1
|
Dao F, Niangaly A, Sogore F, Wague M, Dabitao D, Goita S, Hadara AS, Diakite O, Maiga M, Maiga FO, Cazevieille C, Cassan C, Talman AM, Djimde AA, Marin-Menendez A, Dembélé L. Malian field isolates provide insight into Plasmodium malariae intra-erythrocytic development and invasion. PLoS Negl Trop Dis 2025; 19:e0012790. [PMID: 39761327 PMCID: PMC11735006 DOI: 10.1371/journal.pntd.0012790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/15/2025] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Plasmodium malariae is the third most prevalent human malaria parasite species and contributes significantly to morbidity. Nevertheless, our comprehension of this parasite's biology remains limited, primarily due to its frequent co-infections with other species and the lack of a continuous in vitro culture system. To effectively combat and eliminate this overlooked parasite, it is imperative to acquire a better understanding of this species. In this study, we embarked on an investigation of P. malariae, including exploring its clinical disease characteristics, molecular aspects of red blood cell (RBC) invasion, and host-cell preferences. We conducted our research using parasites collected from infected individuals in Mali. Our findings revealed anaemia in most of P. malariae infected participants presented, in both symptomatic and asymptomatic cases. Regarding RBC invasion, quantified by an adapted flow cytometry based method, our study indicated that none of the seven antibodies tested, against receptors known for their role in P. falciparum invasion, had any impact on the ability of P. malariae to penetrate the host cells. However, when RBCs were pre-treated with various enzymes (neuraminidase, trypsin, and chymotrypsin), we observed a significant reduction in P. malariae invasion, albeit not a complete blockade. Furthermore, in a subset of P. malariae samples, we observed the parasite's capability to invade reticulocytes. These results suggest that P. malariae employs alternative pathways to enter RBCs of different maturities, which may differ from those used by P. falciparum.
Collapse
Affiliation(s)
- Francois Dao
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Amadou Niangaly
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fanta Sogore
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mamadou Wague
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Djeneba Dabitao
- Faculty of Pharmacy and Faculty of Medicine and Odonto-Stomatology, University Clinical Research Center (UCRC), University of Sciences, Techniques, and Technologies of Bamako (USTTB), Bamako, Mali
| | - Siaka Goita
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Aboubacrin S. Hadara
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Ousmaila Diakite
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Mohamed Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | - Fatoumata O. Maiga
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Cecile Cassan
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Arthur M. Talman
- MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Abdoulaye A. Djimde
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| | | | - Laurent Dembélé
- Malaria Research and Training Center (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Bamako, Mali
| |
Collapse
|
2
|
Munjal A, Rex DAB, Garg P, Prasad TSK, Mishra SK, Malhotra Y, Yadav D, John J, P P, Rawal K, Singh S. Mass Spectrometric and Artificial Intelligence-Based Identification of the Secretome of Plasmodium falciparum Merozoites to Provide Novel Candidates for Vaccine Development Pipeline. Proteomics Clin Appl 2024; 18:e202300115. [PMID: 39082488 DOI: 10.1002/prca.202300115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/24/2024] [Accepted: 07/16/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Merozoites are the only extracellular form of blood stage parasites, making it a worthwhile target. Multiple invasins that are stored in the merozoite apical organelles, are secreted just prior to invasion, and mediates its interaction with RBC. A comprehensive identification of all these secreted invasins is lacking and this study addresses that gap. EXPERIMENTAL DESIGN Pf3D7 merozoites were enriched and triggered to discharge apical organelle contents by exposure to ionic conditions mimicking that of blood plasma. The secreted proteins were separated from cellular contents and both the fractions were subjected to proteomic analysis. Also, the identified secreted proteins were subjected to GO, PPI network analysis, and AI-based in silico approach to understand their vaccine candidacy. RESULTS A total of 63 proteins were identified in the secretory fraction with membrane and apical organellar localization. This includes various MSPs, micronemal EBAs and rhoptry bulb proteins, which play a crucial role in initial and late merozoite attachment, and majority of them qualified as vaccine candidates. CONCLUSION AND CLINICAL RELEVANCE We, for the first time, report the secretory repertoire of merozoite and its status for vaccine candidacy. This information can be utilized to develop better invasion blocking multisubunit vaccines, comprising of immunological epitopes from several secreted invasins.
