1
|
Chen H, Dai B, Xu L, Dong H, Wang M, Yu L, Qiu Z, Li Y, Shi Q, Shu J, Yuan Y, Li X. Exploring Dynamics and Intermolecular Interactions in Binary Mixtures of Reline and DMSO: An Investigation Using Nuclear Magnetic Resonance and Infrared Spectroscopic Techniques. J Phys Chem B 2025; 129:1311-1322. [PMID: 39823569 DOI: 10.1021/acs.jpcb.4c05660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Reline, which is composed of choline chloride and urea in a molar ratio of 1:2, is the first and most extensively studied deep eutectic solvent (DES). In certain applications, reline is blended with organic solvents, dimethyl sulfoxide (DMSO) in most cases, to gain improved properties. Therefore, it is crucial to have a profound understanding of the impact of DMSO on the dynamics and structures of the species in the binary mixtures. In this study, neat reline and ten reline/DMSO mixtures, with DMSO molar fraction ranging from 0.1 to 0.95, were investigated primarily through a combined approach utilizing nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopic techniques. Based on our investigation, we probed a significant transition of the binary mixtures from large molecule solutions or viscous liquids to nonviscous small-molecule solutions at a DMSO molar fraction of 0.7. Specifically, upon analyzing the self-diffusion coefficient, 1H T1 and 1H T2, we observed a notable increase in the molecular mobility of the species within the reline/DMSO system, particularly when the DMSO molar fraction exceeded 0.7. Drawing upon the FT-IR findings, we suggest that the enhanced molecular mobility, as evidenced by NMR analysis, is correlated with the disruption of molecular hydrogen-bonding interactions involving the -NH2 and -OH groups. Furthermore, based on 1D 1H, 1D 15N, and 2D 1H-1H COSY spectra, it was revealed that the interaction between urea and choline remains relatively stable until the DMSO fraction exceeds 0.7, whereupon it exhibited a notable weakening as the DMSO fraction increases from 0.7 to 0.95. In the meantime, DMSO molecules predominantly engage in hydrogen bond interactions with urea and choline when the DMSO molar fraction exceeds 0.7. Our results align well with previous molecular dynamics (MD) simulation studies and provide profound insights into the significant transition in the reline/DMSO mixture system.
Collapse
Affiliation(s)
- Huan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bona Dai
- Instrumental Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lingyun Xu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
- Center for Self-Propelled Nanotechnologies, Suzhou Industrial Park Institute of Services Outsourcing, Suzhou, Jiangsu 215006, China
| | - Hongchun Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Mei Wang
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Lei Yu
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Zihui Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yue Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qi Shi
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Jie Shu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- Analysis and Testing Center, Soochow University, Suzhou 215123, China
| | - Yuan Yuan
- Key Laboratory of Rubber-Plastics, Ministry of Education, School of Polymer Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaohong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
2
|
Voroshylova IV, Ferreira ESC, Cordeiro MNDS. Influence of Deep Eutectic Solvent Composition on Micelle Properties: A Molecular Dynamics Study. Molecules 2025; 30:574. [PMID: 39942680 PMCID: PMC11821091 DOI: 10.3390/molecules30030574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/19/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
This study investigates the structural and transport properties of SDS, CTAB, and SB3-12 micelles in three deep eutectic solvents (DESs), Ethaline, Glyceline, and Reline, using molecular dynamics (MD) simulations. The influence of solvent composition on micelle morphology, interactions, and dynamics was explored, revealing key differences driven by the DES environment. Structural analyses, including eccentricity and radius of gyration, demonstrated that micelle shape and compactness vary significantly depending on the solvent. In Ethaline and Reline, larger micelles showed significant deviations from spherical shapes, while micelles in Glyceline became more spherical and compact, particularly those formed by SB3-12. Radial distribution functions highlighted different levels of micelle-solvent interactions, with SDS showing strong interactions with HBD components and SB3-12 exhibiting prominent self-interaction. According to hydrogen bonding analysis, micelles slightly disrupt the DES hydrogen bond network, with SB3-12 establishing the most significant hydrogen bond connections. The transport property analysis revealed that larger micelles have lower diffusion coefficients, whereas smaller micelles enhance DESs' component mobility. These findings advance the understanding of micelle behavior in DESs and also help in the optimization of DES-surfactant systems for applications such as electrodeposition, nanomaterial templating, and drug delivery. Future research will focus on surfactant interactions with surfaces to further improve these applications.
Collapse
Affiliation(s)
- Iuliia V. Voroshylova
- REQUIMTE LAQV, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal; (E.S.C.F.); (M.N.D.S.C.)
| | | | | |
Collapse
|
3
|
Cardoso JS, Lin Z, Brito P, Gando-Ferreira LM. Enhancing CO 2/N 2 and CO 2/CH 4 Separation Properties of PES/SAPO-34 Membranes Using Choline Chloride-Based Deep Eutectic Solvents as Additives. MEMBRANES 2024; 14:230. [PMID: 39590615 PMCID: PMC11596722 DOI: 10.3390/membranes14110230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
CO2 separation is an important environmental method mainly used in reducing CO2 emissions to mitigate anthropogenic climate change. The use of mixed-matrix membranes (MMMs) arrives as a possible answer, combining the high selectivity of inorganic membranes with high permeability of organic membranes. However, the combination of these materials is challenging due to their opposing nature, leading to poor interactions between polymeric matrix and inorganic fillers. Many additives have been tested to reduce interfacial voids, some of which showed potential in dealing with compatibility problems, but most of them lack further studies and optimization. Deep eutectic solvents (DESs) have emerged as IL substitutes since they are cheaper and environmentally friendly. Choline chloride-based deep eutectic solvents were studied as additives in polyethersulfone (PES)/SAPO-34 membranes to improve CO2 permeability and CO2/N2 and CO2/CH4 selectivity. SAPO-34 crystals of 150 nm with a high surface area and microporosity were synthesized using dry-gel methodology. The PES/SAPO-34 membranes were optimized following previous work and used in a defined composition, using 5 or 10 w/w% of DES during membrane preparation. All MMMs were characterized by their ideal gas permeability using N2 and CO2 pure gasses. Selected membranes were also tested using CH4 pure gas. The results presented that 5 w/w%, in polymer mass, of ChCl-glycerol presented the best result over the synthesized membranes. An increase of 200% in CO2 permeability maintains the CO2/N2 selectivity for the non-modified PES/SAPO-34 membrane. A CO2/CH4 selectivity of 89.7 was obtained in PES/SAPO-34/ChCl-glycerol membranes containing 5 w/w% of this DES, which is an outstanding ideal separation performance for MMMs when compared to other results in the literature. FTIR analysis reiterates the presence of glycerol in the membranes prepared. Dynamic Mechanical Thermal Analysis (DMTA) shows that the addition of 5 w/w% of DES does not impact the membrane flexibility or polymer structure. However, in concentrations higher than 10 w/w%, the inclusion of DES could lead to high membrane rigidification without impacting the overall thermal resistance. SEM analysis of DES-enhanced membranes presented asymmetric final membranes and reaffirmed the results obtained in DMTA about rigidified structures and lower zeolite-polymer interaction with higher concentrations of DES.
Collapse
Affiliation(s)
- Jonathan S. Cardoso
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| | - Zhi Lin
- Centre for Research in Ceramics and Composite Materials (CICECO), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Paulo Brito
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Licínio M. Gando-Ferreira
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, Pólo II, Rua Sílvio Lima, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Augis L, Nguyễn CH, Ciseran C, Wacha A, Mercier-Nomé F, Domenichini S, Sizun C, Fourmentin S, Legrand FX. Hydrophobic binary mixtures containing amphotericin B as lipophilic solutions for the treatment of cutaneous leishmaniasis. Int J Pharm 2024; 662:124486. [PMID: 39033940 DOI: 10.1016/j.ijpharm.2024.124486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Cutaneous leishmaniasis, caused by Leishmania parasites, requires treatments with fewer side effects than those currently available. The development of a topical solution based on amphotericin B (AmB) was pursued. The considerable interest in deep eutectic solvents (DESs) and their remarkable advantages inspired the search for a suitable hydrophobic excipient. Various mixtures based on commonly used hydrogen bond donors (HBDs) and acceptors (HBAs) for DES preparations were explored. Initial physical and in-vitro screenings showed the potential of quaternary phosphonium salt-based mixtures. Through thermal analysis, it was determined that most of these mixtures did not exhibit eutectic behavior. X-ray scattering studies revealed a sponge-like nanoscale structure. The most promising formulation, based on a combination of trihexyl(tetradecyl)phosphonium chloride and 1-oleoyl-rac-glycerol, showed no deleterious effects through histological evaluation. AmB was fully solubilized at concentrations between 0.5 and 0.8 mg·mL-1, depending on the formulation. The monomeric state of AmB was observed by circular dichroism. In-vitro irritation tests demonstrated acceptable viability for AmB-based formulations up to 0.5 mg·mL-1. Additionally, an ex-vivo penetration study on pig ear skin revealed no transcutaneous passage, confirming AmB retention in healthy, unaffected skin.
