1
|
Ijaz M, Hasan I, Chaudhry TH, Huang R, Zhang L, Hu Z, Tan Q, Guo B. Bacterial derivatives mediated drug delivery in cancer therapy: a new generation strategy. J Nanobiotechnology 2024; 22:510. [PMID: 39182109 PMCID: PMC11344338 DOI: 10.1186/s12951-024-02786-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cancer is measured as a major threat to human life and is a leading cause of death. Millions of cancer patients die every year, although a burgeoning number of researchers have been making tremendous efforts to develop cancer medicine to fight against cancer. Owing to the complexity and heterogeneity of cancer, lack of ability to treat deep tumor tissues, and high toxicity to the normal cells, it complicates the therapy of cancer. However, bacterial derivative-mediated drug delivery has raised the interest of researchers in overcoming the restrictions of conventional cancer chemotherapy. In this review, we show various examples of tumor-targeting bacteria and bacterial derivatives for the delivery of anticancer drugs. This review also describes the advantages and limitations of delivering anticancer treatment drugs under regulated conditions employing these tumor-targeting bacteria and their membrane vesicles. This study highlights the substantial potential for clinical translation of bacterial-based drug carriers, improve their ability to work with other treatment modalities, and provide a more powerful, dependable, and distinctive tumor therapy.
Collapse
Affiliation(s)
- Muhammad Ijaz
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Ikram Hasan
- School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Tamoor Hamid Chaudhry
- Antimicrobial Resistance (AMR) Containment & Infection Prevention & Control (IPC) Program, National Institute of Health, Chak Shahzad, Islamabad, Pakistan
| | - Rui Huang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Lan Zhang
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China
| | - Ziwei Hu
- Institute of Otolaryngology Head and Neck Surgery, Guangzhou Red Cross Hospital of Jinan University, Guangzhou, 510282, China.
| | - Qingqin Tan
- Department of Blood Transfusion, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, 330000, China.
| | - Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Xiong Y, Yuan H, Olvera de la Cruz M. Janus magnetoelastic membrane swimmers. SOFT MATTER 2023; 19:6721-6730. [PMID: 37622382 DOI: 10.1039/d3sm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Soft swimming microrobots have attracted considerable attention due to their potential applications in diverse fields ranging from biomedicines to environmental remediation. The locomotion control is of importance to the research of micromachines and microrobots. Inspired by the motility strategies of living microorganisms, such as flagella, cilia, and euglenoids, we focus on propulsion mechanisms with a design of Janus magnetoelastic crystalline membrane microswimmers actuated by time-varying magnetic fields. Such a Janus swimmer consists of a ferromagnetic cap completed by a magnetoelastic membrane body, where superparamagnetic particles are uniformly distributed on the surface. Under the influence of external magnetic fields, the swimmer undergoes complex shape transitions due to the interplay between the magnetic dipole-dipole interactions, the elasticity of the magnetoelastic membranes, and also the hydrodynamics of surrounding fluids. We show that those shape changes are nonreciprocal, which can generate locomotion such that the propulsion speed can be optimized by tailoring the membrane elastic properties. Besides, we also demonstrate that the Janus swimmer can be magnetically guided in a spiral trajectory. With such adequate control of locomotion in both speed and direction via non-invasive magnetic fields, this study provides another promising candidate design for the future development of microswimmers.
Collapse
Affiliation(s)
- Yao Xiong
- Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA.
| | - Hang Yuan
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Monica Olvera de la Cruz
- Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Bader LPE, Klok HA. Chemical Approaches for the Preparation of Bacteria - Nano/Microparticle Hybrid Systems. Macromol Biosci 2023; 23:e2200440. [PMID: 36454518 DOI: 10.1002/mabi.202200440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Indexed: 12/05/2022]
Abstract
Bacteria represent a class of living cells that are very attractive carriers for the transport and delivery of nano- and microsized particles. The use of cell-based carriers, such as for example bacteria, may allow to precisely direct nano- or microsized cargo to a desired site, which would greatly enhance the selectivity of drug delivery and allow to mitigate side effects. One key step towards the use of such nano-/microparticle - bacteria hybrids is the immobilization of the cargo on the bacterial cell surface. To fabricate bacteria - nano-/microparticle biohybrid microsystems, a wide range of chemical approaches are available that can be used to immobilize the particle payload on the bacterial cell surface. This article presents an overview of the various covalent and noncovalent chemistries that are available for the preparation of bacteria - nano-/microparticle hybrids. For each of the different chemical approaches, an overview will be presented that lists the bacterial strains that have been modified, the type and size of nanoparticles that have been immobilized, as well as the methods that have been used to characterize the nanoparticle-modified bacteria.
