1
|
Gizzi L, Felici F. STEM education needs for human movement sciences professionals. Front Neurol 2025; 15:1503022. [PMID: 39866514 PMCID: PMC11757111 DOI: 10.3389/fneur.2024.1503022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 01/28/2025] Open
Affiliation(s)
- Leonardo Gizzi
- Department of Biomechatronics, Fraunhofer Institute for Manufacturing Engineering and Automation, Stuttgart, Germany
| | - Francesco Felici
- Department of Movement, Human, and Health Sciences, Laboratory of Exercise Physiology, University of Rome “Foro Italico”, Rome, Italy
| |
Collapse
|
2
|
Chen M, Lu Z, Li X, Zong Y, Xie Q, Li S, Zhou P. Compound muscle action potential (CMAP) scan examination of paretic and contralateral muscles reveals motor unit alterations after stroke. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2604-2613. [PMID: 37258801 PMCID: PMC11057326 DOI: 10.1007/s11427-022-2308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/19/2023] [Indexed: 06/02/2023]
Abstract
This study presents a novel compound muscle action potential (CMAP) examination of motor unit changes in paretic muscle post stroke. CMAP scan of the first dorsal interosseous (FDI) muscle was performed bilaterally in 16 chronic stroke subjects. Various parameters were derived from the CMAP scan to examine paretic muscle changes, including CMAP amplitude, D50, step index (STEPIX) and amplitude index (AMPIX). A significant decrease in CMAP amplitude and STEPIX was observed in paretic muscles compared with contralateral muscles (CMAP amplitude: paretic (9.0±0.5) mV, contralateral (11.3±0.9) mV, P=0.024; STEPIX: paretic 101.2±7.6, contralateral 121.9±6.5, P=0.020). No significant difference in D50 and AMPIX was observed between the paretic and contralateral sides (P>0.05). The findings revealed complex paretic muscle changes including motor unit degeneration, muscle fiber denervation, reinnervation and atrophy, providing useful insights to help understand neuromuscular mechanisms associated with weakness and other functional deterioration post stroke. The CMAP scan experimental protocols and the applied processing methods are noninvasive, convenient, and automated, offering practical benefits for clinical application.
Collapse
Affiliation(s)
- Maoqi Chen
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China.
| | - Xiaoyan Li
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Fischell Department of Bioengineering, University of Maryland at College Park, College Park, MD, 20742, USA
| | - Ya Zong
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Xie
- Department of Rehabilitation Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, 77030, USA
- TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, 77030, USA
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| |
Collapse
|
3
|
Huang C, Chen M, Lu Z, Klein CS, Zhou P. Spatial Dependence of Log-Transformed Electromyography-Force Relation: Model-Based Sensitivity Analysis and Experimental Study of Biceps Brachii. Bioengineering (Basel) 2023; 10:bioengineering10040469. [PMID: 37106655 PMCID: PMC10136339 DOI: 10.3390/bioengineering10040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 04/29/2023] Open
Abstract
This study investigated electromyography (EMG)-force relations using both simulated and experimental approaches. A motor neuron pool model was first implemented to simulate EMG-force signals, focusing on three different conditions that test the effects of small or large motor units located more or less superficially in the muscle. It was found that the patterns of the EMG-force relations varied significantly across the simulated conditions, quantified by the slope (b) of the log-transformed EMG-force relation. b was significantly higher for large motor units, which were preferentially located superficially rather than for random depth or deep depth conditions (p < 0.001). The log-transformed EMG-force relations in the biceps brachii muscles of nine healthy subjects were examined using a high-density surface EMG. The slope (b) distribution of the relation across the electrode array showed a spatial dependence; b in the proximal region was significantly larger than the distal region, whereas b was not different between the lateral and medial regions. The findings of this study provide evidence that the log-transformed EMG-force relations are sensitive to different motor unit spatial distributions. The slope (b) of this relation may prove to be a useful adjunct measure in the investigation of muscle or motor unit changes associated with disease, injury, or aging.