Collapse
Affiliation(s)
- Luc Augis
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - Cảnh Hưng Nguyễn
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France; Department of Pharmaceutics, Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hoan Kiem, Hanoi, Viet Nam
| | - Cécile Ciseran
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400 Orsay, France
| | - András Wacha
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, Budapest H-1117, Hungary
| | - Françoise Mercier-Nomé
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France; Université Paris-Saclay, Inserm, Inflammation, Microbiome et Immunosurveillance, 91400 Orsay, France
| | - Séverine Domenichini
- Université Paris-Saclay, Inserm, CNRS, Ingénierie et Plateformes au Service de l'Innovation Thérapeutique, 91400 Orsay, France
| | - Christina Sizun
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France
| | - Sophie Fourmentin
- Univ. Littoral Côte d'Opale, UR 4492, UCEIV, Unité de Chimie Environnementale et Interactions sur le Vivant, 59140 Dunkerque, France
| | | |
Collapse
|
5
|
Schulz A, Moch K, Hinz Y, Lunkenheimer P, Böhmer R. Translational and reorientational dynamics in carboxylic acid-based deep eutectic solvents. J Chem Phys 2024; 160:074503. [PMID: 38380750 DOI: 10.1063/5.0189533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
The glass formation and the dipolar reorientational motions in deep eutectic solvents (DESs) are frequently overlooked, despite their crucial role in defining the room-temperature physiochemical properties. To understand the effects of these dynamics on the ionic conductivity and their relation to the mechanical properties of the DES, we conducted broadband dielectric and rheological spectroscopy over a wide temperature range on three well-established carboxylic acid-based natural DESs. These are the eutectic mixtures of choline chloride with oxalic acid (oxaline), malonic acid (maline), and phenylacetic acid (phenylaceline). In all three DESs, we observe signs of a glass transition in the temperature dependence of their dipolar reorientational and structural dynamics, as well as varying degrees of motional decoupling between the different observed dynamics. Maline and oxaline display a breaking of the Walden rule near the glass-transition temperature, while the relation between the dc conductivity and dipolar relaxation time in both maline and phenylaceline is best described by a power law. The glass-forming properties of the investigated systems not only govern the orientational dipolar motions and rheological properties, which are of interest from a fundamental point of view, but they also affect the dc conductivity, even at room temperature, which is of high technical relevance.
Collapse
Affiliation(s)
- A Schulz
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - K Moch
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Y Hinz
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
6
|
Abdelquader MM, Li S, Andrews GP, Jones DS. Therapeutic Deep Eutectic Solvents: A Comprehensive Review of Their Thermodynamics, Microstructure and Drug Delivery Applications. Eur J Pharm Biopharm 2023; 186:85-104. [PMID: 36907368 DOI: 10.1016/j.ejpb.2023.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
Deep eutectic solvents (DES) are multicomponent liquids that are usually formed by coupling a hydrogen bond donor and acceptor leading to strong non-covalent (NC) intermolecular networking and profound depression in the melting point of the system. Pharmaceutically, this phenomenon has been exploited to improve drugs' physicochemical properties, with an established DES therapeutic subcategory, therapeutic deep eutectic solvents (THEDES). THEDES preparation is usually via straightforward synthetic processes with little involvement of sophisticated techniques, which, in addition to its thermodynamic stability, make these multi-component molecular adducts a very attractive alternative for drug enabling purposes. Other NC bonded binary systems (e.g., co-crystals and ionic liquids) are utilized in the pharmaceutical field for enhancing drug's behaviours. However, a clear distinction between these systems and THEDES is scarcely discussed in the current literature. Accordingly, this review provides a structure-based categorization for DES formers, a discussion of its thermodynamic properties and phase behaviour, and it clarifies the physicochemical and microstructure boundaries between DES and other NC systems. Additionally, a summary of its preparation techniques and their experimental conditions preparation is supplied. Instrumental analysis techniques can be used to characterize and differentiate DES from other NC mixtures, hence this review draws a road map to for this purpose. Since this work mainly focuses on pharmaceutical applications of DES, all types of THEDES including the highly discussed types (conventional, drugs dissolved in DES and polymer based) in addition to the less discussed categories are covered. Finally, the regulatory status of THEDES was investigated despite the current unclear situation.
Collapse
Affiliation(s)
- Magdy M Abdelquader
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanat, Egypt.
| | - Shu Li
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Gavin P Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - David S Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
7
|
Deep Eutectic Solvent Based Reversed-Phase Dispersive Liquid-Liquid Microextraction and High-Performance Liquid Chromatography for the Determination of Free Tryptophan in Cold-Pressed Oils. Molecules 2023; 28:molecules28052395. [PMID: 36903640 PMCID: PMC10005200 DOI: 10.3390/molecules28052395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
A fast and straightforward reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) using a deep eutectic solvent (DES) procedure to determine free tryptophan in vegetable oils was developed. The influence of eight variables affecting the RP-DLLME efficiency has been studied by a multivariate approach. A Plackett-Burman design for screening the most influential variables followed by a central composite response surface methodology led to an optimum RP-DLLME setup for a 1 g oil sample: 9 mL hexane as the diluting solvent, vortex extraction with 0.45 mL of DES (choline chloride-urea) at 40 °C, without addition of salt, and centrifugation at 6000 rpm for 4.0 min. The reconstituted extract was directly injected into a high-performance liquid chromatography (HPLC) system working in the diode array mode. At the studied concentration levels, the obtained method detection limits (MDL) was 11 mg/kg, linearity in matrix-matched standards was R2 ≥ 0.997, relative standard deviations (RSD) was 7.8%, and average recovery was 93%. The combined use of the recently developed DES -based RP-DLLME and HPLC provides an innovative, efficient, cost-effective, and more sustainable method for the extraction and quantification of free tryptophan in oily food matrices. The method was employed to analyze cold-pressed oils from nine vegetables (Brazil nut, almond, cashew, hazelnut, peanut, pumpkin, sesame, sunflower, and walnut) for the first time. The results showed that free tryptophan was present in the range of 11-38 mg/100 g. This article is important for its contributions to the field of food analysis, and for its development of a new and efficient method for the determination of free tryptophan in complex matrices, which has the potential to be applied to other analytes and sample types.
Collapse
|
8
|
Freeman JS, Mamme MH, Ustarroz J, Warr GG, Li H, Atkin R. Molecular Resolution Nanostructure and Dynamics of the Deep Eutectic Solvent-Graphite Interface as a Function of Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204993. [PMID: 36627266 DOI: 10.1002/smll.202204993] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Interest in deep eutectic solvents (DESs), particularly for electrochemical applications, has boomed in the past decade because they are more versatile than conventional electrolyte solutions and are low cost, renewable, and non-toxic. The molecular scale lateral nanostructures as a function of potential at the solid-liquid interface-critical design parameters for the use of DESs as electrochemical solvents-are yet to be revealed. In this work, in situ amplitude modulated atomic force microscopy complemented by molecular dynamics simulations is used to probe the Stern and near-surface layers of the archetypal and by far most studied DES, 1:2 choline chloride:urea (reline), at the highly orientated pyrolytic graphite surface as a function of potential, to reveal highly ordered lateral nanostructures with unprecedented molecular resolution. This detail allows identification of choline, chloride, and urea in the Stern layer on graphite, and in some cases their orientations. Images obtained after the potential is switched from negative to positive show the dynamics of the Stern layer response, revealing that several minutes are required to reach equilibrium. These results provide valuable insight into the nanostructure and dynamics of DESs at the solid-liquid interface, with implications for the rational design of DESs for interfacial applications.