Collapse
Affiliation(s)
- Akshay Munjal
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- Department of Laboratory Medicine and Pathology, Rochester, Minnesota, USA
| | - Prachi Garg
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | | | - Sai Kumar Mishra
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Yuktika Malhotra
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Deepika Yadav
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Jerry John
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Preeti P
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Kamal Rawal
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Noida, Uttar Pradesh, India
| | - Shailja Singh
- Special Centre of Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
3
|
Neog S, Vinjamuri SR, Vijayan K, Kumar S, Trivedi V. NDV targets the invasion pathway in malaria parasite through cell surface sialic acid interaction. FASEB J 2024; 38:e23856. [PMID: 39092913 DOI: 10.1096/fj.202400004rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/01/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Merozoites utilize sialic acids on the red blood cell (RBC) cell surface to rapidly adhere to and invade the RBCs. Newcastle disease virus (NDV) displays a strong affinity toward membrane-bound sialic acids. Incubation of NDV with the malaria parasites dose-dependently reduces its cellular viability. The antiplasmodial activity of NDV is specific, as incubation with Japanese encephalitis virus, duck enteritis virus, infectious bronchitis virus, and influenza virus did not affect the parasite propagation. Interestingly, NDV is reducing more than 80% invasion when RBCs are pretreated with the virus. Removal of the RBC surface proteins or the NDV coat proteins results in disruption of the virus binding to RBC. It suggests the involvement of specific protein: ligand interaction in virus binding. We established that the virus engages with the parasitized RBCs (PRBCs) through its hemagglutinin neuraminidase (HN) protein by recognizing sialic acid-containing glycoproteins on the cell surface. Blocking of the HN protein with free sialic acid or anti-HN antibodies abolished the virus binding as well as its ability to reduce parasite growth. Interestingly, the purified HN from the virus alone could inhibit the parasite's growth in a dose-dependent manner. NDV binds strongly to knobless murine parasite strain Plasmodium yoelii and restricted the parasite growth in mice. Furthermore, the virus was found to preferentially target the PRBCs compared to normal erythrocytes. Immunolocalization studies reveal that NDV is localized on the plasma membrane as well as weakly inside the PRBC. NDV causes neither any infection nor aggregation of the human RBCs. Our findings suggest that NDV is a potential candidate for developing targeted drug delivery platforms for the Plasmodium-infected RBCs.
Collapse
Affiliation(s)
- Siddharth Neog
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Sandeep Reddy Vinjamuri
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Kamalakannan Vijayan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, India
| | - Sachin Kumar
- Viral Immunology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| | - Vishal Trivedi
- Malaria Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati, India
| |
Collapse
|
4
|
Sahu W, Bai T, Das A, Mukherjee S, Prusty A, Mallick NR, Elangovan S, Reddy KS. Plasmodium falciparum J-dot localized J domain protein A8iJp modulates the chaperone activity of human HSPA8. FEBS Lett 2024; 598:818-836. [PMID: 38418371 DOI: 10.1002/1873-3468.14836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 03/01/2024]
Abstract
Plasmodium falciparum renovates the host erythrocyte to survive during intraerythrocytic development. This renovation requires many parasite proteins to unfold and move outside the parasitophorous vacuolar membrane, and chaperone-regulated protein folding becomes essential for the exported proteins to function. We report on a type-IV J domain protein (JDP), PF3D7_1401100, which we found to be processed before export and trafficked inside the lumen of parasite-derived structures known as J-dots. We found this protein to have holdase activity, as well as stimulate the ATPase and aggregation suppression activity of the human HSP70 chaperone HsHSPA8; thus, we named it "HSPA8-interacting J protein" (A8iJp). Moreover, we found a subset of HsHSPA8 to co-localize with A8iJp inside the infected human erythrocyte. Our results suggest that A8iJp modulates HsHSPA8 chaperone activity and may play an important role in host erythrocyte renovation.