Collapse
Affiliation(s)
- Chengjun Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maoqi Chen
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| | - Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| | - Cliff S Klein
- Guangdong Work Injury Rehabilitation Center, Rehabilitation Research Institute, Guangzhou 510440, China
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| |
Collapse
|
4
|
Li L, Hu H, Yao B, Huang C, Lu Z, Klein CS, Zhou P. Electromyography-Force Relation and Muscle Fiber Conduction Velocity Affected by Spinal Cord Injury. Bioengineering (Basel) 2023; 10:217. [PMID: 36829711 PMCID: PMC9952596 DOI: 10.3390/bioengineering10020217] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
A surface electromyography (EMG) analysis was performed in this study to examine central neural and peripheral muscle changes after a spinal cord injury (SCI). A linear electrode array was used to record surface EMG signals from the biceps brachii (BB) in 15 SCI subjects and 14 matched healthy control subjects as they performed elbow flexor isometric contractions from 10% to 80% maximum voluntary contraction. Muscle fiber conduction velocity (MFCV) and BB EMG-force relation were examined. MFCV was found to be significantly slower in the SCI group than the control group, evident at all force levels. The BB EMG-force relation was well fit by quadratic functions in both groups. All healthy control EMG-force relations were best fit with positive quadratic coefficients. In contrast, the EMG-force relation in eight SCI subjects was best fit with negative quadratic coefficients, suggesting impaired EMG modulation at high forces. The alterations in MFCV and EMG-force relation after SCI suggest complex neuromuscular changes after SCI, including alterations in central neural drive and muscle properties.
Collapse
Affiliation(s)
- Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Huijing Hu
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an 710072, China
| | - Bo Yao
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Medical College, Beijing 100006, China
| | - Chengjun Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhiyuan Lu
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| | - Cliff S. Klein
- Rehabilitation Research Institute, Guangdong Work Injury Rehabilitation Center, Guangzhou 510440, China
| | - Ping Zhou
- School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266072, China
| |
Collapse
|
5
|
Son J, Rymer WZ. Relative contribution of altered neuromuscular factors to muscle activation-force relationships following chronic stroke: A simulation study. J Electromyogr Kinesiol 2022; 66:102680. [PMID: 35843049 DOI: 10.1016/j.jelekin.2022.102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/23/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to investigate the potential effects of key neuromuscular factors on muscle activation-force relationships, thereby helping us understand abnormal EMG-force relationships often reported in chronic stroke-impaired muscles. A modified Hill-type muscle model was developed to calculate muscle force production for a given muscle activation level and musculotendon length. Model parameters used to characterize musculotendon unit properties of medial gastrocnemius were adjusted to simulate known stroke-related changes in neuromuscular factors (e.g., voluntary activation and muscle mechanical properties). The muscle activation-force slope (i.e., muscle activation over force) was computed as a function of ankle joint angle. A Monte Carlo simulation approach was implemented to understand which neuromuscular factors are closely associated with the activation-force slope. Our simulations showed that a reduction in factors linked to voluntary activation capacity and to maximum force-generating capacity may be the primary contributors that increase the activation-force slope in dorsiflexed positions, and that a narrower active force-length curve appears to be the most significant factor that increases the slope in plantar flexed positions. In addition, our Monte Carlo simulation results demonstrated that an increase in the activation-force slope is strongly correlated with a reduction in voluntary activation capacity, in the maximum force-generating capacity, and in the active force-length curve width. These findings will help us to better interpret altered EMG-force relationships following chronic stroke.