Collapse
Affiliation(s)
- Justin S Freeman
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Mesfin Haile Mamme
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
- Eenheid Algemene Chemie (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
| | - Jon Ustarroz
- Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel (VUB), Pleinlaan 2, Brussels, 1050, Belgium
- Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Université Libre de Bruxelles, Boulevard du Triomphe 2, Brussels, 1050, Belgium
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, Western Australia, 6009, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, 6009, Australia
| |
Collapse
|
9
|
Islam SZ, Arifuzzaman M, Rother G, Bocharova V, Sacci RL, Jakowski J, Huang J, Ivanov IN, Bhave RR, Saito T, Sholl DS. A Membrane Contactor Enabling Energy-Efficient CO 2 Capture from Point Sources with Deep Eutectic Solvents. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Syed Z. Islam
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - Md Arifuzzaman
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - Robert L. Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - Jacek Jakowski
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jingsong Huang
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ilia Nicolaevich Ivanov
- Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Ramesh R. Bhave
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennesee 37830, United States
| | - David S. Sholl
- Energy Science and Technology Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
10
|
Dong H, Zhang Z, Qiu Z, Tang D, Shu J. Insight into the Molecular Structure, Interaction, and Dynamics of Aqueous Reline Deep Eutectic Solvent: A Nuclear Magnetic Resonance Investigation. J Phys Chem B 2023; 127:1013-1021. [PMID: 36656281 DOI: 10.1021/acs.jpcb.2c07927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Reline, which is composed of choline chloride (ChCl) and urea, is the first and most widely used deep eutectic solvent (DES) described by Abbot and co-workers. Due to the hygroscopic feature, traces of water are unavoidable, which significantly affect the physicochemical properties of reline. At present, the local structure of molecules and the impact from the presence of water are still the most significant questions in this field. Herein, reline and six aqueous dilutions with a controlled amount of water (from 3.2 to 50.0 wt %) were studied mainly by using a combination of nuclear magnetic resonance (NMR) techniques. According to 1D 35Cl NMR, 1D 15N NMR, and 2D 1H-15Cl heteronuclear Overhauser effect spectroscopy, we probed the interactions of urea···Cl- and Ch+···Cl- in pure reline, which gradually dissociated in the presence of water. Moreover, it was revealed that the dissociation rate altered when the water content reached 9.0 wt %, which is ascribed to the higher preference of hydration for Cl- ion compared to other species in the system. Furthermore, selected cross peaks in 1H-1H correlation spectroscopy spectra were analyzed. Accordingly, an enhanced correlation was observed for urea···Ch+ at a lower water fraction within 9.0 wt %. When the water content increased to 24.9 wt %, the water solvation of Ch+ and urea was also observed in COSY spectra. The interaction of H2O···Ch+ got continuously stronger when the water content increased from 24.9 to 50.0 wt %, while H2O···urea got enhanced when the water content reached 33.3 wt % and then diminished gradually from 33.3 to 50.0 wt %. 1H-1H nuclear Overhauser effect spectroscopy and 1H-1H rotating frame Overhauser effect spectroscopy experiments were also conducted for dynamics investigation. The τc value for the species in 9.0 wt % aqueous reline is very close to τccrit of 0.44 ns. For pure reline and the aqueous reline with a water fraction of less than 9.0 wt %, the τc value of the species is longer than 0.44 ns, while for the sample with water of 24.9 wt %, the τc value is much shorter than 0.44 ns. Based on our NMR study, we revealed that with the water amount increasing from 0 to 50.0 wt %, the species involved in the system behaved as the large molecules or molecules in viscous liquids transiting to the medium-sized molecules in nonviscous liquids and finally to small molecules in nonviscous liquids.
Collapse
Affiliation(s)
- Hongchun Dong
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Zhilan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Zihui Qiu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Dandan Tang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China
| | - Jie Shu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, China.,Analysis and Testing Center, Soochow University, Suzhou215123, China
| |
Collapse
|
11
|
Basar A, Prieto C, Pardo-Figuerez M, Lagaron JM. Poly(3-hydroxybutyrate- co-3-hydroxyvalerate) Electrospun Nanofibers Containing Natural Deep Eutectic Solvents Exhibiting a 3D Rugose Morphology and Charge Retention Properties. ACS OMEGA 2023; 8:3798-3811. [PMID: 36743045 PMCID: PMC9893451 DOI: 10.1021/acsomega.2c05838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 06/18/2023]
Abstract
In the present study, electrospun nanofibers of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable polyester, containing natural deep eutectic solvents (NADES) were obtained and reported for the first time, exhibiting an unreported 3D morphology and enhanced charge retention properties. Choline chloride (ChCl)/urea/water in a molar ratio of 1:2:1 was used as the NADES model system. Electrospun nanofibers were produced from a 10 wt % solution of PHBV containing 26 wt % NADES with respect to the polymer and were deposited on different substrates, that is, aluminum foil and non-woven spunbond polypropylene (PP). The morphology and charge retention ability were characterized under different conditions and on different substrates. The attained fiber morphology for the NADES-containing mats showed an average fiber diameter of around 300 nm, whereas the pure PHBV polymer under the same conditions produced electrospun fibers of around 880 nm. However, the deposition of PHBV/ChCl/urea/water fibers resulted in a surprising macroscopic rugose 3D surface morphology made of aligned nanofibers when processed at 50% relative humidity (RH). The nanofiber grammages above which this 3D morphology, associated with NADES-induced charge retention, formed was found to be dependent on the substrate used and RH. This morphology was not seen at 20% RH nor when pure PHBV was produced. Charge stability studies revealed that PHBV/ChCl/urea/water nanofibers exhibited lasting charge retention, especially when sandwiched between spunbond polypropylene textiles. Finally, such multilayer structures containing a very thin double layer of PHBV/ChCl/urea/water fibers after corona treatment exhibited improved paraffin aerosol penetration, which was ascribed to the combination of thinner fibers and their charge retention capacity. The here-developed electrospun PHBV fibers containing NADES demonstrated for the first time a new potential application as electret filter media.
Collapse
Affiliation(s)
- Ahmet
Ozan Basar
- Novel Materials and Nanotechnology
Group, Institute of Agrochemistry and Food
Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín
Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - Cristina Prieto
- Novel Materials and Nanotechnology
Group, Institute of Agrochemistry and Food
Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín
Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - María Pardo-Figuerez
- Novel Materials and Nanotechnology
Group, Institute of Agrochemistry and Food
Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín
Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology
Group, Institute of Agrochemistry and Food
Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín
Escardino Benlloch 7, Paterna, 46980 Valencia, Spain
| |
Collapse
|
12
|
Morozova OV, Vasil'eva IS, Shumakovich GP, Zaitseva EA, Yaropolov AI. Deep Eutectic Solvents for Biotechnology Applications. BIOCHEMISTRY (MOSCOW) 2023; 88:S150-S175. [PMID: 37069119 DOI: 10.1134/s0006297923140092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Deep eutectic solvents (DESs) are an alternative to traditional organic solvents and ionic liquids and meet the requirements of "green" chemistry. They are easy to prepare using low-cost constituents, are non-toxic and biodegradable. The review analyzes literature on the use of DES in various fields of biotechnology, provides data on the types of DESs, methods for their preparation, and properties. The main areas of using DESs in biotechnology include extraction of physiologically active substances from natural resources, pretreatment of lignocellulosic biomass to improve enzymatic hydrolysis of cellulose, production of bioplastics, as well as a reaction medium for biocatalytic reactions. The aim of this review is to summarize available information on the use of new solvents for biotechnological purposes.
Collapse
Affiliation(s)
- Olga V Morozova
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Irina S Vasil'eva
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Galina P Shumakovich
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Elena A Zaitseva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander I Yaropolov
- Bach Institute of Biochemistry, Federal Research Center "Fundamental Bases of Biotechnology" of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
13
|
Elaboration and Characterization of Natural Deep Eutectic Solvents (NADESs): Application in the Extraction of Phenolic Compounds from pitaya. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238310. [PMID: 36500405 PMCID: PMC9739405 DOI: 10.3390/molecules27238310] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/30/2022]
Abstract
In this paper, natural deep eutectic solvents (NADESs) with lactic acid, glycine, ammonium acetate, sodium acetate, and choline chloride were prepared with and without the addition of water. NADES formation was evaluated using FTIR and Raman, where hydrogen bonds were identified between the hydroxyl group of lactic acid and the amino and carboxyl groups of glycine. Acetate and ammonium ions were also identified as forming bonds with lactic acid. The addition of water did not cause changes in the vibrational modes of the FTIR and Raman spectra but contributed to a reduction in NADES viscosity and density. Viscosity ranged from 0.335 to 0.017 Pa s-1, and density ranged from 1.159 to 0.785 g mL-1. The best results for the extraction of phenolic compounds from pitaya (dragon fruit) were achieved with an organic solvent (450. 41 mg 100 g-1 dry bases-db) in comparison to NADESs lactic acid:glycine (193.18 mg 100 g-1 db) and lactic acid:ammonium acetate (186.08 mg 100 g-1 db). The antioxidant activity of the extracts obtained with the NADESs was not statistically different from that of the extract obtained with organic solvents.
Collapse
|
14
|
Mushtaq M, Butt FW, Akram S, Ashraf R, Ahmed D. Deep Eutectic Liquids as Tailorable Extraction Solvents: A Review of Opportunities and Challenges. Crit Rev Anal Chem 2022; 54:1634-1660. [PMID: 36148704 DOI: 10.1080/10408347.2022.2125284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Deep Eutectic Liquids (DELs) fall among the rapidly evolving discoveries of the 21st century, and these liquids are considered as alternative solvents to toxic and volatile organic liquids. Nevertheless, the emerging trend regarding the use of DELs in every field of physical and biological sciences, a lot of ambiguities and misconceptions exist about their formation, mechanism, and efficiencies observed or projected. A review of available technical data makes it obvious that these liquids have the potential to revolutionize the underdeveloped areas of analytical chemistry particularly the extraction/enrichment of analytes. To ensure the green and sustainable use of DELs, the researchers need to have a thorough understanding of DELs, their classification, chemistry, the nature and strength of molecular entanglements, and their tailorable features. Many researchers have declared these liquids recyclable but more attentive trials are needed to develop an authentic and straightforward DELs recycling methodology. The present review covers sound background knowledge and expert opinions about the technical definition of DELs, their classification, formation, recyclability, and tailorable features for their application as extraction solvent/sorbent in analytical chemistry.