Collapse
Affiliation(s)
- Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Tapaswini Bai
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Subhadip Mukherjee
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Aradhana Prusty
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Nipa Rani Mallick
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, India
| |
Collapse
|
5
|
Kazan MM, Asmare MM, Mahapatra RK. Identification of Potential Drug Targets in Erythrocyte Invasion Pathway of Plasmodium falciparum. Curr Microbiol 2023; 80:165. [PMID: 37020052 DOI: 10.1007/s00284-023-03282-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
The erythrocyte invasion phase plays a critical role in multiplication, sexual determination, and drug resistance in Plasmodium falciparum. In order to identify the critical genes and pathways in the erythrocyte invasion phase, the gene set (GSE129949) and the RNA-Seq count data for the W2mef strain were used for further analysis. An integrative bioinformatics study was performed to scrutinize genes as potential drug targets. 487 differentially expressed genes (DEGs) with an adjusted P value < 0.001 enriched 47 Gene Ontology (GO) terms that were over-represented based on hyper-geometric analysis P value < 0.01. Protein-Protein interaction network analysis was done using DEGs with higher confidence interactions (PPI score threshold = 0.7). MCODE and cytoHubba apps were utilized to define the hub proteins and rank them based on multiple topological analyses and MCODE scores. Furthermore, Gene Set Enrichment Analysis (GSEA) was carried out by using 322 gene sets from the MPMP database. The genes involved in multiple significant gene sets were determined by leading-edge analysis. Our study identified six genes encoding proteins that could be potential drug targets involved in the erythrocyte invasion phase related to merozoites motility, cell-cycle regulation, G-dependent protein kinase phosphorylation in schizonts, control of microtubule assembly, and sexual commitment. The druggability of those proteins was calculated based on the DCI (Drug Confidence Index) and predicted binding pockets' values. The protein that showed the best binding pocket value was subjected to deep learning-based virtual screening. The study identified the best small molecule inhibitors in terms of drug-binding score against the proteins for inhibitor identification.
Collapse
Affiliation(s)
- Mohammad Mustafa Kazan
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | | | - Rajani Kanta Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
6
|
Identification and Characterization of Eimeria tenella Rhoptry Protein 35 (EtROP35). Vet Sci 2022; 9:vetsci9090465. [PMID: 36136681 PMCID: PMC9505231 DOI: 10.3390/vetsci9090465] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Rhoptry proteins (ROPs) of phylum Apicomplexa parasites are important secretory virulence factors as well as candidate vaccines. However, studies on ROPs of Eimeria tenella are limited. In this study, the coding sequence of E. tenella rhoptry protein 35 (EtROP35) was cloned, and then its localization, expression in parasite, potential role within invasion, and protective efficacy were investigated. Sequence analysis and subcellular localization revealed that EtROP35 is a rhoptry protein of E. tenella. Sporozoite invasion-blocking assay and protective efficacy indicated that EtROP35 might be involved in the parasite invasion process and may be a potential vaccine candidate against E. tenella. Abstract Rhoptry proteins (ROPs) of Apicomplexa are crucial secreted virulence factors and sources of vaccine candidates. To date, Eimeria tenella ROPs are not well studied. This study identified and characterized a novel E. tenella ROP (EtROP35), which showed the highest levels among 28 putative ROPs in previous sporozoite and merozoite transcriptomes. Sequence analysis showed that EtROP35 contains an N-terminal secretory signal and a protein kinase domain including eight conserved ROP35-subfamily motifs. Subsequent experiments confirmed that it is a secretory protein. Subcellular localization revealed it localized at the apical end of the sporozoites and merozoites, which was consistent with the ROPs of other Apicomplexan parasites. To further understand the biological meaning of EtROP35, expression levels in different developmental stages and sporozoite invasion-blocking assay were investigated. EtROP35 showed significantly higher levels in sporozoites (6.23-fold) and merozoites (7.00-fold) than sporulated oocysts. Sporozoite invasion-blocking assay revealed that anti-EtROP35 polyclonal antibody significantly reduced the sporozoite invasion rate, suggesting it might participate in host cell invasion and be a viable choice as a vaccine candidate. The immunological protective assays showed that EtROP35 could induce a high level of serum IgY and higher mean body weight gain, and lower cecum lesion score and oocysts excretion than the challenged control group. These data indicated that EtROP35 had good immunogenicity and may be a promising vaccine candidate against E. tenella.
