1
|
Kappeler PM, Fichtel C. Independent fitness consequences of group size variation in Verreaux's sifakas. Commun Biol 2024; 7:816. [PMID: 38965399 PMCID: PMC11224245 DOI: 10.1038/s42003-024-06484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
The costs and benefits of group living are also reflected in intraspecific variation in group size. Yet, little is known about general patterns of fitness consequences of this variation. We use demographic records collected over 25 years to determine how survival and reproductive success vary with group size in a Malagasy primate. We show that female reproductive rates of Verreaux's sifakas (Propithecus verreauxi) are not affected by total group size, but that they are supressed by the number of co-resident females, whereas mortality rates are significantly higher in larger groups. Neither annual rainfall nor the adult sex ratio have significant effects on birth and death rates. Hence, these sifakas enjoy the greatest net fitness benefits at small, and not the predicted intermediate group sizes. Thus, independent fitness proxies can vary independently as a function of group size as well as other factors, leading to deviations from optimal intermediate group sizes.
Collapse
Affiliation(s)
- Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Non-aggressive inter-group interactions in wild Northern Gray gibbons (Hylobates funereus). Acta Ethol 2023. [DOI: 10.1007/s10211-023-00415-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
3
|
Interrelationship among spatial cohesion, aggression rate, counter-aggression and female dominance in three lemur species. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
How social and ecological factors are associated with variation in dominance style across species of animals has been studied frequently, but the underlying processes are often not addressed. Theoretical research indicates that stronger spatial cohesion among individuals in a group causes a higher frequency of fighting and, thus, through the self-reinforcing effects of winning and losing fights, a stronger differentiation of the dominance hierarchy and dominance of females over more males. Our aim in the present paper is to study whether the same interrelationship among processes may underlie differences in dominance style among three species of lemur that differ in their degree of despotism: Lemur catta, Propithecus verreauxi and Eulemur rufifrons. We investigated their agonistic interactions and spatial cohesion based on 2752 h of observational data of 20 wild groups of these three species. We determined dominance style using the proportion of counter-aggression, with a lower proportion indicating a more despotic dominance style. We found that stronger spatial cohesion among individuals is associated with a higher rate of aggression, stronger despotism and dominance of females over more males. The results of our study emphasise the general importance of spatial cohesion in determining dominance style.
Significance statement
Theoretical studies have shown that the spatial configuration of individuals in a group influences the dominance style. In an agent-based model, DomWorld, individuals are guided by simple rules of grouping and fighting and emergent patterns of behaviour switch between resembling those of despotic or egalitarian primates depending on the degree of cohesion in groups. Yet this link has seldom been studied empirically. We, therefore, examine the relevance of spatial cohesion on patterns of behaviour of individuals in groups of three species of lemur. We confirm the predictions from the model and show that stronger spatial cohesion results in more frequent aggression, a more despotic dominance style and stronger female dominance over males. In light of this, we urge future research of animal dominance to include measures of cohesion.
Collapse
|
4
|
Smith JE, Fichtel C, Holmes RK, Kappeler PM, van Vugt M, Jaeggi AV. Sex bias in intergroup conflict and collective movements among social mammals: male warriors and female guides. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210142. [PMID: 35369756 PMCID: PMC8977663 DOI: 10.1098/rstb.2021.0142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Intergroup conflict is a major evolutionary force shaping animal and human societies. Males and females should, on average, experience different costs and benefits for participating in collective action. Specifically, among mammals, male fitness is generally limited by access to mates whereas females are limited by access to food and safety. Here we analyse sex biases among 72 species of group-living mammals in two contexts: intergroup conflict and collective movements. Our comparative phylogenetic analyses show that the modal mammalian pattern is male-biased participation in intergroup conflict and female-biased leadership in collective movements. However, the probability of male-biased participation in intergroup conflicts decreased and female-biased participation increased with female-biased leadership in movements. Thus, female-biased participation in intergroup conflict only emerged in species with female-biased leadership in collective movements, such as in spotted hyenas and some lemurs. Sex differences are probably attributable to costs and benefits of participating in collective movements (e.g. towards food, water, safety) and intergroup conflict (e.g. access to mates or resources, risk of injury). Our comparative review offers new insights into the factors shaping sex bias in leadership across social mammals and is consistent with the 'male warrior hypothesis' which posits evolved sex differences in human intergroup psychology. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- Jennifer E. Smith