Collapse
Affiliation(s)
- Jongsang Son
- Department of Biomedical Engineering, Newark College of Engineering, New Jersey Institute of Technology, Newark, NJ, United States.
| | - William Zev Rymer
- Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago), Chicago, IL, United States; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
6
|
Davarinia F, Maleki A. SSVEP-gated EMG-based decoding of elbow angle during goal-directed reaching movement. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Huang C, Chen M, Li X, Zhang Y, Li S, Zhou P. Neurophysiological Factors Affecting Muscle Innervation Zone Estimation Using Surface EMG: A Simulation Study. BIOSENSORS-BASEL 2021; 11:bios11100356. [PMID: 34677312 PMCID: PMC8534086 DOI: 10.3390/bios11100356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022]
Abstract
Surface electromyography (EMG) recorded by a linear or 2-dimensional electrode array can be used to estimate the location of muscle innervation zones (IZ). There are various neurophysiological factors that may influence surface EMG and thus potentially compromise muscle IZ estimation. The objective of this study was to evaluate how surface-EMG-based IZ estimation might be affected by different factors, including varying degrees of motor unit (MU) synchronization in the case of single or double IZs. The study was performed by implementing a model simulating surface EMG activity. Three different MU synchronization conditions were simulated, namely no synchronization, medium level synchronization, and complete synchronization analog to M wave. Surface EMG signals recorded by a 2-dimensional electrode array were simulated from a muscle with single and double IZs, respectively. For each situation, the IZ was estimated from surface EMG and compared with the one used in the model for performance evaluation. For the muscle with only one IZ, the estimated IZ location from surface EMG was consistent with the one used in the model for all the three MU synchronization conditions. For the muscle with double IZs, at least one IZ was appropriately estimated from interference surface EMG when there was no MU synchronization. However, the estimated IZ was different from either of the two IZ locations used in the model for the other two MU synchronization conditions. For muscles with a single IZ, MU synchronization has little effect on IZ estimation from electrode array surface EMG. However, caution is required for multiple IZ muscles since MU synchronization might lead to false IZ estimation.
Collapse
Affiliation(s)
- Chengjun Huang
- Guangdong Work Injury Rehabilitation Center, Guangzhou 510970, China;
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Maoqi Chen
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
| | - Xiaoyan Li
- Department of Bioengineering, University of Maryland, College Park, MD 20742, USA;
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA;
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Ping Zhou
- Faculty of Rehabilitation Engineering, University of Health and Rehabilitation Sciences, Qingdao 266024, China;
- Correspondence:
| |
Collapse
|
8
|
Yamamoto S, Ishii D, Kanae K, Endo Y, Yoshikawa K, Koseki K, Nakazawa R, Takano H, Monma M, Yozu A, Matsushita A, Kohno Y. The Progress of the Gait Impairment and Brain Activation in a Patient with Post-stroke Hemidystonia. Phys Ther Res 2021; 24:176-186. [PMID: 34532214 DOI: 10.1298/ptr.e10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 12/08/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE We explore the effects of body weight-supported (BWS) treadmill training, including the change of cortical activation, on a patient with post-stroke hemidystonia. PATIENT The patient was a 71-year-old man with left thalamus hemorrhage. His motor symptoms indicated slight impairment. There was no overactive muscle contraction in the supine, sitting, or standing positions. During his gait, the right initial contact was the forefoot, and his right knee showed an extension thrust pattern. These symptoms suggested that he had post-stroke hemidystonia. METHODS The patient performed BWS treadmill training 14 times over 3 weeks. The effects of the BWS training were assessed by a step-length analysis, electromyography and functional magnetic resonance imaging (fMRI). RESULTS The patient's nonparetic step length was extended significantly in the Inter-BWS (p<0.001) and Post-BWS (p=0.025) periods compared to the Pre-BWS session. The excessive muscle activity of the right gastrocnemius medialis in the swing phase was decreased at the Inter-BWS, Post-BWS, and follow-up compared to the Pre-BWS session. The peak timing difference of the bilateral tibialis anterior muscle became significant (p<0.05) on the first day of the intervention. The fMRI revealed that the cortical areas activated by the motor task converged through the intervention (p<0.05, family-wise error corrected). CONCLUSION These results suggest that there was improvement of the patient's symptoms of post-stroke hemidystonia due to changes in the brain activity during voluntary movement after BWS intervention. Body weight-supported treadmill training may thus be an effective treatment for patients with poststroke hemidystonia.