Collapse
Affiliation(s)
- Lisa Patricia Elisabeth Bader
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
4
|
Cui J, Jin H, Zhan W. Enzyme-Free Liposome Active Motion via Asymmetrical Lipid Efflux. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11468-11477. [PMID: 36084317 DOI: 10.1021/acs.langmuir.2c01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
As a class of biocompatible, water-dispersed colloids, liposomes have found widespread applications ranging from food to drug delivery. Adding mobility to these colloids, i.e., liposome micromotors, represents an attractive approach to next-generation liposome carriers with enhanced functionality and effectiveness. Currently, it remains unclear as to the scope of material features useful for building liposome micromotors or how they may differ functionally from their inorganic/polymer counterparts. In this work, we demonstrate liposome active motion taking advantage of mainly a pair of intrinsic material properties associated with these assemblies: lipid phase separation and extraction. We show that global phase separation of ternary lipid systems (such as DPPC/DOPC/cholesterol) within individual liposomes yields stable Janus particles with two distinctive liquid domains. While these anisotropic liposomes undergo pure Brownian diffusion in water, similar to their homogeneous analogues, adding extracting agents, cyclodextrins, to the system triggers asymmetrical cholesterol efflux about the liposomes, setting the latter into active motion. We present detailed analyses of liposome movement and cholesterol extraction kinetics to establish their correlation. We explore various experimental parameters as well as mechanistic details to account for such motion. Our results highlight the rich possibility to hierarchically design lipid-based artificial motors, from individual lipids, to their organization, surface chemistry, and interfacial mechanics.
Collapse
Affiliation(s)
- Jinyan Cui
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Hui Jin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Wei Zhan
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
5
|
Abstract
Swimming bacterial pathogens can penetrate and shape the membranes of their host cells. We study an artificial model system of this kind comprising Escherichia coli enclosed inside vesicles, which consist of nothing more than a spherical membrane bag. The bacteria push out membrane tubes, and the tubes propel the vesicles. This phenomenon is intriguing because motion cannot be generated by pushing the vesicles from within. We explain the motility of our artificial cell by a shape coupling between the flagella of each bacterium and the enclosing membrane tube. This constitutes a design principle for conferring motility to cell-sized vesicles and demonstrates the universality of lipid membranes as a building block in the development of new biohybrid systems. We study a synthetic system of motile Escherichia coli bacteria encapsulated inside giant lipid vesicles. Forces exerted by the bacteria on the inner side of the membrane are sufficient to extrude membrane tubes filled with one or several bacteria. We show that a physical coupling between the membrane tube and the flagella of the enclosed cells transforms the tube into an effective helical flagellum propelling the vesicle. We develop a simple theoretical model to estimate the propulsive force from the speed of the vesicles and demonstrate the good efficiency of this coupling mechanism. Together, these results point to design principles for conferring motility to synthetic cells.
