collapse
Affiliation(s)
- Jean-Philippe Frimat
- Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Neurosurgery, Maastricht University Medical Centre, School for Mental Health and Neuroscience, Eindhoven, Netherlands
| | - Regina Luttge
- Neuro-Nanoscale Engineering Group, Microsystems Section & ICMS Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
20
|
Larramendy F, Yoshida S, Maier D, Fekete Z, Takeuchi S, Paul O. 3D arrays of microcages by two-photon lithography for spatial organization of living cells. LAB ON A CHIP 2019; 19:875-884. [PMID: 30723853 DOI: 10.1039/c8lc01240g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper addresses a nanoengineering approach to create a fully three-dimensional (3D) network of living cells, providing an advanced solution to in vitro studies on either neuronal networks or artificial organs. The concept of our work relies on stackable scaffolds composed of microcontainers designed and dimensioned to favor the geometrically constrained growth of cells. The container geometry allows cells to communicate in the culture medium and freely grow their projections to form a 3D arrangement of living cells. Scaffolds are fabricated using two-photon polymerization of IP-L 780 photoresist and are coated with collagen. They are stacked by mechanical micromanipulation. Technical details of the proposed nanofabrication scheme and assembly of the modular culture environment are explained. Preliminary in vitro results using PC12 cells have shown that this structure provides a good basis for healthy cell growth for at least 16 days. Our approach is envisioned to provide tailor-made solutions of future 3D cell assemblies for potential applications in drug screening or creating artificial organs.
Collapse
Affiliation(s)
- Florian Larramendy
- Department of Microsystems Engineering (IMTEK), University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Ren T, Grosshäuser B, Sridhar K, Nieland TJF, Tocchio A, Schepers U, Demirci U. 3-D geometry and irregular connectivity dictate neuronal firing in frequency domain and synchronization. Biomaterials 2019; 197:171-181. [PMID: 30660993 DOI: 10.1016/j.biomaterials.2019.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 01/18/2023]
Abstract
The replication of the complex structure and three dimensional (3-D) interconnectivity of neurons in the brain is a great challenge. A few 3-D neuronal patterning approaches have been developed to mimic the cell distribution in the brain but none have demonstrated the relationship between 3-D neuron patterning and network connectivity. Here, we used photolithographic crosslinking to fabricate in vitro 3-D neuronal structures with distinct sizes, shapes or interconnectivities, i.e., milli-blocks, micro-stripes, separated micro-blocks and connected micro-blocks, which have spatial confinement from "Z" dimension to "XYZ" dimension. During a 4-week culture period, the 3-D neuronal system has shown high cell viability, axonal, dendritic, synaptic growth and neural network activity of cortical neurons. We further studied the calcium oscillation of neurons in different 3-D patterns and used signal processing both in Fast Fourier Transform (FFT) and time domain (TD) to model the fluorescent signal variation. We observed that the firing frequency decreased as the spatial confinement in 3-D system increased. Besides, the neuronal synchronization significantly decreased by irregularly connecting micro-blocks, indicating that network connectivity can be adjusted by changing the linking conditions of 3-D gels. Earlier works showed the importance of 3-D culture over 2-D in terms of cell growth. Here, we showed that not only 3-D geometry over 2-D culture matters, but also the spatial organization of cells in 3-D dictates the neuronal firing frequency and synchronicity.
Collapse
Affiliation(s)
- Tanchen Ren
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bianka Grosshäuser
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA; Institute of Toxicology and Gentics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz, Eggenstein-Leopoldshafen, 76344, Germany
| | - Kaushik Sridhar
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Thomas J F Nieland
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Alessandro Tocchio
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Ute Schepers
- Institute of Toxicology and Gentics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz, Eggenstein-Leopoldshafen, 76344, Germany
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA.
| |
Collapse
|
22
|
Forró C, Thompson-Steckel G, Weaver S, Weydert S, Ihle S, Dermutz H, Aebersold MJ, Pilz R, Demkó L, Vörös J. Modular microstructure design to build neuronal networks of defined functional connectivity. Biosens Bioelectron 2018; 122:75-87. [DOI: 10.1016/j.bios.2018.08.075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 02/01/2023]
|
23
|
|
24
|
Aebersold MJ, Thompson-Steckel G, Joutang A, Schneider M, Burchert C, Forró C, Weydert S, Han H, Vörös J. Simple and Inexpensive Paper-Based Astrocyte Co-culture to Improve Survival of Low-Density Neuronal Networks. Front Neurosci 2018. [PMID: 29535595 PMCID: PMC5835045 DOI: 10.3389/fnins.2018.00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bottom-up neuroscience aims to engineer well-defined networks of neurons to investigate the functions of the brain. By reducing the complexity of the brain to achievable target questions, such in vitro bioassays better control experimental variables and can serve as a versatile tool for fundamental and pharmacological research. Astrocytes are a cell type critical to neuronal function, and the addition of astrocytes to neuron cultures can improve the quality of in vitro assays. Here, we present cellulose as an astrocyte culture substrate. Astrocytes cultured on the cellulose fiber matrix thrived and formed a dense 3D network. We devised a novel co-culture platform by suspending the easy-to-handle astrocytic paper cultures above neuronal networks of low densities typically needed for bottom-up neuroscience. There was significant improvement in neuronal viability after 5 days in vitro at densities ranging from 50,000 cells/cm2 down to isolated cells at 1,000 cells/cm2. Cultures exhibited spontaneous spiking even at the very low densities, with a significantly greater spike frequency per cell compared to control mono-cultures. Applying the co-culture platform to an engineered network of neurons on a patterned substrate resulted in significantly improved viability and almost doubled the density of live cells. Lastly, the shape of the cellulose substrate can easily be customized to a wide range of culture vessels, making the platform versatile for different applications that will further enable research in bottom-up neuroscience and drug development.