Collapse
Affiliation(s)
- Satoshi Yamamoto
- Department of Physical Therapy, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Japan
| | - Kyoko Kanae
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Yusuke Endo
- Department of Physical Therapy, Faculty of Health Science, Health Science University, Japan
| | - Kenichi Yoshikawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Kazunori Koseki
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Ryo Nakazawa
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Hanako Takano
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Masahiko Monma
- Department of Radiological Sciences, School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Japan
| | - Arito Yozu
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Japan.,Department of Rehabilitation, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Akira Matsushita
- Department of Neurology, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Japan.,Department of Neurology, Ibaraki Prefectural University of Health Sciences Hospital, Japan
| |
Collapse
|
9
|
Li S, Francisco GE, Rymer WZ. A New Definition of Poststroke Spasticity and the Interference of Spasticity With Motor Recovery From Acute to Chronic Stages. Neurorehabil Neural Repair 2021; 35:601-610. [PMID: 33978513 DOI: 10.1177/15459683211011214] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The relationship of poststroke spasticity and motor recovery can be confusing. "True" motor recovery refers to return of motor behaviors to prestroke state with the same end-effectors and temporo-spatial pattern. This requires neural recovery and repair, and presumably occurs mainly in the acute and subacute stages. However, according to the International Classification of Functioning, Disability and Health, motor recovery after stroke is also defined as "improvement in performance of functional tasks," i.e., functional recovery, which is mainly mediated by compensatory mechanisms. Therefore, stroke survivors can execute motor tasks in spite of disordered motor control and the presence of spasticity. Spasticity interferes with execution of normal motor behaviors ("true" motor recovery), throughout the evolution of stroke from acute to chronic stages. Spasticity reduction does not affect functional recovery in the acute and subacute stages; however, appropriate management of spasticity could lead to improvement of motor function, that is, functional recovery, during the chronic stage of stroke. We assert that spasticity results from upregulation of medial cortico-reticulo-spinal pathways that are disinhibited due to damage of the motor cortex or corticobulbar pathways. Spasticity emerges as a manifestation of maladaptive plasticity in the early stages of recovery and can persist into the chronic stage. It coexists and shares similar pathophysiological processes with related motor impairments, such as abnormal force control, muscle coactivation and motor synergies, and diffuse interlimb muscle activation. Accordingly, we propose a new definition of spasticity to better account for its pathophysiology and the complex nuances of different definitions of motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA
| | - Gerard E Francisco
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA.,World Federation of NeuroRehabilitation, North Shields, UK
| | | |
Collapse
|
10
|
Zhang C, Chen YT, Liu Y, Magat E, Gutierrez-Verduzco M, Francisco GE, Zhou P, Li S, Zhang Y. Improving Botulinum Toxin Efficiency in Treating Post-Stroke Spasticity Using 3D Innervation Zone Imaging. Int J Neural Syst 2021; 31:2150007. [PMID: 33438529 DOI: 10.1142/s0129065721500076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spasticity is a common post-stroke syndrome that imposes significant adverse impacts on patients and caregivers. This study aims to improve the efficiency of botulinum toxin (BoNT) in managing spasticity, by utilizing a three-dimensional innervation zone imaging (3DIZI) technique based on high-density surface electromyography (HD-sEMG) recordings. Stroke subjects were randomly assigned to two groups: the control group ([Formula: see text]) which received standard ultrasound-guided injections, and the experimental group ([Formula: see text]) which received 3DIZI-guided injections. The amount of BoNT given was consistent for all subjects. The Modified Ashworth Scale (MAS), compound muscle action potential (CMAP) and muscle activation volume (MAV) from bilateral biceps brachii muscles were obtained at the baseline, 3 weeks, and 3 months after injection. Intra-group and inter-group comparisons of MAS, CMAP amplitude and MAV were performed. An overall improvement in MAS of spastic elbow flexors was observed during the 3-week visit ([Formula: see text]), yet no statistically significant difference found with intra-group or inter-group analysis. Compared to the baseline, a significant reduction of CMAP amplitude and MAV were observed in the spastic biceps muscles of both groups at 3-week post-injection, and returned to approximate baseline value at 12-week post injection. A significantly higher reduction was found in CMAP amplitude ([Formula: see text]% versus [Formula: see text]%, [Formula: see text]) and MAV ([Formula: see text]% versus [Formula: see text]%, [Formula: see text]) in the experimental group compared to the control group. The study has demonstrated preliminary evidence that precisely directing BoNT to the innervation zones (IZs) localized by 3DIZI leads to a significantly higher treatment efficiency improvement in spasticity management. Results have also shown the feasibility of developing a personalized BoNT injection technique for the optimization of clinical treatment for post-stroke spasticity using proposed 3DIZI technique.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR, Memorial Hermann Hospital, Houston, TX, USA