- Biology Department, Mills College, 5000 MacArthur Boulevard, Oakland, CA 94631, USA
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rose K. Holmes
- Biology Department, Mills College, 5000 MacArthur Boulevard, Oakland, CA 94631, USA
| | - Peter M. Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Department Anthropology/Sociobiology, University of Göttingen, Göttingen, Germany
| | - Mark van Vugt
- Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adrian V. Jaeggi
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
De Dreu CKW, Triki Z. Intergroup conflict: origins, dynamics and consequences across taxa. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210134. [PMID: 35369751 PMCID: PMC8977662 DOI: 10.1098/rstb.2021.0134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although uniquely destructive and wasteful, intergroup conflict and warfare are not confined to humans. They are seen across a range of group-living species, from social insects, fishes and birds to mammals, including nonhuman primates. With its unique collection of theory, research and review contributions from biology, anthropology and economics, this theme issue provides novel insights into intergroup conflict across taxa. Here, we introduce and organize this theme issue on the origins and consequences of intergroup conflict. We provide a coherent framework by modelling intergroup conflicts as multi-level games of strategy in which individuals within groups cooperate to compete with (individuals in) other groups for scarce resources, such as territory, food, mating opportunities, power and influence. Within this framework, we identify cross-species mechanisms and consequences of (participating in) intergroup conflict. We conclude by highlighting crosscutting innovations in the study of intergroup conflict set forth by individual contributions. These include, among others, insights on how within-group heterogeneities and leadership relate to group conflict, how intergroup conflict shapes social organization and how climate change and environmental degradation transition intergroup relations from peaceful coexistence to violent conflict. This article is part of the theme issue ‘Intergroup conflict across taxa’.
Collapse
Affiliation(s)
- Carsten K W De Dreu
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Center for Research in Experimental Economics and Political Decision Making, University of Amsterdam, Amsterdam, The Netherlands
| | - Zegni Triki
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
García MG, de Guinea M, Bshary R, van de Waal E. Drivers and outcomes of between-group conflict in vervet monkeys. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210145. [PMID: 35369750 PMCID: PMC8977665 DOI: 10.1098/rstb.2021.0145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Neighbouring groups compete over access to resources and territories in between-group encounters, which can escalate into between-group conflicts (BGCs). Both the ecological characteristics of a territory and the rival's fighting ability shape the occurrence and outcome of such contests. What remains poorly understood, however, is how seasonal variability in the ecological value of a territory together with fighting ability related to the likelihood of between-group encounters and the extent to which these escalate into conflicts. To test this, we observed and followed four vervet monkey groups in the wild, and recorded the group structure (i.e. size, composition), the locations and the outcomes of 515 BGCs. We then assessed key ecological measures at these locations, such as vegetation availability (estimated from Copernicus Sentinel 2 satellite images) and the intensity of usage of these locations. We tested to what extent these factors together influenced the occurrence and outcomes of BGCs. We found that the occurrence of BGCs increased at locations with higher vegetation availability relative to the annual vegetation availability within the group's home territory. Also, groups engaging in a BGC at locations far away from their home territory were less likely to win a BGC. Regarding group structure, we found that smaller groups systematically won BGCs against larger groups, which can be explained by potentially higher rates of individual free-riding occurring in larger groups. This study sheds light on how the ecology of encounter locations in combination with a group's social characteristics can critically impact the dynamics of BGCs in a non-human primate species. This article is part of the theme issue 'Intergroup conflict across taxa'.