Collapse
Affiliation(s)
- Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Adriane Joutang
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Moritz Schneider
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Conrad Burchert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Serge Weydert
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Hana Han
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - János Vörös
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
25
|
A Microfluidic Platform for the Characterisation of CNS Active Compounds. Sci Rep 2017; 7:15692. [PMID: 29146949 PMCID: PMC5691080 DOI: 10.1038/s41598-017-15950-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 01/19/2023] Open
Abstract
New in vitro technologies that assess neuronal excitability and the derived synaptic activity within a controlled microenvironment would be beneficial for the characterisation of compounds proposed to affect central nervous system (CNS) function. Here, a microfluidic system with computer controlled compound perfusion is presented that offers a novel methodology for the pharmacological profiling of CNS acting compounds based on calcium imaging readouts. Using this system, multiple applications of the excitatory amino acid glutamate (10 nM–1 mM) elicited reproducible and reversible transient increases in intracellular calcium, allowing the generation of a concentration response curve. In addition, the system allows pharmacological investigations to be performed as evidenced by application of glutamatergic receptor antagonists, reversibly inhibiting glutamate-induced increases in intracellular calcium. Importantly, repeated glutamate applications elicited significant increases in the synaptically driven activation of the adjacent, environmentally isolated neuronal network. Therefore, the proposed new methodology will enable neuropharmacological analysis of CNS active compounds whilst simultaneously determining their effect on synaptic connectivity.
Collapse
|
26
|
Design of Cultured Neuron Networks in vitro with Predefined Connectivity Using Asymmetric Microfluidic Channels. Sci Rep 2017; 7:15625. [PMID: 29142321 PMCID: PMC5688062 DOI: 10.1038/s41598-017-15506-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/26/2017] [Indexed: 11/16/2022] Open
Abstract
The architecture of neuron connectivity in brain networks is one of the basic mechanisms by which to organize and sustain a particular function of the brain circuitry. There are areas of the brain composed of well-organized layers of neurons connected by unidirectional synaptic connections (e.g., cortex, hippocampus). Re-engineering of the neural circuits with such a heterogeneous network structure in culture may uncover basic mechanisms of emergent information functions of these circuits. In this study, we present such a model designed with two subpopulations of primary hippocampal neurons (E18) with directed connectivity grown in a microfluidic device with asymmetric channels. We analysed and compared neurite growth in the microchannels with various shapes that promoted growth dominantly in one direction. We found an optimal geometric shape features of the microchannels in which the axons coupled two chambers with the neurons. The axons grew in the promoted direction and formed predefined connections during the first 6 days in vitro (DIV). The microfluidic devices were coupled with microelectrode arrays (MEAs) to confirm unidirectional spiking pattern propagation through the microchannels between two compartments. We found that, during culture development, the defined morphological and functional connectivity formed and was maintained for up to 25 DIV.