Collapse
Affiliation(s)
- Muhammad Mushtaq
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Faizan Waseem Butt
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Sumia Akram
- Division of Science and Technology, University of Education Lahore, Lahore, Pakistan
| | - Rizwan Ashraf
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Dildar Ahmed
- Department of Chemistry, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
15
|
Li D. Natural deep eutectic solvents in phytonutrient extraction and other applications. FRONTIERS IN PLANT SCIENCE 2022; 13:1004332. [PMID: 36212381 PMCID: PMC9533057 DOI: 10.3389/fpls.2022.1004332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Natural deep eutectic solvents (NaDESs) are considered a new type of green solvent with attractive application prospects in many fields because of their simple preparation, low cost, environmental friendliness, low volatility, high solvency capacity, designable structure, and easy biodegradability. Due to their biocompatibility, they are safe to use and are particularly suitable for natural product applications. In recent years, NaDESs have been used to extract phytonutrients (e.g., flavonoids, saponins, polysaccharides, alkaloids, quinones, phenolic acids, volatile oils, etc.) to improve their solubility, stability, and bioavailability. This review is intended to summarize and discuss recent progress in the field of natural products related to materials and preparation methods, physicochemical properties, enhancing extraction and separation, increasing solubility, improving stability and bioavailability, facilitating oral absorption of phytonutrients, and finally, highlighting the challenge for future work.
Collapse
|
16
|
Malik A, Dhattarwal HS, Kashyap HK. An Overview of Structure and Dynamics Associated with Hydrophobic Deep Eutectic Solvents and Their Applications in Extraction Processes. Chemphyschem 2022; 23:e202200239. [PMID: 35702808 DOI: 10.1002/cphc.202200239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/10/2022] [Indexed: 11/10/2022]
Abstract
Recent development of novel water-immiscible green solvents known as hydrophobic deep eutectic solvents (HDESs) has opened the gates for applications requiring media where presence of water is undesirable. Ever since they were prepared, researchers have used HDESs in diverse fields such as extraction processes, CO 2 sequestration, membrane formation, and catalysis. The microstructure and dynamics associated with the species comprising HDESs guide their suitability for specific applications. For example, varying the alkyl tail length of HDES components significantly affects the dynamics of the components and thus helps in tuning the efficiency of extraction processes. The development of HDESs is still in infancy and very few theoretical studies are available in the literature that help in understanding the structure and dynamics of HDESs. This review highlights the recent work focused on the microscopic structure and dynamics of HDESs and their potential applications, particularly in extraction processes. We have also provided a glimpse of how the integration of experiments and computational techniques can help understand the mechanism of extraction processes.
Collapse
Affiliation(s)
- Akshay Malik
- Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Harender S Dhattarwal
- IIT Delhi: Indian Institute of Technology Delhi, Chemistry, Hauz Khas, 110016, New Delhi, INDIA
| | - Hemant Kumar Kashyap
- Indian Institute of Technology Delhi, Department of Chemistry, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, INDIA
| |
Collapse
|
17
|
Development of Sustainable Biorefinery Processes Applying Deep Eutectic Solvents to Agrofood Wastes. ENERGIES 2022. [DOI: 10.3390/en15114101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The growing demand for renewable energies and the application of sustainable and economically viable biorefinery processes have increased the study and application of lignocellulosic biomass. However, due to lignocellulosic biomass recalcitrance hindering its efficient utilization, the pretreatment in the biorefinery is an essential stage for success in the process. Therefore, Deep Eutectic Solvent (DES) has emerged as a promising green pretreatment. During this study, the effect of choline chloride [ChCl]:glycerol and [ChCl]:urea on sugarcane bagasse and brewery bagasse is evaluated. Results have demonstrated that using [ChCl]:glycerol in SCB reduced about 80% and 15% for acid-soluble lignin and Klason lignin, respectively, and improved efficiency on saccharification yields, achieving conversions of 60, 80, and 100% for glucan, xylan, and arabinan, correspondingly. In the case of BSG saccharification yields, about 65% and 98% are attained for glucan and xylan, respectively, when [ChCl]:glycerol was employed. These results confirm the effectiveness and facility of DES pretreatment as a suitable method that can improve the biorefinery processes.
Collapse
|
18
|
Busato M, Tofoni A, Mannucci G, Tavani F, Del Giudice A, Colella A, Giustini M, D'Angelo P. On the Role of Water in the Formation of a Deep Eutectic Solvent Based on NiCl 2·6H 2O and Urea. Inorg Chem 2022; 61:8843-8853. [PMID: 35616906 PMCID: PMC9199011 DOI: 10.1021/acs.inorgchem.2c00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The metal-based deep
eutectic solvent (MDES) formed by NiCl2·6H2O and urea in 1:3.5 molar ratio has been
prepared for the first time and characterized from a structural point
of view. Particular accent has been put on the role of water in the
MDES formation, since the eutectic could not be obtained with the
anhydrous form of the metal salt. To this end, mixtures at different
water/MDES molar ratios (W) have been studied with
a combined approach exploiting molecular dynamics and ab initio simulations, UV–vis and near-infra-red spectroscopies, small-
and wide-angle X-ray scattering, and X-ray absorption spectroscopy
measurements. In the pure MDES, a close packing of Ni2+ ion clusters forming oligomeric agglomerates is present thanks to
the mediation of bridging chloride anions and water molecules. Conversely,
urea poorly coordinates the metal ion and is mostly found in the interstitial
regions among the Ni2+ ion oligomers. This nanostructure
is disrupted upon the introduction of additional water, which enlarges
the Ni–Ni distances and dilutes the system up to an aqueous
solution of the MDES constituents. In the NiCl2·6H2O 1:3.5 MDES, the Ni2+ ion is coordinated on average
by one chloride anion and five water molecules, while water easily
saturates the metal solvation sphere to provide a hexa-aquo coordination
for increasing W values. This multidisciplinary study
allowed us to reconstruct the structural arrangement of the MDES and
its aqueous mixtures on both short- and intermediate-scale levels,
clarifying the fundamental role of water in the eutectic formation
and challenging the definition at the base of these complex systems. The metal-based deep eutectic solvent
formed by NiCl2·6H2O and urea in 1:3.5
a molar ratio was
prepared for the first time, and its aqueous mixtures were characterized
from a structural point of view, highlighting the fundamental role
of water in the eutectic formation.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Alessandro Tofoni
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Giorgia Mannucci
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Francesco Tavani
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Andrea Colella
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Mauro Giustini
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| | - Paola D'Angelo
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, Rome 00185, Italy
| |
Collapse
|
19
|
Phi TL, Nguyen ST, Van Hieu N, Palomar-Pardavé M, Morales-Gil P, Le Manh T. Insights into Electronucleation and Electrodeposition of Nickel from a Non-aqueous Solvent Based on NiCl 2·6H 2O Dissolved in Ethylene Glycol. Inorg Chem 2022; 61:5099-5111. [PMID: 35289600 DOI: 10.1021/acs.inorgchem.2c00127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work deals with nickel electronucleation and growth processes onto a glassy carbon electrode from NiCl2·6H2O dissolved in ethylene glycol (EG) solutions with and without 250 mM NaCl as a supporting electrolyte. The physicochemical properties of EG solutions, namely, viscosity and conductivity, were determined for different Ni(II) concentrations. From cyclic voltammetry, it was found that in the absence of the supporting electrolyte, the cathodic efficiency of Ni electrodeposition is about 88%; however, in the presence of the supporting electrolyte, the cathodic efficiency was reduced to 26% due to water (added along the supporting electrolyte) reduction on the growing surfaces of Ni nuclei. This side reaction produced both H2(g) and OH- ions. Part of the former was occluded in Ni, and the latter reacted with Ni(II) ions in EG forming passivation products such as Ni(OH)2(s). Moreover, it was shown that metallic Ni did not catalyze the EG reduction in this system. From chronoamperometry, it was shown that in the absence of the supporting electrolyte, the amount of Ni electrodeposits, for the same overpotential and time, was higher than in the presence of the supporting electrolyte. The j-t plots recorded in the latter system, for different Ni(II) concentrations, were analyzed using a model which involves a contribution due to multiple 3D nucleation and diffusion-controlled growth and another related to the simultaneous reduction of water on the Ni nuclei growing surfaces. This model allows not only the quantification of the Ni nucleation kinetic parameters but also the effective deconvolution of the individual contributions to the total current; thus, from the integration of the j-t plots of these contributions, it was demonstrated that the charge amount of each process depends on the Ni(II) concentration. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, micro-Raman spectroscopy, and X-ray photoelectron spectroscopy revealed the presence of pure Ni nanoparticles electrodeposited on the electrode surface. Moreover, X-ray measurements verified the formation of a high-crystallinity face-centered cubic structure with preferred orientation growth on the ⟨111⟩ direction, which were also corroborated by the magnetic measurement performed in a physical property measurement system.