Collapse
Affiliation(s)
- Miguel Gareta García
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu Natal 3115, South Africa
- Department of Eco-Ethology, Faculty of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| | - Miguel de Guinea
- Movement Ecology Laboratory, Alexander Silverman Institute of Life Sciences, Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Redouan Bshary
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu Natal 3115, South Africa
- Department of Eco-Ethology, Faculty of Biology, University of Neuchâtel, Rue Emile Argand 11, Neuchâtel 2000, Switzerland
| | - Erica van de Waal
- Inkawu Vervet Project, Mawana Game Reserve, KwaZulu Natal 3115, South Africa
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
7
|
Rudolph K, Schneider D, Fichtel C, Daniel R, Heistermann M, Kappeler PM. Drivers of gut microbiome variation within and between groups of a wild Malagasy primate. MICROBIOME 2022; 10:28. [PMID: 35139921 PMCID: PMC8827170 DOI: 10.1186/s40168-021-01223-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Various aspects of sociality can benefit individuals' health. The host social environment and its relative contributions to the host-microbiome relationship have emerged as key topics in microbial research. Yet, understanding the mechanisms that lead to structural variation in the social microbiome, the collective microbial metacommunity of an animal's social network, remains difficult since multiple processes operate simultaneously within and among animal social networks. Here, we examined the potential drivers of the convergence of the gut microbiome on multiple scales among and within seven neighbouring groups of wild Verreaux's sifakas (Propithecus verreauxi) - a folivorous primate of Madagascar. RESULTS Over four field seasons, we collected 519 faecal samples of 41 animals and determined gut communities via 16S and 18S rRNA gene amplicon analyses. First, we examined whether group members share more similar gut microbiota and if diet, home range overlap, or habitat similarity drive between-group variation in gut communities, accounting for seasonality. Next, we examined within-group variation in gut microbiota by examining the potential effects of social contact rates, male rank, and maternal relatedness. To explore the host intrinsic effects on the gut community structure, we investigated age, sex, faecal glucocorticoid metabolites, and female reproductive state. We found that group members share more similar gut microbiota and differ in alpha diversity, while none of the environmental predictors explained the patterns of between-group variation. Maternal relatedness played an important role in within-group microbial homogeneity and may also explain why adult group members shared the least similar gut microbiota. Also, dominant males differed in their bacterial composition from their group mates, which might be driven by rank-related differences in physiology and scent-marking behaviours. Links to sex, female reproductive state, or faecal glucocorticoid metabolites were not detected. CONCLUSIONS Environmental factors define the general set-up of population-specific gut microbiota, but intrinsic and social factors have a stronger impact on gut microbiome variation in this primate species. Video abstract.
Collapse
Affiliation(s)
- Katja Rudolph
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany.
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany.
| | - Dominik Schneider
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Claudia Fichtel
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Peter M Kappeler
- Behavioral Ecology & Sociobiology Unit, German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Georg-August University Göttingen, Kellnerweg 6, 37077, Göttingen, Germany
- Leibniz Science Campus "Primate Cognition", Göttingen, Germany
| |
Collapse
|
8
|
Cheng L, Lucchesi S, Mundry R, Samuni L, Deschner T, Surbeck M. Variation in aggression rates and urinary cortisol levels indicates intergroup competition in wild bonobos. Horm Behav 2021; 128:104914. [PMID: 33373622 DOI: 10.1016/j.yhbeh.2020.104914] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
Intergroup competition is a widespread phenomenon across taxa and groups typically compete over access to limited resources, such as food and mates. Such competition may be quantified by changes in individuals' behavioral and physiological status in response to intergroup encounters (IGEs). Bonobos, one of our closest living relatives, are often regarded as xenophilic and exhibit high tolerance towards out-group individuals. This tolerance between groups may still be accompanied by intergroup competition over resources. We hereby compared variation in aggression rates and urinary cortisol levels of bonobos during and outside contexts of IGEs in the Kokolopori Bonobo Reserve and investigated whether food and mate availability influenced males' and females' aggression and cortisol levels, when controlling for dominance rank and the number of individuals present. We found that although females had higher aggression rates and urinary cortisol levels during than outside contexts of IGEs, these increases were not related to food availability or changes in between-group dynamics when maximally tumescent females were present, rather than absent. Furthermore, males showed higher aggression rates and urinary cortisol levels during than outside contexts of IGEs. However, males' responses during IGEs were not related to the presence of maximally tumescent females and food availability. Taken together, while competition intensified during seemingly tolerant IGEs in bonobos, such competition was unrelated to short-term changes in food and mate availability. Despite physical and physiological costs of aggression, bonobos associate with out-group individuals frequently and for extended periods. This suggests potential benefits of bonobo intergroup associations.