| | - Yang Liu
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR, Memorial Hermann Hospital, Houston, TX, USA
| | - Monica Gutierrez-Verduzco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR, Memorial Hermann Hospital, Houston, TX, USA
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR, Memorial Hermann Hospital, Houston, TX, USA
| | - Ping Zhou
- Institute of Rehabilitation Engineering, The University of Rehabilitation, Qingdao, P. R. China
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center at Houston and TIRR, Memorial Hermann Hospital, Houston, TX, USA
| | - Yingchun Zhang
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
11
|
Abstract
Spasticity is one component of the upper motor neuron (UMN) syndrome resulting from a multitude of neurologic conditions, such as stroke, brain injury, spinal cord injury, multiple sclerosis, and cerebral palsy. It is clinically recognized as a phenomenon of velocity-dependent increase in resistance, i.e., hypertonia. Recent advances in the pathophysiology of spasticity improve our understanding of mechanisms underlying this complex phenomenon and its relations to other components of UMN syndrome (weakness and disordered motor control), as well as the resultant clinical problems. This theoretical framework provides a foundation to set up treatment goals and to guide goal-oriented clinical assessment and treatment. Among a spectrum of treatment options, botulinum toxin (BoNT) therapy is the preferred treatment for focal spasticity. The evidence is very robust that BoNT therapy effectively reduces spasticity; however, it does not improve voluntary movement. In this chapter, we highlight a few issues on how to achieve the best clinical outcomes of BoNT therapy, such as dosing, dilution, guidance techniques, adjunctive therapies, early treatment, repeated injections, and central effects, as well as the ways to improve motor function in selected subgroups of patients with spasticity. We also discuss the reasons of poor responses to BoNT therapy and when not to use BoNT therapy.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center Houston (UTHealth), Houston, TX, USA.
- TIRR Memorial Hermann Hospital, Houston, TX, USA.
| | - Gerard E Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center Houston (UTHealth), Houston, TX, USA
- TIRR Memorial Hermann Hospital, Houston, TX, USA
| |
Collapse
|
12
|
Tortora S, Tonin L, Chisari C, Micera S, Menegatti E, Artoni F. Hybrid Human-Machine Interface for Gait Decoding Through Bayesian Fusion of EEG and EMG Classifiers. Front Neurorobot 2020; 14:582728. [PMID: 33281593 PMCID: PMC7705173 DOI: 10.3389/fnbot.2020.582728] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Despite the advances in the field of brain computer interfaces (BCI), the use of the sole electroencephalography (EEG) signal to control walking rehabilitation devices is currently not viable in clinical settings, due to its unreliability. Hybrid interfaces (hHMIs) represent a very recent solution to enhance the performance of single-signal approaches. These are classification approaches that combine multiple human-machine interfaces, normally including at least one BCI with other biosignals, such as the electromyography (EMG). However, their use for the decoding of gait activity is still limited. In this work, we propose and evaluate a hybrid human-machine interface (hHMI) to decode walking phases of both legs from the Bayesian fusion of EEG and EMG signals. The proposed hHMI significantly outperforms its single-signal counterparts, by providing high and stable performance even when the reliability of the muscular activity is compromised temporarily (e.g., fatigue) or permanently (e.g., weakness). Indeed, the hybrid approach shows a smooth degradation of classification performance after temporary EMG alteration, with more than 75% of accuracy at 30% of EMG amplitude, with respect to the EMG classifier whose performance decreases below 60% of accuracy. Moreover, the fusion of EEG and EMG information helps keeping a stable recognition rate of each gait phase of more than 80% independently on the permanent level of EMG degradation. From our study and findings from the literature, we suggest that the use of hybrid interfaces may be the key to enhance the usability of technologies restoring or assisting the locomotion on a wider population of patients in clinical applications and outside the laboratory environment.