Collapse
Affiliation(s)
- Thuy-Linh Phi
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Son Tang Nguyen
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi 12116, Vietnam
| | - Nguyen Van Hieu
- Faculty of Electrical and Electronic Engineering, Phenikaa Institute for Advanced Study, Phenikaa University, Yen Nghia, Ha-Dong District, Hanoi 12116, Vietnam
| | - Manuel Palomar-Pardavé
- Departamento de Materiales, Universidad Autónoma Metropolitana-Azcapotzalco, Reynosa-Tamaulipas, México City 02200, C.P., Mexico
| | - Perla Morales-Gil
- Laboratorio de Caracterización de Materiales Sintéticos y Naturales, Instituto Mexicano del Petróleo, Ciudad de México 07730, C.P., Mexico
| | - Tu Le Manh
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi 12116, Vietnam.,Phenikaa Research and Technology Institute (PRATI), A&A Green Phoenix Group, 167 Hoang Ngan, Hanoi 10000, Vietnam
| |
Collapse
|
20
|
Liu S, Tan Z, Wu J, Mao B, Yan J. Electrochemical interfaces in ionic liquids/deep eutectic solvents incorporated with water: A review. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Shuai Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiedu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen Fujian P. R. China
| |
Collapse
|
21
|
Electrodeposition of Ni–Fe alloy from a choline chloride-containing ionic liquid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05137-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Gera R, Moll CJ, Bhattacherjee A, Bakker HJ. Water-Induced Restructuring of the Surface of a Deep Eutectic Solvent. J Phys Chem Lett 2022; 13:634-641. [PMID: 35020401 PMCID: PMC8785180 DOI: 10.1021/acs.jpclett.1c03907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
We study the molecular-scale structure of the surface of Reline, a DES made from urea and choline chloride, using heterodyne-detected vibrational sum frequency generation (HD-VSFG). Reline absorbs water when exposed to the ambient atmosphere, and following structure-specific changes at the Reline/air interface is crucial and difficult. For Reline (dry, 0 wt %, w/w, water) we observe vibrational signatures of both urea and choline ions at the surface. Upon increase of the water content, there is a gradual depletion of urea from the surface, an enhanced alignment, and an enrichment of the surface with choline cations, indicating surface speciation of ChCl. Above 40% w/w water content, choline cations abruptly deplete from the surface, as evidenced by the decrease of the vibrational signal of the -CH2- groups of choline and the rapid rise of a water signal. Above 60% w/w water content, the surface spectrum of aqueous Reline becomes indistinguishable from that of neat water.
Collapse
Affiliation(s)
- Rahul Gera
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | | | | | - Huib J. Bakker
- AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
23
|
Kivelä H, Salomäki M, Vainikka P, Mäkilä E, Poletti F, Ruggeri S, Terzi F, Lukkari J. Effect of Water on a Hydrophobic Deep Eutectic Solvent. J Phys Chem B 2022; 126:513-527. [PMID: 35001628 PMCID: PMC8785191 DOI: 10.1021/acs.jpcb.1c08170] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/28/2021] [Indexed: 12/15/2022]
Abstract
Deep eutectic solvents (DESs) formed by hydrogen bond donors and acceptors are a promising new class of solvents. Both hydrophilic and hydrophobic binary DESs readily absorb water, making them ternary mixtures, and a small water content is always inevitable under ambient conditions. We present a thorough study of a typical hydrophobic DES formed by a 1:2 mole ratio of tetrabutyl ammonium chloride and decanoic acid, focusing on the effects of a low water content caused by absorbed water vapor, using multinuclear NMR techniques, molecular modeling, and several other physicochemical techniques. Already very low water contents cause dynamic nanoscale phase segregation, reduce solvent viscosity and fragility, increase self-diffusion coefficients and conductivity, and enhance local dynamics. Water interferes with the hydrogen-bonding network between the chloride ions and carboxylic acid groups by solvating them, which enhances carboxylic acid self-correlation and ion pair formation between tetrabutyl ammonium and chloride. Simulations show that the component molar ratio can be varied, with an effect on the internal structure. The water-induced changes in the physical properties are beneficial for most prospective applications but water creates an acidic aqueous nanophase with a high halide ion concentration, which may have chemically adverse effects.
Collapse
Affiliation(s)
- Henri Kivelä
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| | - Mikko Salomäki
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| | - Petteri Vainikka
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Ermei Mäkilä
- Department
of Physics and Astronomy, University of
Turku, FI-20014 Turku, Finland
- Doctoral
School for Chemical and Physical Sciences, University of Turku, FI-20014 Turku, Finland
| | - Fabrizio Poletti
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Stefano Ruggeri
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Fabio Terzi
- Electrochemical
Sensors Group, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via Giuseppe Campi, 103, I-41125 Modena, Italy
| | - Jukka Lukkari
- Department
of Chemistry, University of Turku, FI-20014 Turku, Finland
- Turku
University Centre for Surfaces and Materials (MatSurf), FI-20014 Turku, Finland
| |
Collapse
|
24
|
Zuo J, Ma P, Geng S, Kong Y, Li X, Fan Z, Zhang Y, Dong A, Zhou Q. Optimization of the extraction process of flavonoids from Trollius ledebouri with natural deep eutectic solvents. J Sep Sci 2021; 45:717-727. [PMID: 34845820 DOI: 10.1002/jssc.202100802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
In recent years, natural deep eutectic solvents have been favored greatly due to their environment friendly, mild biological toxicity and simple biodegradability. Natural deep eutectic solvents gradually applied for the extracting bioactive compounds from natural products efficiently. In this study, 20 natural deep eutectic solvents were prepared and their physical and chemical properties were tested. The ultrasonic-assisted extraction method was used to extract flavonoids from Trollius ledebouri and high-performance liquid chromatography-ultraviolet was applied to examine two main bioactive flavonoids (orientin and vitexin). Compared with traditional solvents (water and 60% ethanol solution), natural deep eutectic solvents composed of L(-)-proline and levulinic acid (molar ratio 1:2) show a super extraction efficiency. On this basis, the response surface method was used to optimize the extraction temperature, extraction time, water contents, and solid-liquid ratio. As a consequence, the extraction temperature 60℃, extraction time 18 min, water content 14% (v/v), and the solid-liquid ratio 48 mL·g-1 were chosen as the best extraction process. This study shows that natural deep eutectic solvents can effectively extract flavonoids from T. ledebouri, laying a foundation for the further application of natural deep eutectic solvents to extract bioactive compounds from natural products.
Collapse
Affiliation(s)
- Jiale Zuo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Shuqin Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Zhaosheng Fan
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Qun Zhou
- Department of Chemistry, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
25
|
Busato M, Del Giudice A, Di Lisio V, Tomai P, Migliorati V, Gentili A, Martinelli A, D’Angelo P. Fate of a Deep Eutectic Solvent upon Cosolvent Addition: Choline Chloride-Sesamol 1:3 Mixtures with Methanol. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12252-12261. [PMID: 34552826 PMCID: PMC8442355 DOI: 10.1021/acssuschemeng.1c03809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/07/2021] [Indexed: 06/13/2023]
Abstract
The changes upon methanol (MeOH) addition in the structural arrangement of the highly eco-friendly deep eutectic solvent (DES) formed by choline chloride (ChCl) and sesamol in 1:3 molar ratio have been studied by means of attenuated total reflection Fourier transform infrared spectroscopy, small- and wide-angle X-ray scattering (SWAXS), and molecular dynamics simulations. The introduction of MeOH into the DES promotes the increase of the number of Cl-MeOH hydrogen bonds (HBs) through the replacement of sesamol and choline molecules from the chloride anion coordination sphere. This effect does not promote the sesamol-sesamol, choline-choline, and sesamol-choline interactions, which remain as negligible as in the pure DES. Differently, the displaced sesamol and choline molecules are solvated by MeOH, which also forms HBs with other MeOH molecules, so that the system arranges itself to keep the overall amount of HBs maximized. SWAXS measurements show that this mechanism is predominant up to MeOH/DES molar ratios of 20-24, while after this ratio value, the scattering profile is progressively diluted in the cosolvent background and decreases toward the signal of pure MeOH. The ability of MeOH to interplay with all of the DES components produces mixtures with neither segregation of the components at nanoscale lengths nor macroscopic phase separation even for high MeOH contents. These findings have important implications for application purposes since the understanding of the pseudophase aggregates formed by a DES with a dispersing cosolvent can help in addressing an efficient extraction procedure.
Collapse
Affiliation(s)
- Matteo Busato
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Del Giudice
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Di Lisio
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Pierpaolo Tomai
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Valentina Migliorati
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Alessandra Gentili
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Andrea Martinelli
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| | - Paola D’Angelo
- Department of Chemistry, University of Rome ”La Sapienza”, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
26
|
Serrà A, Sebastián-Pascual P, Landa-Castro M, Gómez E. Electrochemical assessment of high active area of cobalt deposited in deep eutectic solvent. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. ENERGIES 2021. [DOI: 10.3390/en14175440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review summarizes the current status, operating principles, and recent advances in high-temperature polymer electrolyte membranes (HT-PEMs), with a particular focus on the recent developments, technical challenges, and commercial prospects of the HT-PEM fuel cells. A detailed review of the most recent research activities has been covered by this work, with a major focus on the state-of-the-art concepts describing the proton conductivity and degradation mechanisms of HT-PEMs. In addition, the fuel cell performance and the lifetime of HT-PEM fuel cells as a function of operating conditions have been discussed. In addition, the review highlights the important outcomes found in the recent literature about the HT-PEM fuel cell. The main objectives of this review paper are as follows: (1) the latest development of the HT-PEMs, primarily based on polybenzimidazole membranes and (2) the latest development of the fuel cell performance and the lifetime of the HT-PEMs.