Collapse
Affiliation(s)
- Leveda Cheng
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | - Stefano Lucchesi
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Roger Mundry
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Liran Samuni
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Martin Surbeck
- Department of Human Evolutionary Biology, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138, USA; Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| |
Collapse
|
9
|
Isbell LA, Bidner LR, Loftus JC, Kimuyu DM, Young TP. Absentee owners and overlapping home ranges in a territorial species. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-020-02945-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Habitat and Food Selection. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Social Structure. Anim Behav 2021. [DOI: 10.1007/978-3-030-82879-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Better together? How intergroup associations affect energy balance and feeding behavior in wild bonobos. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02943-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
When the benefits of interacting with out-group members exceed the associated costs, social groups may be expected to be tolerant towards each other. However, in many species exhibiting intergroup tolerance, the nature of benefits gained from intergroup encounters remains unclear. We investigated the potential costs and benefits associated with intergroup associations in bonobos, a species with varying degrees of intergroup tolerance, by testing whether these associations conferred energetic benefits to participants under different socioecological contexts and whether the consequences of these associations substantially differed from within-group competition. We used measures of socioecological factors (fruit abundance and group size), feeding and ranging behaviors, and a physiological marker of energy balance (urinary c-peptide of insulin) collected over a 19-month period from two neighboring wild communities in the Kokolopori Bonobo Reserve, Democratic Republic of the Congo. We found that intergroup associations were not related to individuals’ energy balance, but they were related to variations in individuals’ ranging and feeding behavior. Specifically, bonobos traveled longer distances, visited larger fruit patches, and increased the time spent feeding on fruits on days they associated with the neighboring group. These adaptations in feeding behavior may be strategies to offset the energetic costs of increased travel distances. In the absence of obvious energetic benefits and with clear strategies employed to offset energetic costs, it is likely that intergroup associations in bonobos provide benefits unrelated to energy acquisition, such as social benefits. Our study sheds light on the potential incentives promoting social networks to extend beyond and across groups in a tolerant species.
Significance statement
Intergroup encounters can be energetically costly due to increased competition over resources. Yet, some species associate with out-group individuals for extended periods of time when the benefits of participating in these associations exceed the potential costs. Bonobos, a species exhibiting intergroup tolerance, modified their feeding behavior during intergroup associations by feeding on larger fruit patches and increasing their time spent feeding on fruits, likely to offset energetic costs of increased travel distances. As results, individuals’ energy balance was not related with intergroup associations. The employment of such strategies in addition to the absence of clear energetic benefits suggests that intergroup associations in bonobos provide social rather than ecological benefits.
Collapse
|
13
|
Fighting for what it’s worth: participation and outcome of inter-group encounters in a pair-living primate, the Javan gibbon (Hylobates moloch). Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02879-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Lewis RJ, Sandel AA, Hilty S, Barnett SE. The Collective Action Problem but Not Numerical Superiority Explains Success in Intergroup Encounters in Verreaux’s Sifaka (Propithecus verreauxi): Implications for Individual Participation and Free-Riding. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00155-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Cooksey K, Sanz C, Ebombi TF, Massamba JM, Teberd P, Magema E, Abea G, Peralejo JSO, Kienast I, Stephens C, Morgan D. Socioecological Factors Influencing Intergroup Encounters in Western Lowland Gorillas (Gorilla gorilla gorilla). INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00147-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Dore KM, Hansen MF, Klegarth AR, Fichtel C, Koch F, Springer A, Kappeler P, Parga JA, Humle T, Colin C, Raballand E, Huang ZP, Qi XG, Di Fiore A, Link A, Stevenson PR, Stark DJ, Tan N, Gallagher CA, Anderson CJ, Campbell CJ, Kenyon M, Pebsworth P, Sprague D, Jones-Engel L, Fuentes A. Review of GPS collar deployments and performance on nonhuman primates. Primates 2020; 61:373-387. [PMID: 31965380 PMCID: PMC8118416 DOI: 10.1007/s10329-020-00793-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Over the past 20 years, GPS collars have emerged as powerful tools for the study of nonhuman primate (hereafter, "primate") movement ecology. As the size and cost of GPS collars have decreased and performance has improved, it is timely to review the use and success of GPS collar deployments on primates to date. Here we compile data on deployments and performance of GPS collars by brand and examine how these relate to characteristics of the primate species and field contexts in which they were deployed. The compiled results of 179 GPS collar deployments across 17 species by 16 research teams show these technologies can provide advantages, particularly in adding to the quality, quantity, and temporal span of data collection. However, aspects of this technology still require substantial improvement in order to make deployment on many primate species pragmatic economically. In particular, current limitations regarding battery lifespan relative to collar weight, the efficacy of remote drop-off mechanisms, and the ability to remotely retrieve data need to be addressed before the technology is likely to be widely adopted. Moreover, despite the increasing utility of GPS collars in the field, they remain substantially more expensive than VHF collars and tracking via handheld GPS units, and cost considerations of GPS collars may limit sample sizes and thereby the strength of inferences. Still, the overall high quality and quantity of data obtained, combined with the reduced need for on-the-ground tracking by field personnel, may help defray the high equipment cost. We argue that primatologists armed with the information in this review have much to gain from the recent, substantial improvements in GPS collar technology.