Collapse
|
27
|
Weydert S, Zürcher S, Tanner S, Zhang N, Ritter R, Peter T, Aebersold MJ, Thompson-Steckel G, Forró C, Rottmar M, Stauffer F, Valassina IA, Morgese G, Benetti EM, Tosatti S, Vörös J. Easy to Apply Polyoxazoline-Based Coating for Precise and Long-Term Control of Neural Patterns. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8594-8605. [PMID: 28792773 DOI: 10.1021/acs.langmuir.7b01437] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Arranging cultured cells in patterns via surface modification is a tool used by biologists to answer questions in a specific and controlled manner. In the past decade, bottom-up neuroscience emerged as a new application, which aims to get a better understanding of the brain via reverse engineering and analyzing elementary circuitry in vitro. Building well-defined neural networks is the ultimate goal. Antifouling coatings are often used to control neurite outgrowth. Because erroneous connectivity alters the entire topology and functionality of minicircuits, the requirements are demanding. Current state-of-the-art coating solutions such as widely used poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) fail to prevent primary neurons from making undesired connections in long-term cultures. In this study, a new copolymer with greatly enhanced antifouling properties is developed, characterized, and evaluated for its reliability, stability, and versatility. To this end, the following components are grafted to a poly(acrylamide) (PAcrAm) backbone: hexaneamine, to support spontaneous electrostatic adsorption in buffered aqueous solutions, and propyldimethylethoxysilane, to increase the durability via covalent bonding to hydroxylated culture surfaces and antifouling polymer poly(2-methyl-2-oxazoline) (PMOXA). In an assay for neural connectivity control, the new copolymer's ability to effectively prevent unwanted neurite outgrowth is compared to the gold standard, PLL-g-PEG. Additionally, its versatility is evaluated on polystyrene, glass, and poly(dimethylsiloxane) using primary hippocampal and cortical rat neurons as well as C2C12 myoblasts, and human fibroblasts. PAcrAm-g-(PMOXA, NH2, Si) consistently outperforms PLL-g-PEG with all tested culture surfaces and cell types, and it is the first surface coating which reliably prevents arranged nodes of primary neurons from forming undesired connections over the long term. Whereas the presented work focuses on the proof of concept for the new antifouling coating to successfully and sustainably prevent unwanted connectivity, it is an important milestone for in vitro neuroscience, enabling follow-up studies to engineer neurologically relevant networks. Furthermore, because PAcrAm-g-(PMOXA, NH2, Si) can be quickly applied and used with various surfaces and cell types, it is an attractive extension to the toolbox for in vitro biology and biomedical engineering.
Collapse
Affiliation(s)
- Serge Weydert
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Stefanie Tanner
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Ning Zhang
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 210096 Nanjing, China
| | - Rebecca Ritter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Thomas Peter
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Mathias J Aebersold
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Greta Thompson-Steckel
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Csaba Forró
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology , 9014 St. Gallen, Switzerland
| | - Flurin Stauffer
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| | | | - Giulia Morgese
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, ETH Zürich , Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | | | - János Vörös
- Laboratory of Biosensors and Bioelectronics, ETH Zurich , Gloriastrasse 35, 8092 Zurich, Switzerland
| |
Collapse
|
28
|
Kato-Negishi M, Onoe H, Ito A, Takeuchi S. Rod-Shaped Neural Units for Aligned 3D Neural Network Connection. Adv Healthc Mater 2017; 6. [PMID: 28429415 DOI: 10.1002/adhm.201700143] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/13/2017] [Indexed: 12/12/2022]
Abstract
This paper proposes neural tissue units with aligned nerve fibers (called rod-shaped neural units) that connect neural networks with aligned neurons. To make the proposed units, 3D fiber-shaped neural tissues covered with a calcium alginate hydrogel layer are prepared with a microfluidic system and are cut in an accurate and reproducible manner. These units have aligned nerve fibers inside the hydrogel layer and connectable points on both ends. By connecting the units with a poly(dimethylsiloxane) guide, 3D neural tissues can be constructed and maintained for more than two weeks of culture. In addition, neural networks can be formed between the different neural units via synaptic connections. Experimental results indicate that the proposed rod-shaped neural units are effective tools for the construction of spatially complex connections with aligned nerve fibers in vitro.
Collapse
Affiliation(s)
- Midori Kato-Negishi
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Hiroaki Onoe
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Akane Ito
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
| | - Shoji Takeuchi
- Institute of Industrial Science; The University of Tokyo; 4-6-1, Komaba Meguro-ku Tokyo 153-8505 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 4-6-1 Komaba Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
29
|
Neural Circuits on a Chip. MICROMACHINES 2016; 7:mi7090157. [PMID: 30404330 PMCID: PMC6190100 DOI: 10.3390/mi7090157] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/20/2016] [Accepted: 08/29/2016] [Indexed: 02/07/2023]
Abstract
Neural circuits are responsible for the brain's ability to process and store information. Reductionist approaches to understanding the brain include isolation of individual neurons for detailed characterization. When maintained in vitro for several days or weeks, dissociated neurons self-assemble into randomly connected networks that produce synchronized activity and are capable of learning. This review focuses on efforts to control neuronal connectivity in vitro and construct living neural circuits of increasing complexity and precision. Microfabrication-based methods have been developed to guide network self-assembly, accomplishing control over in vitro circuit size and connectivity. The ability to control neural connectivity and synchronized activity led to the implementation of logic functions using living neurons. Techniques to construct and control three-dimensional circuits have also been established. Advances in multiple electrode arrays as well as genetically encoded, optical activity sensors and transducers enabled highly specific interfaces to circuits composed of thousands of neurons. Further advances in on-chip neural circuits may lead to better understanding of the brain.
Collapse
|