Collapse
|
28
|
Bide Y, Fashapoyeh MA, Shokrollahzadeh S. Structural investigation and application of Tween 80-choline chloride self-assemblies as osmotic agent for water desalination. Sci Rep 2021; 11:17068. [PMID: 34426591 PMCID: PMC8382744 DOI: 10.1038/s41598-021-96199-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022] Open
Abstract
Forward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.
Collapse
Affiliation(s)
- Yasamin Bide
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 15815-3538, Tehran, Iran
| | - Marzieh Arab Fashapoyeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 15815-3538, Tehran, Iran
| | - Soheila Shokrollahzadeh
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box: 15815-3538, Tehran, Iran.
| |
Collapse
|
29
|
Singaram S, Ramakrishnan K, Periasamy S. Quantification of sweat urea in diabetes using electro-optical technique. Physiol Meas 2021; 42. [PMID: 34384074 DOI: 10.1088/1361-6579/ac1d3a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/12/2021] [Indexed: 11/11/2022]
Abstract
Diabetic kidney disease is one result of prolonged elevation in blood glucose level. When insulin secretion reduces, serum urea level increases and vice versa is also true. Hence monitoring urea level in blood is important in diabetic subjects. Any change in serum urea will have impact on sweat urea concentration. Attempted in this study is to develop an optical device for quantifying sweat urea concentration. It uses light sources, light sensors with time and intensity controlled operation and suitable calibration algorithm. Sweat samples are collected from group of volunteers belonging to control and diabetes. After sedimentation and suitable pre-processing, sweat samples are irradiated by primary colour light sources operated sequentially. Reflected light intensity is used to compute the sweat urea concentration. Obtained results when compared with standard lab techniques like UV-visible absorption spectroscopy and colorimeter, correlation of 98% with error less than 3% is achieved. Results also demonstrate elevation in sweat urea level with years of diabetes, in spite of serum urea level being within limits. We extended the study on kidney disease subject and observed the influence of blood glucose on urea. Therefore the proposed device can be used to measure sweat urea periodically so that any change can be observed at an early stage and diabetic nephropathy could be prevented at large.
Collapse
Affiliation(s)
- Sudha Singaram
- Biomedical Engineering , Rajalakshmi Engineering College, Rajalakshmi Nagar, thnadalam, chennai, Chennai, 602105, INDIA
| | - Kalpana Ramakrishnan
- Biomedical Engineering, Rajalakshmi Engineering College, Thandalam, Chennai, Tamil nadu, 602105, INDIA
| | - Soundararajan Periasamy
- Department of Nephrology, Saveetha University Saveetha Medical College and Hospital, Chennai, Tamil Nadu, INDIA
| |
Collapse
|
30
|
Alfurayj I, Fraenza CC, Zhang Y, Pandian R, Spittle S, Hansen B, Dean W, Gurkan B, Savinell R, Greenbaum S, Maginn E, Sangoro J, Burda C. Solvation Dynamics of Wet Ethaline: Water is the Magic Component. J Phys Chem B 2021; 125:8888-8901. [PMID: 34339215 DOI: 10.1021/acs.jpcb.1c04629] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The past two decades witnessed the development of a new type of solvent system, named deep eutectic solvents, which have become increasingly investigated because they offer new and potentially favorable properties, such as wide tunability in electrochemical, mechanical, and transport properties. Deep eutectic solvent (DES) systems are composed of at least one main solvent and an additional component that is meant to interrupt the original solvent/solvent interactions, thereby introducing lower melting points relative to each individual component. Ethaline (a 1:2 mol % mixture of choline chloride and ethylene glycol) is one of the most promising DES systems. However, it is also known to be very hygroscopic, which is a constant concern because water absorption during the use of ethaline alters its properties. Within this work, we demonstrate that modest amounts of water addition (1-10%) to ethaline are of little concern for practical use and can even lead to performance improvements, such as accelerated relaxation and solvation. In contrast, very small amounts of <1% of water lead to additional slowing of the solvent response. Thus, we suggest that the attempt to dry ethaline below 1% moisture is rather counterproductive if one attempts to achieve effective solvation and charge transport properties from DESs. This study investigates the effect of water content on the diffusional relaxation dynamics of ethaline. A set of independent spectroscopic experiments and computational simulations are aimed to provide insight into the solvent response of the DES system using femtosecond time-resolved absorption spectroscopy (fs-TA), broadband dielectric spectroscopy (BDS), nuclear magnetic resonance (NMR) diffusometry and broadband relaxometry, and molecular dynamics simulations (MDS) on ethaline with 0, 0.1, 1, 10, and 28.5 wt % added water. For dry ethaline, we identify choline chloride as the rate-limiting solvation component in ethaline. However, the role of the solvent components changes gradually as water is added. We provide quantitative solvent relaxation rates using the different presented time-resolved spectroscopic techniques and find remarkable agreement between them. Based on the solvent relaxation rates and combined with MDS, we develop a molecular understanding of the individual solvent components and their interactions in dry and wet ethaline with varying amounts of water content.
Collapse
Affiliation(s)
- Ibrahim Alfurayj
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Carla Cecilia Fraenza
- Department of Physics and Astronomy, Hunter College, New York, New York 10065, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Rathiesh Pandian
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bryce Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - William Dean
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Robert Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Steve Greenbaum
- Department of Physics and Astronomy, Hunter College, New York, New York 10065, United States
| | - Edward Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
31
|
Zuo J, Geng S, Kong Y, Ma P, Fan Z, Zhang Y, Dong A. Current Progress in Natural Deep Eutectic Solvents for the Extraction of Active Components from Plants. Crit Rev Anal Chem 2021; 53:177-198. [PMID: 34324395 DOI: 10.1080/10408347.2021.1946659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the last decade, natural deep eutectic solvents (NADESs) have gained more and more attention due to their green, convenient preparation, low toxicity and biodegradability. It is widely used in various fields, especially in the extraction of active components from plants, formed by the combination of hydrogen bond donors (HBDs) and hydrogen bond acceptors (HBAs) at a certain condition. In this article, six preparation methods of NADESs were summarized and the interactions that occur in the eutectic behavior of NADES including hydrogen bonding, electrostatic interaction and van der Waals force were also reviewed. What is more, its significant extraction capacity on flavonoids, phenols, alkaloids and plant pigments endows its extensive applications in the extraction of active components from medicinal plants. Extraction factors including solvents properties (viscosity, carbon chain length, number of hydroxyl groups), extraction condition (water content, extraction temperature, extraction time, solid-liquid ratio), extraction method and recycling method were discussed. In addition, NADESs can also be combined with other technologies, like molecular imprinting, monolithic column, to achieve efficient and specific extraction of active ingredients. Further systematic studies on the biodegradability and biotoxicity are put forward to be urgent.
Collapse
Affiliation(s)
- Jiale Zuo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Shuqin Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Zhaosheng Fan
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co.,Ltd, Tongzhou Dis, Beijing, China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.,Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, China
| |
Collapse
|
32
|
Kuttiani Ali J, Abi Jaoude M, Alhseinat E. Polyimide ultrafiltration membrane embedded with reline-functionalized nanosilica for the remediation of pharmaceuticals in water. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Ashok Kumar S, Subathra K, Srinivasan G, Jayaraman S, Gnanasekaran G, Kanimozhi G, Govindaradjane S. Impact of Tween‐80 and Deep Eutectic Solvent‐Based Micellar‐Enhanced Ultrafiltration in Dairy Wastewater Treatment. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S. Ashok Kumar
- Pondicherry Engineering College Department of Chemical Engineering 605014 Puducherry India
| | - K. Subathra
- Pondicherry Engineering College Department of Chemical Engineering 605014 Puducherry India
| | - G. Srinivasan
- Pondicherry Engineering College Department of Chemical Engineering 605014 Puducherry India
| | - Sundaramurthy Jayaraman
- Ngee Ann Polytechnic Environmental & Water Technology Centre of Innovation 599489 Singapore Singapore
| | - G. Gnanasekaran
- Pondicherry Engineering College Department of Chemical Engineering 605014 Puducherry India
| | - G. Kanimozhi
- Pondicherry University Department of Physics Puducherry India
| | - S. Govindaradjane
- Pondicherry Engineering College Department of Civil Engineering Puducherry India
| |
Collapse
|
34
|
Akbarian M, Sanchooli E, Oveisi AR, Daliran S. Choline chloride-coated UiO-66-Urea MOF: A novel multifunctional heterogeneous catalyst for efficient one-pot three-component synthesis of 2-amino-4H-chromenes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
35
|
Abstract
Deep eutectic solvents (DESs) are formed by a hydrogen bond donor and an acceptor. The hydrogen bond interactions between these two components significantly depress the melting temperature of the mixture. DESs have been used as an alternative for organic solvents in various branches of the chemical industry. Many DESs are very hygroscopic and water is known to change the properties of DESs, but there has neven been a systematic study performed on the deliquesence behavior of DESs. Therefore, this study investigated the thermal and deliquescent behavior of four DESs. The DES mixtures were stored in desiccators at different relative humidities (RH) to investigate the critical RH (RH0) for deliquescence. It was found that, due to the formation of a eutonic mixture, the RH0 to induce deliquescence for a given DES mixture was lower compared to the individual components comprising the DES. The results showed that, even though all investigated DESs had eutectic melting temperatures above room temperature, but due to the low RH0, they were able to appear liquid at room temperature under ambient conditions. The eutonic and eutectic compositions were identified at different compositions for the DESs. The results emphasize that great care must be taken to control the process and storage conditions for DESs.