Collapse
Affiliation(s)
- Stefano Tortora
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Luca Tonin
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Carmelo Chisari
- Unit of Neurorehabilitation, Department of Medical Specialties, University Hospital of Pisa, Pisa, Italy
| | - Silvestro Micera
- Department of Excellence in Robotics and AI Scuola Superiore Sant'Anna, The Biorobotics Institute, Pisa, Italy.,Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland
| | - Emanuele Menegatti
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Fiorenzo Artoni
- Bertarelli Foundation Chair in Translational Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, Lausanne, Switzerland.,Functional Brain Mapping Laboratory, Department of Basic Neuroscience, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Manna SK, Dubey VN. Rehabilitation strategy for post-stroke recovery using an innovative elbow exoskeleton. Proc Inst Mech Eng H 2019; 233:668-680. [PMID: 31043118 DOI: 10.1177/0954411919847058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intensive and adaptive rehabilitation therapy is beneficial for post-stroke recovery. Three modes of rehabilitation are generally performed at different stages after stroke: external force-based control in the acute stage, assistive force-based rehabilitation in the midway of recovery and resistive force-based rehabilitation in the last stage. To achieve the above requirements, an innovative elbow exoskeleton has been developed to incorporate the three modes of rehabilitation in a single structure. The structure of the exoskeleton has been designed in such a way that the whole working region is divided into three where each region can provide a different mode of rehabilitation. Recovery rate can be varied for individuals since it depends on various parameters. To evaluate the rate of recovery, three joint parameters have been identified: range of angular movement, angular velocity and joint torque. These parameters are incorporated into the framework of planning a novel rehabilitation strategy, which is discussed in this article along with the structural description of the designed exoskeleton.
Collapse
Affiliation(s)
- Soumya K Manna
- Faculty of Science & Technology, Bournemouth University, Poole, UK
| | | |
Collapse
|
14
|
Chen YT, Li S, Magat E, Zhou P, Li S. Motor Overflow and Spasticity in Chronic Stroke Share a Common Pathophysiological Process: Analysis of Within-Limb and Between-Limb EMG-EMG Coherence. Front Neurol 2018; 9:795. [PMID: 30356703 PMCID: PMC6189334 DOI: 10.3389/fneur.2018.00795] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
The phenomenon of exaggerated motor overflow is well documented in stroke survivors with spasticity. However, the mechanism underlying the abnormal motor overflow remains unclear. In this study, we aimed to investigate the possible mechanisms behind abnormal motor overflow and its possible relations with post-stroke spasticity. 11 stroke patients (63.6 ± 6.4 yrs; 4 women) and 11 healthy subjects (31.18 ± 6.18 yrs; 2 women) were recruited. All of them were asked to perform unilateral isometric elbow flexion at submaximal levels (10, 30, and 60% of maximum voluntary contraction). Electromyogram (EMG) was measured from the contracting biceps (iBiceps) muscle and resting contralateral biceps (cBiceps), ipsilateral flexor digitorum superficialis (iFDS), and contralateral FDS (cFDS) muscles. Motor overflow was quantified as the normalized EMG of the resting muscles. The severity of motor impairment was quantified through reflex torque (spasticity) and weakness. EMG-EMG coherence was calculated between the contracting muscle and each of the resting muscles. During elbow flexion on the impaired side, stroke subjects exhibited significant higher motor overflow to the iFDS muscle compared with healthy subjects (ipsilateral or intralimb motor overflow). Stroke subjects exhibited significantly higher motor overflow to the contralateral spastic muscles (cBiceps and