Collapse
Affiliation(s)
- Kerry M Dore
- Department of Anthropology, Baylor University, One Bear Place, Waco, TX, 76798, USA.
| | - Malene F Hansen
- Research and Conservation, Copenhagen Zoo, 2000, Frederiksberg C, Denmark
- Animal Behaviour Group. Section for Ecology and Evolution, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Amy R Klegarth
- Department of Anthropology, University of Washington, 230 Raitt Hall, Seattle, WA, 98105, USA
| | - Claudia Fichtel
- Behavioral Ecology and Sociobiology Unit, German Primate Center, 37077, Göttingen, Germany
| | - Flávia Koch
- Behavioral Ecology and Sociobiology Unit, German Primate Center, 37077, Göttingen, Germany
| | - Andrea Springer
- Behavioral Ecology and Sociobiology Unit, German Primate Center, 37077, Göttingen, Germany
| | - Peter Kappeler
- Behavioral Ecology and Sociobiology Unit, German Primate Center, 37077, Göttingen, Germany
| | - Joyce A Parga
- Department of Anthropology, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Tatyana Humle
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NR, UK
| | - Christelle Colin
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NR, UK
| | - Estelle Raballand
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NR, UK
| | - Zhi-Pang Huang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, 671003, Yunnan, China
| | - Xiao-Guang Qi
- College of Life Sciences, Northwest University, Xian, 710069, Shanxi, China
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xian, 710069, Shaanxi, China
| | - Anthony Di Fiore
- Department of Anthropology, University of Texas Austin, Austin, TX, 78712, USA
| | - Andrés Link
- Department of Biological Science, University of Los Andes, Bogota, Colombia
| | - Pablo R Stevenson
- Department of Biological Science, University of Los Andes, Bogota, Colombia
| | - Danica J Stark
- Danau Girang Field Centre, c/o Sabah Wildlife Department, 88100, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Noeleen Tan
- Singapore National Parks Board, Singapore, Singapore
| | - Christa A Gallagher
- Department of Biomedical Science, Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, West Indies, Saint Kitts and Nevis
| | - C Jane Anderson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, 32611, USA
| | - Christina J Campbell
- Department of Anthropology, California State University Northridge, Northridge, CA, 91330, USA
| | - Marina Kenyon
- Dao Tien Endangered Primate Species Centre, Tan Phu, Dong Nai Province, Vietnam
| | - Paula Pebsworth
- Department of Anthropology, Baylor University, One Bear Place, Waco, TX, 76798, USA
- National Institute of Advanced Studies, Indian Institute of Science Campus, Bangalore, India
| | - David Sprague
- National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, 305-8604, Japan
| | - Lisa Jones-Engel
- Department of Anthropology, University of Washington, 230 Raitt Hall, Seattle, WA, 98105, USA
| | - Agustín Fuentes
- Department of Anthropology, University of Notre Dame, 648 Flanner Hall, Notre Dame, IN, 46656, USA
| |
Collapse
|
17
|
Smith JE, Ortiz CA, Buhbe MT, van Vugt M. Obstacles and opportunities for female leadership in mammalian societies: A comparative perspective. LEADERSHIP QUARTERLY 2020. [DOI: 10.1016/j.leaqua.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Yi Y, Fichtel C, Kim E, Choe JC. Impacts of Intergroup Interactions on Intragroup Behavioral Changes in Javan Gibbons (Hylobates moloch). INT J PRIMATOL 2020. [DOI: 10.1007/s10764-019-00116-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Lucchesi S, Cheng L, Janmaat K, Mundry R, Pisor A, Surbeck M. Beyond the group: how food, mates, and group size influence intergroup encounters in wild bonobos. Behav Ecol 2020. [DOI: 10.1093/beheco/arz214] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
In social-living animals, interactions between groups are frequently agonistic, but they can also be tolerant and even cooperative. Intergroup tolerance and cooperation are regarded as a crucial step in the formation of highly structured multilevel societies. Behavioral ecological theory suggests that intergroup tolerance and cooperation can emerge either when the costs of hostility outweigh the benefits of exclusive resource access or when both groups gain fitness benefits through their interactions. However, the factors promoting intergroup tolerance are still unclear due to the paucity of data on intergroup interactions in tolerant species. Here, we examine how social and ecological factors affect the onset and termination of intercommunity encounters in two neighboring communities of wild bonobos, a species exhibiting flexible patterns of intergroup interactions, at Kokolopori Bonobo Reserve, Democratic Republic of the Congo. We recorded the timing and location of intercommunity encounters and measured fruit abundance and distribution, groups’ social characteristics, and space-use dynamics over a 19-month period. We found that intercommunity tolerance was facilitated by a decrease in feeding competition, with high fruit abundance increasing the likelihood of communities to encounter, and high clumpiness of fruit patches increasing the probability to terminate encounters likely due to increased contest. In addition, the possibility for extra-community mating, as well as the potential benefits of more efficient foraging in less familiar areas, reduced the probability that the communities terminated encounters. By investigating the factors involved in shaping relationships across groups, this study contributes to our understanding of how animal sociality can extend beyond the group level.