Collapse
|
36
|
de Juan Mora B, Filipe L, Forte A, Santos MM, Alves C, Teodoro F, Pedrosa R, Ribeiro Carrott M, Branco LC, Gago S. Boosting Antimicrobial Activity of Ciprofloxacin by Functionalization of Mesoporous Silica Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13020218. [PMID: 33562597 PMCID: PMC7914840 DOI: 10.3390/pharmaceutics13020218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 12/24/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNs) are very promising nanomaterials for treating bacterial infections when combined with pharmaceutical drugs. Herein, we report the preparation of two nanomaterials based on the immobilization of ciprofloxacin in mesoporous silica nanoparticles, either as the counter-ion of the choline derivative cation (MSN-[Ch][Cip]) or via anchoring on the surface of amino-group modified MSNs via an amide bond (MSN-Cip). Both nanomaterials were characterized by TEM, FTIR and solution 1H NMR spectroscopies, elemental analysis, XRD and N2 adsorption at 77 K in order to provide the desired structures. No cytotoxicity from the prepared mesoporous nanoparticles on 3T3 murine fibroblasts was observed. The antimicrobial activity of the nanomaterials was determined against Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Klebsiella pneumoniae) bacteria and the results were promising against S. aureus. In the case of B. subtilis, both nanomaterials exhibited higher antimicrobial activity than the precursor [Ch][Cip], and in the case of K. pneumoniae they exhibited higher activity than neutral ciprofloxacin.
Collapse
Affiliation(s)
- Blanca de Juan Mora
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Luís Filipe
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Andreia Forte
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Miguel M. Santos
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
| | - Celso Alves
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Fernando Teodoro
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Rui Pedrosa
- MARE—Marine and Environmental Sciences Centre, Politécnico de Leiria, Avenida Porto de Pesca, 2520-630 Peniche, Portugal; (C.A.); (F.T.); (R.P.)
| | - Manuela Ribeiro Carrott
- Centro de Química de Évora, LAQV-REQUIMTE, Instituto de Investigação e Formação Avançada, Departamento de Química, Escola de Ciências e Tecnologia, Colégio Luís António Verney, Universidade de Évora, 7000-671 Évora, Portugal;
| | - Luís C. Branco
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| | - Sandra Gago
- LAQV-REQUIMTE, Departamento de Química da Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal; (B.d.J.M.); (L.F.); (A.F.); (M.M.S.)
- Correspondence: (L.C.B.); (S.G.)
| |
Collapse
|
37
|
Lu Y, Liu R, Hang XC, Young DJ. Biocompatible, flexible and conductive polymers prepared by biomass-derived ionic liquid treatment. Polym Chem 2021. [DOI: 10.1039/d1py00064k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a promising, biocompatible conductive polymer for bio-integrated electronics with health-care applications.
Collapse
Affiliation(s)
- Yannan Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- National Jiangsu Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- China
- College of Engineering
| | - Ruqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- National Jiangsu Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)
- National Jiangsu Synergetic Innovation Center for Advanced Materials
- Nanjing Tech University
- China
| | - David James Young
- College of Engineering
- Information Technology and Environment
- Charles Darwin University
- Australia
| |
Collapse
|
38
|
Wagata H, Harada G, Nakashima E, Asaga M, Watanabe T, Tanaka Y, Tada M, Yubuta K. Formation of double-cone-shaped ZnO mesocrystals by addition of ethylene glycol to ZnO dissolved choline chloride–urea deep eutectic solvents and observation of their manners of growth. CrystEngComm 2021. [DOI: 10.1039/d1ce01049b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ZnO mesocrystals were grown in ZnO dissolved CU-DESs with addition of ethylene glycol. Their manner of growth was observed and discussed.
Collapse
Affiliation(s)
- Hajime Wagata
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Ginji Harada
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Eriko Nakashima
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Motoki Asaga
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Tomoaki Watanabe
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Masaru Tada
- Materials Analysis Division, Open Facility Center, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Kunio Yubuta
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
39
|
Malik A, Kashyap HK. Heterogeneity in hydrophobic deep eutectic solvents: SAXS prepeak and local environments. Phys Chem Chem Phys 2021; 23:3915-3924. [DOI: 10.1039/d0cp05407k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The observation of the prepeak in the simulated total X-ray scattering structure function (S(q)) reveals the presence of intermediate-range structural heterogeneity in hydrophobic deep eutectic solvents.
Collapse
Affiliation(s)
- Akshay Malik
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- India
| | - Hemant K. Kashyap
- Department of Chemistry
- Indian Institute of Technology Delhi
- Hauz Khas
- India
| |
Collapse
|
40
|
Outis M, Leal JP, Avó J, Monteiro B, Pereira CCL. A Europium(III) Complex Embedded in a Polysulfone Host Matrix: A Flexible Film with Temperature-Responsive Ratiometric Behaviour. Chempluschem 2020; 85:2629-2635. [PMID: 33274839 DOI: 10.1002/cplu.202000710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/26/2020] [Indexed: 11/10/2022]
Abstract
An emissive europium(III) complex [C2 mim][Eu(fod)4 ] (1; C2 mim=1-ethyl-3-methyl-imidazolium; fod=1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate) was prepared. The complex shows ratiometric thermal behaviour up to 155 °C. These unusual temperature-dependent properties arise from a solid-solid phase transition that promotes increased contact between the anion and the cation, affecting the emission profile of the emissive anion in two different ratiometric relations. A ultrabright and flexible emissive photopolymer film was obtained using polysulfone (PSU) as the host matrix of 10 % (w/w) of 1, that also induced changes on the lanthanide emissive profile with temperature. A temperature-responsive luminescent film 1/PSU is sensitivr to heating between 100 and 155 °C. Also, the emission lifetime of 1 was not affected by confinement in PSU, while its emission quantum yield was reduced from 82 to 59 %.
Collapse
Affiliation(s)
- Mani Outis
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - João P Leal
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela, Portugal
| | - João Avó
- Institute for Bioengineering and Biosciences (IBB), Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Bernardo Monteiro
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela, Portugal
| | - Cláudia C L Pereira
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
41
|
Bernasconi R, Panzeri G, Firtin G, Kahyaoglu B, Nobili L, Magagnin L. Electrodeposition of ZnNi Alloys from Choline Chloride/Ethylene Glycol Deep Eutectic Solvent and Pure Ethylene Glycol for Corrosion Protection. J Phys Chem B 2020; 124:10739-10751. [PMID: 33174746 PMCID: PMC7735728 DOI: 10.1021/acs.jpcb.0c04784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The present work follows the trend
to develop non-aqueous electrolytes
for the deposition of corrosion resistant ZnNi alloys. It investigates
the use of the choline chloride/ethylene glycol (1:2 molar ratio)
eutectic mixture and of pure ethylene glycol as solvents for ZnNi
electroplating. The electrochemical behavior of Zn and Ni is investigated
via cyclic voltammetry, and potentiostatic ZnNi deposition is performed.
Ni content is found to be precisely tunable in the 10–20% wt
range, which presents the highest industrial interest for corrosion
protection. ZnNi coatings obtained are characterized from the morphological
and phase composition point of view. Evidence of the formation of
a metastable γ ZnNi phase is observed for both choline chloride/ethylene
glycol and pure ethylene glycol. Finally, potentiodynamic corrosion
tests are performed to assess their corrosion properties.