cFDS) during elbow flexion on the non-impaired side (contralateral or interlimb motor overflow), compared with healthy subjects. Moreover, there was significantly high EMG-EMG coherence in the alpha band (6–12 Hz) between the contracting muscle and all other resting muscles during elbow flexion on the non-impaired side. Our results of diffuse ipsilateral and contralateral motor overflow with EMG-EMG coherence in the alpha band suggest subcortical origins of motor overflow. Furthermore, correlation between contralateral motor overflow to contralateral spastic elbow and finger flexors and their spasticity was consistently at moderate to high levels. A high correlation suggests that diffuse motor overflow to the impaired side and spasticity likely share a common pathophysiological process. Possible mechanisms are discussed.
Collapse
Affiliation(s)
- Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Shengai Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Elaine Magat
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center - Houston, Houston, TX, United States.,TIRR Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| |
Collapse
|
15
|
Li S, Bhadane M, Gao F, Zhou P. The Reticulospinal Pathway Does Not Increase Its Contribution to the Strength of Contralesional Muscles in Stroke Survivors as Compared to Ipsilesional Side or Healthy Controls. Front Neurol 2017; 8:627. [PMID: 29230191 PMCID: PMC5712067 DOI: 10.3389/fneur.2017.00627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/09/2017] [Indexed: 11/13/2022] Open
Abstract
Objective Startling acoustic stimulation (SAS), via activation of reticulospinal (RS) pathways, has shown to increase muscle strength in healthy subjects. We hypothesized that, given RS hyperexcitability in stroke survivors, SAS could increase muscle strength in stroke survivors. The objective was to quantify the effect of SAS on maximal and sub-maximal voluntary elbow flexion on the contralesional (impaired) side in stroke survivors as compared to ipsilesional (non-impaired) side and healthy controls. Design Thirteen hemiparetic stroke survivors and 12 healthy subjects volunteered for this investigation. Acoustic stimulation was given at rest, during ballistic maximal and sustained sub-maximal isometric elbow contractions using low (80 dB) and high intensity sound (105 dB). The effect of acoustic stimuli was evaluated from EMG and force recordings. Results Prevalence of acoustic startle reflex with shorter latency in the impaired biceps was greater as compared to the response in the non-impaired side of stroke subjects and in healthy subjects. Delivery of SAS resulted in earlier initiation of elbow flexion and greater peak torque in healthy subjects and in stroke subjects with spastic hemiplegia during maximal voluntary elbow flexion tasks. During sub-maximal elbow flexion tasks, SAS-induced force responses were slightly greater on the impaired side than the non-impaired side. However, no statistically significant difference was found in SAS-induced responses between impaired and non-impaired sides at maximal and sub-maximal elbow flexion tasks. Conclusion The findings suggest RS hyperexcitability in stroke survivors with spastic hemiplegia. The results of similar SAS-induced responses between healthy and stroke subjects indicate that RS projections via acoustic stimulation are not likely to contribute to muscle strength for stroke survivors to a significant extent.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Minal Bhadane
- Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Fan Gao
- The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGoven Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States.,TIRR Memorial Hermann Research Center, TIRR Memorial Hermann Hospital, Houston, TX, United States
| |
Collapse
|
16
|
Re-Evaluating Electromyogram–Force Relation in Healthy Biceps Brachii Muscles Using Complexity Measures. ENTROPY 2017. [DOI: 10.3390/e19110624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|