Collapse
|
7
|
Yu JL, Liu QY, Yang B, Sun YF, Wang YJ, Jiang J, Wang B, Cheng Y, Wang QB. Immunogenicity Analysis of the Recombinant Plasmodium falciparum Surface-Related Antigen in Mice. Pathogens 2022; 11:550. [PMID: 35631071 PMCID: PMC9145071 DOI: 10.3390/pathogens11050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Plasmodium falciparum, mainly distributed in tropical and subtropical regions of the world, has received widespread attention owing to its severity. As a novel protein, P. falciparum surface-related antigen (PfSRA) has the structural and functional characteristics to be considered as a malaria vaccine candidate; however, limited information is available on its immunogenicity. Here, we expressed three fragments of recombinant PfSRA in an Escherichia coli system and further analyzed its immunogenicity. The results showed that rPfSRA-immunized mice produced specific antibodies with high endpoint titers (1:10,000 to 1:5,120,000) and affinity antibodies (i.e., rPfSRA-F1a (97.70%), rPfSRA-F2a (69.62%), and rPfSRA-F3a (91.87%)). In addition, the sera of immunized mice recognized both the native PfSRA and recombinant PfSRA, the rPfSRA antibodies inhibited the invasion of P. falciparum into the erythrocytes, and they were dose-dependent in vitro. This study confirmed PfSRA could be immunogenic, especially the F1a at the conserved region N-terminal and provided further support for it as a vaccine candidate against P.falciparum.
Collapse
Affiliation(s)
- Jia-Li Yu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; (J.-L.Y.); (B.Y.); (Y.-F.S.)
| | - Qing-Yang Liu
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People’s Hospital), Wuxi 214000, China;
| | - Bo Yang
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; (J.-L.Y.); (B.Y.); (Y.-F.S.)
| | - Yi-Fan Sun
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; (J.-L.Y.); (B.Y.); (Y.-F.S.)
| | - Ya-Ju Wang
- Wuxi Red Cross Blood Center, Wuxi 214000, China; (Y.-J.W.); (J.J.)
| | - Jian Jiang
- Wuxi Red Cross Blood Center, Wuxi 214000, China; (Y.-J.W.); (J.J.)
| | - Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China;
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China; (J.-L.Y.); (B.Y.); (Y.-F.S.)
| | - Qiu-Bo Wang
- Department of Clinical Laboratory, Wuxi 9th Affiliated Hospital of Soochow University (Wuxi 9th People’s Hospital), Wuxi 214000, China;
| |
Collapse
|
8
|
Goerdeler F, Seeberger PH, Moscovitz O. Unveiling the Sugary Secrets of Plasmodium Parasites. Front Microbiol 2021; 12:712538. [PMID: 34335547 PMCID: PMC8322443 DOI: 10.3389/fmicb.2021.712538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium parasites cause malaria disease, one of the leading global health burdens for humanity, infecting hundreds of millions of people each year. Different glycans on the parasite and the host cell surface play significant roles in both malaria pathogenesis and host defense mechanisms. So far, only small, truncated N- and O-glycans have been identified in Plasmodium species. In contrast, complex glycosylphosphatidylinositol (GPI) glycolipids are highly abundant on the parasite’s cell membrane and are essential for its survival. Moreover, the parasites express lectins that bind and exploit the host cell surface glycans for different aspects of the parasite life cycle, such as adherence, invasion, and evasion of the host immune system. In parallel, the host cell glycocalyx and lectin expression serve as the first line of defense against Plasmodium parasites and directly dictate susceptibility to Plasmodium infection. This review provides an overview of the glycobiology involved in Plasmodium-host interactions and its contribution to malaria pathogenesis. Recent findings are presented and evaluated in the context of potential therapeutic exploitation.