Collapse
Affiliation(s)
- R Bernasconi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy
| | - G Panzeri
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy
| | - G Firtin
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy
| | - B Kahyaoglu
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy
| | - L Nobili
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy
| | - L Magagnin
- Dipartimento di Chimica, Materiali e Ingegneria Chimica Giulio Natta, Via Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
42
|
Tan Z, Peng Y, Liu J, Yang Y, Zhang Z, Chen Z, Mao B, Yan J. An In Situ Scanning Tunneling Microscopy Study on the Electrochemical Interface between Au(111) and Ethaline Deep Eutectic Solvent. ChemElectroChem 2020. [DOI: 10.1002/celc.202001264] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zhuo Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Yu Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Jingli Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Research Institution College of Physical Science and Technology Xiamen University Xiamen 361005 China
| | - Zhisen Zhang
- Research Institute for Biomimetics and Soft Matter Fujian Provincial Key Laboratory for Soft Functional Materials Research Institution College of Physical Science and Technology Xiamen University Xiamen 361005 China
| | - Zhaobin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Bingwei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| | - Jiawei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China E-mail: mailto
| |
Collapse
|
43
|
Chotkowski M, Połomski D, Czerwinski K. Potential Application of Ionic Liquids for Electrodeposition of the Material Targets for Production of Diagnostic Radioisotopes. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5069. [PMID: 33182812 PMCID: PMC7697952 DOI: 10.3390/ma13225069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 12/28/2022]
Abstract
An overview of the reported electrochemistry studies on the chemistry of the element for targets for isotope production in ionic liquids (ILs) is provided. The majority of investigations have been dedicated to two aspects of the reactive element chemistry. The first part of this review presents description of the cyclotron targets properties, especially physicochemical characterization of irradiated elements. The second part is devoted to description of the electrodeposition procedures leading to obtain elements or their alloys coatings (e.g., nickel, uranium) as the targets for cyclotron and reactor generation of the radioisotopes. This review provides an evaluation of the role ILs can have in the production of isotopes.
Collapse
Affiliation(s)
- Maciej Chotkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Damian Połomski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | | |
Collapse
|
44
|
Landa-Castro M, Sebastián P, Giannotti M, Serrà A, Gómez E. Electrodeposition of nanostructured cobalt films from a deep eutectic solvent: Influence of the substrate and deposition potential range. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Khatri M, Khatri Z, El-Ghazali S, Hussain N, Qureshi UA, Kobayashi S, Ahmed F, Kim IS. Zein nanofibers via deep eutectic solvent electrospinning: tunable morphology with super hydrophilic properties. Sci Rep 2020; 10:15307. [PMID: 32943717 PMCID: PMC7499184 DOI: 10.1038/s41598-020-72337-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/10/2020] [Indexed: 12/01/2022] Open
Abstract
The use of organic solvents for the preparation of nanofibers are challenged due to their volatile and hazardous behavior. Recently deep eutectic solvents (DES) are widely recognized as non-volatile and non-hazardous solvents which never been utilized directly for nanofabrication via electrospinning. Here, we present the preparation of Zein nanofibers using deep eutectic solvents (DES-Zein). The DES-Zein nanofibers were produced at an optimized polymer concentration of 45% (w/w) with pH 7.3 and electroconductivity 233 mS cm-1. DES-Zein nanofibers showed aligned to tweed like cedar leaf morphology tuned by varying the spreading angle from 0° to 90°. In contrast to hydrophobic conventional Zein nanofibers, DES-Zein nanofibers showed super hydrophilic character and about 200 nm finer average diameter. The proposed method of preparing Zein nanofibers using DES opens a new door to continuous electrospinning with tunable morphology, having potential to be used for environmental and biomedical applications.
Collapse
Affiliation(s)
- Muzamil Khatri
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Zeeshan Khatri
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan.
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro, 76060, Sindh, Pakistan.
| | - Sofia El-Ghazali
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Nadir Hussain
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan
| | - Umair Ahmed Qureshi
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro, 76060, Sindh, Pakistan
| | - Shunichi Kobayashi
- Department of Biomedical Engineering, Graduate School of Science and Technology, Shinshu University, Ueda, Nagano, 386-8567, Japan
| | - Farooq Ahmed
- Center of Excellence in Nanotechnology and Materials, Mehran University of Engineering and Technology, Jamshoro, 76060, Sindh, Pakistan
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano, 386-8567, Japan.
| |
Collapse
|
46
|
Lukaczynska-Anderson M, Mamme MH, Ceglia A, Van den Bergh K, De Strycker J, De Proft F, Terryn H, Ustarroz J. The role of hydrogen bond donor and water content on the electrochemical reduction of Ni 2+ from solvents - an experimental and modelling study. Phys Chem Chem Phys 2020; 22:16125-16135. [PMID: 32638784 DOI: 10.1039/d0cp02408b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deep Eutectic Solvents (DESs) are hygroscopic liquids composed of a hydrogen bond donor (HBD) and acceptor (HBA). Their physical, chemical and electrochemical properties can be tailored to use them as solvents for different applications, i.e. electrodeposition, catalysis, extraction, etc. This can be done by changing the HBD, as well by adding water. However, the interrelated influence of H2O and HBD on the structure of the electrolyte, and on the behavior of the active species is not fully understood. In this work, we select nickel electrodeposition as a case study and we combine electrochemical techniques (cyclic voltammetry, chronoamperometry) with UV-vis spectroscopy and molecular dynamics to understand the influence of water and HBD on the electrochemical behaviour of DESs. The unique combination of these different experimental and modelling techniques provides new insights into the field. The addition of H2O changes, not only the interactions between the constituents of the liquid, but also the coordination of metal cations, which is reflected in the electrochemical performance of different DESs. More importantly, we show that, in the presence of very little (between 0.1 wt% and 2.8 wt%) and high (>4.5 wt%) water contents, DESs behave differently, and the changes in their electrochemical behavior are caused by both the complexation of metal cations and the electrolyte transport properties.
Collapse
Affiliation(s)
- Monika Lukaczynska-Anderson
- Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Mesfin Haile Mamme
- Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium. and Vrije Universiteit Brussel, Eenheid Algemene Chemie (ALGC), Pleinlaan 2, 1050 Brussels, Belgium
| | - Andrea Ceglia
- Vrije Universiteit Brussel, Brussels Photonic Team (B-PHOT), Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | - Frank De Proft
- Vrije Universiteit Brussel, Eenheid Algemene Chemie (ALGC), Pleinlaan 2, 1050 Brussels, Belgium
| | - Herman Terryn
- Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium.
| | - Jon Ustarroz
- Vrije Universiteit Brussel, Research Group Electrochemical and Surface Engineering (SURF), Pleinlaan 2, 1050 Brussels, Belgium. and Université Libre de Bruxelles, Chemistry of Surfaces, Interfaces and Nanomaterials (ChemSIN), Boulevard du Triomphe 2, 1050 Brussels, Belgium.
| |
Collapse
|
47
|
Observation of Potential Contaminants in Processed Biomass Using Fourier Transform Infrared Spectroscopy. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124345] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With rapidly increased interests in biomass, diverse chemical and biological processes have been applied for biomass utilization. Fourier transform infrared (FTIR) analysis has been used for characterizing different types of biomass and their products, including natural and processed biomass. During biomass treatments, some solvents and/or catalysts can be retained and contaminate biomass. In addition, contaminants can be generated by the decomposition of biomass components. Herein, we report FTIR analyses of a series of contaminants, such as various solvents, chemicals, enzymes, and possibly formed degradation by-products in the biomass conversion process along with poplar biomass. This information helps to prevent misunderstanding the FTIR analysis results of the processed biomass.
Collapse
|
48
|
Gutiérrez A, Alcalde R, Atilhan M, Aparicio S. Insights on Betaine + Lactic Acid Deep Eutectic Solvent. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00762] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
| | - Rafael Alcalde
- Department of Chemistry, University of Burgos, Burgos, 09001, Spain
| | - Mert Atilhan
- Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, Michigan 49008-5462, United States
| | | |
Collapse
|
49
|
Sulphur-induced electrochemical synthesis of manganese nanoflakes from choline chloride/ethylene glycol-based deep eutectic solvent. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Sapir L, Harries D. Restructuring a Deep Eutectic Solvent by Water: The Nanostructure of Hydrated Choline Chloride/Urea. J Chem Theory Comput 2020; 16:3335-3342. [PMID: 32223260 DOI: 10.1021/acs.jctc.0c00120] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deep eutectic mixtures are a promising sustainable and diverse class of tunable solvents that hold great promise for various green chemical and technological processes. Many deep eutectic solvents (DES) are hygroscopic and find use in applications with varying extents of hydration, hence urging a profound understanding of changes in the nanostructure of DES with water content. Here, we report on molecular dynamics simulations of the quintessential choline chloride-urea mixture, using a newly parametrized force field with scaled charges to account for physical properties of hydrated DES mixtures. These simulations indicate that water changes the nanostructure of solution even at very low hydration. We present a novel approach that uses convex constrained analysis to dissect radial distribution functions into base components representing different modes of local association. Specifically, DES mixtures can be deconvoluted locally into two dominant competing nanostructures, whose relative prevalence (but not their salient structural features) change with added water over a wide concentration range, from dry up to ∼30 wt % hydration. Water is found to be associated strongly with several DES components but remarkably also forms linear bead-on-string clusters with chloride. At high water content (beyond ∼50 wt % of water), the solution changes into an aqueous electrolyte-like mixture. Finally, the structural evolution of the solution at the nanoscale with extent of hydration is echoed in the DES macroscopic material properties. These changes to structure, in turn, should prove important in the way DES acts as a solvent and to its interactions with additive components.
Collapse
Affiliation(s)
- Liel Sapir
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Daniel Harries
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, and The Fritz Haber Research Center, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|