Collapse
Affiliation(s)
- Stefano Lucchesi
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Leveda Cheng
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Karline Janmaat
- Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Universitätsstrasse 10, Konstanz, Germany
| | - Roger Mundry
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Pisor
- Department of Anthropology, Washington State University, Pullman, WA, USA
| | - Martin Surbeck
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
20
|
Buil JMM, Peckre LR, Dörge M, Fichtel C, Kappeler PM, Scherberger H. Remotely releasable collar mechanism for medium-sized mammals: an affordable technology to avoid multiple captures. WILDLIFE BIOLOGY 2019. [DOI: 10.2981/wlb.00581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Jeroen M. M. Buil
- J. M. M. Buil, M. Dörge and H. Scherberger (https://orcid.org/0000-0001-6593-2800) ✉ , Neurobiology Laboratory, German Primate Center GmbH – Leibniz Inst. for Primate Research, Goettingen, Germany. HS also at: Johann-Friedrich-Bl
| | - Louise R. Peckre
- L. R. Peckre (https://orcid.org/0000-0002-0065-8529), C. Fichtel (https://orcid.org/0000-0002-8346-2168)P. M. Kappeler, Behavioral Ecology and Sociobiology Unit, German Primate Center GmbH – Leibniz Inst. for Primate Research, Goettingen, Germany
| | - Matthias Dörge
- J. M. M. Buil, M. Dörge and H. Scherberger (https://orcid.org/0000-0001-6593-2800) ✉ , Neurobiology Laboratory, German Primate Center GmbH – Leibniz Inst. for Primate Research, Goettingen, Germany. HS also at: Johann-Friedrich-Bl
| | - Claudia Fichtel
- L. R. Peckre (https://orcid.org/0000-0002-0065-8529), C. Fichtel (https://orcid.org/0000-0002-8346-2168)P. M. Kappeler, Behavioral Ecology and Sociobiology Unit, German Primate Center GmbH – Leibniz Inst. for Primate Research, Goettingen, Germany
| | - Peter M. Kappeler
- L. R. Peckre (https://orcid.org/0000-0002-0065-8529), C. Fichtel (https://orcid.org/0000-0002-8346-2168)P. M. Kappeler, Behavioral Ecology and Sociobiology Unit, German Primate Center GmbH – Leibniz Inst. for Primate Research, Goettingen, Germany
| | - Hansjörg Scherberger
- J. M. M. Buil, M. Dörge and H. Scherberger (https://orcid.org/0000-0001-6593-2800) ✉ , Neurobiology Laboratory, German Primate Center GmbH – Leibniz Inst. for Primate Research, Goettingen, Germany. HS also at: Johann-Friedrich-Bl
| |
Collapse
|
21
|
Rudolph K, Fichtel C, Schneider D, Heistermann M, Koch F, Daniel R, Kappeler PM. One size fits all? Relationships among group size, health, and ecology indicate a lack of an optimal group size in a wild lemur population. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2746-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Jordan NR, Buse C, Wilson AM, Golabek KA, Apps PJ, Lowe JC, Van der Weyde LK, Weldon McNutt J. Dynamics of direct inter-pack encounters in endangered African wild dogs. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2338-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|