Collapse
Affiliation(s)
- Felix Goerdeler
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Peter H Seeberger
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Oren Moscovitz
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| |
Collapse
|
9
|
Hang JW, Tukijan F, Lee EQH, Abdeen SR, Aniweh Y, Malleret B. Zoonotic Malaria: Non- Laverania Plasmodium Biology and Invasion Mechanisms. Pathogens 2021; 10:889. [PMID: 34358039 PMCID: PMC8308728 DOI: 10.3390/pathogens10070889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
Malaria, which is caused by Plasmodium parasites through Anopheles mosquito transmission, remains one of the most life-threatening diseases affecting hundreds of millions of people worldwide every year. Plasmodium vivax, which accounts for the majority of cases of recurring malaria caused by the Plasmodium (non-Laverania) subgenus, is an ancient and continuing zoonosis originating from monkey hosts probably outside Africa. The emergence of other zoonotic malarias (P. knowlesi, P. cynomolgi, and P. simium) further highlights the seriousness of the disease. The severity of this epidemic disease is dependent on many factors, including the parasite characteristics, host-parasite interactions, and the pathology of the infection. Successful infection depends on the ability of the parasite to invade the host; however, little is known about the parasite invasion biology and mechanisms. The lack of this information adds to the challenges to malaria control and elimination, hence enhancing the potential for continuation of this zoonosis. Here, we review the literature describing the characteristics, distribution, and genome details of the parasites, as well as host specificity, host-parasite interactions, and parasite pathology. This information will provide the basis of a greater understanding of the epidemiology and pathogenesis of malaria to support future development of strategies for the control and prevention of this zoonotic infection.
Collapse
Affiliation(s)
- Jing-Wen Hang
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Farhana Tukijan
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Erica-Qian-Hui Lee
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
| | - Shifana Raja Abdeen
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| | - Yaw Aniweh
- West Africa Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Legon, Accra, Ghana;
| | - Benoit Malleret
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore 117545, Singapore; (J.W.H.); (F.T.); (E.Q.H.L.)
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore 138648, Singapore;
| |
Collapse
|
10
|
Ben Chaabene R, Lentini G, Soldati-Favre D. Biogenesis and discharge of the rhoptries: Key organelles for entry and hijack of host cells by the Apicomplexa. Mol Microbiol 2021; 115:453-465. [PMID: 33368727 DOI: 10.1111/mmi.14674] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Rhoptries are specialized secretory organelles found in the Apicomplexa phylum, playing a central role in the establishment of parasitism. The rhoptry content includes membranous as well as proteinaceous materials that are discharged into the host cell in a regulated fashion during parasite entry. A set of rhoptry neck proteins form a RON complex that critically participates in the moving junction formation during invasion. Some of the rhoptry bulb proteins are associated with the membranous materials and contribute to the formation of the parasitophorous vacuole membrane while others are targeted into the host cell including the nucleus to subvert cellular functions. Here, we review the recent studies on Toxoplasma and Plasmodium parasites that shed light on the key steps leading to rhoptry biogenesis, trafficking, and discharge.
Collapse
Affiliation(s)
- Rouaa Ben Chaabene
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaëlle Lentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Kanjee U, Rangel GW, Clark MA, Duraisingh MT. Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol 2018; 46:109-115. [PMID: 30366310 DOI: 10.1016/j.mib.2018.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/19/2023]
Abstract
Plasmodium vivax is uniquely restricted to invading reticulocytes, the youngest of red blood cells. Parasite invasion relies on the sequential deployment of multiple parasite invasion ligands. Correct targeting of the host reticulocyte is mediated by two families of invasion ligands: the reticulocyte binding proteins (RBPs) and erythrocyte binding proteins (EBPs). The Duffy receptor has long been established as a key determinant for P. vivax invasion. However, recently, the RBP protein PvRBP2b has been shown to bind to transferrin receptor, which is expressed on reticulocytes but lost on normocytes, implicating the ligand-receptor in the reticulocyte tropism of P. vivax. Furthermore there is increasing evidence for P. vivax growth and sexual development in reticulocyte-enriched tissues such as the bone marrow.
Collapse
Affiliation(s)
- Usheer Kanjee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gabriel W Rangel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Martha A Clark
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|