Collapse
|
6
|
Cheng X, Yan H, Pang S, Ya M, Qiu F, Qin P, Zeng C, Lu Y. Liposomes as Multifunctional Nano-Carriers for Medicinal Natural Products. Front Chem 2022; 10:963004. [PMID: 36003616 PMCID: PMC9393238 DOI: 10.3389/fchem.2022.963004] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Although medicinal natural products and their derivatives have shown promising effects in disease therapies, they usually suffer the drawbacks in low solubility and stability in the physiological environment, low delivery efficiency, side effects due to multi-targeting, and low site-specific distribution in the lesion. In this review, targeted delivery was well-guided by liposomal formulation in the aspects of preparation of functional liposomes, liposomal medicinal natural products, combined therapies, and image-guided therapy. This review is believed to provide useful guidance to enhance the targeted therapy of medicinal natural products and their derivatives.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Hui Yan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Songhao Pang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Mingjun Ya
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Feng Qiu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
| | - Pinzhu Qin
- School of Environment and Ecology, Jiangsu Open University, Nanjing, China
| | - Chao Zeng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| | - Yongna Lu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University (Nanjing Tech), Nanjing, China
- *Correspondence: Xiamin Cheng, ; Chao Zeng, ; Yongna Lu,
| |
Collapse
|
7
|
Decorated bacteria and the application in drug delivery. Adv Drug Deliv Rev 2022; 188:114443. [PMID: 35817214 DOI: 10.1016/j.addr.2022.114443] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023]
Abstract
The use of living bacteria either as therapeutic agents or drug carriers has shown great potential in treating a multitude of intractable diseases. However, cells are often fragile to unfriendly environmental stressors and limited by inadequately therapeutic responses, leading to unwanted cell death and a decline in treatment efficacy. Surface decoration of bacteria has emerged as a simple yet useful strategy that not only confers bacteria with extra capacity to resist environmental threats but also endows them with exogenous characteristics that are neither inherent nor naturally achievable. In this review, we systematically introduce the advancements of physicochemical and biological technologies for surface modification of bacteria, especially the single-cell surface decoration strategies of individual bacteria. We highlight the recent progress on surface decoration that aims to improve the bioavailability and efficacy of therapeutic bacterial agents and also to achieve enhanced and targeted delivery of conventional drugs. The promises along with challenges of surface-decorated bacteria as drug delivery systems for applications in cancer therapy, intestinal disease treatment, bioimaging, and diagnosis are further discussed with respect to future clinical translation. This review offers an overview of the advances of decorated bacteria for drug delivery applications and would contribute to the development of the next generation of advanced bacterial-based therapies.
Collapse
|
8
|
Miceli RT, Corr DT, Barroso M, Dogra N, Gross RA. Sophorolipids: Anti-cancer activities and mechanisms. Bioorg Med Chem 2022; 65:116787. [PMID: 35526504 DOI: 10.1016/j.bmc.2022.116787] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 11/18/2022]
Abstract
Sophorolipids (SLs) are biosurfactants synthesized as secondary metabolites by non-pathogenic yeasts and other microorganisms. They are members of glycolipid microbial surfactant family that consists of a sophorose polar head group and, most often, an ω-1 hydroxylated fatty acid glycosidically linked to the sophorose moiety. Since the fermentative production of SLs is high (>200 g/L), SLs have the potential to provide low-cost therapeutics. Natural and modified SLs possess anti-cancer activity against a wide range of cancer cell lines such as those derived from breast, cervical, colon, liver, brain, and the pancreas. Corresponding data on their cytotoxicity against noncancerous cell lines including human embryo kidney, umbilical vein, and mouse fibroblasts is also discussed. These results are compiled to elucidate trends in SL-structures that lead to higher efficacy against cancer cell lines and lower cytotoxicity for normal cell lines. While extrapolation of these results provides some insights into the design of SLs with optimal therapeutic indices, we also provide a critical assessment of gaps and inconsistencies in the literature as well as the lack of data connecting structure-to-anticancer and cytotoxicity on normal cells. Furthermore, SL-mechanism of action against cancer cell lines, that includes proliferation inhibition, induction of apoptosis, membrane disruption and mitochondria mediated pathways are discussed. Perspectives on future research to develop SL anticancer therapeutics is discussed.
Collapse
Affiliation(s)
- Rebecca T Miceli
- Center for Biotechnology and Interdisciplinary Sciences and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States; Department of Chemistry and Chemical Biology and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States
| | - Margardia Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, United States
| | - Navneet Dogra
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Richard A Gross
- Center for Biotechnology and Interdisciplinary Sciences and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States; Department of Chemistry and Chemical Biology and Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States.
| |
Collapse
|
9
|
Chen TY, Gonzalez-Kozlova E, Soleymani T, La Salvia S, Kyprianou N, Sahoo S, Tewari AK, Cordon-Cardo C, Stolovitzky G, Dogra N. Extracellular vesicles carry distinct proteo-transcriptomic signatures that are different from their cancer cell of origin. iScience 2022; 25:104414. [PMID: 35663013 PMCID: PMC9157216 DOI: 10.1016/j.isci.2022.104414] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
Circulating extracellular vesicles (EVs) contain molecular footprints-lipids, proteins, RNA, and DNA-from their cell of origin. Consequently, EV-associated RNA and proteins have gained widespread interest as liquid-biopsy biomarkers. Yet, an integrative proteo-transcriptomic landscape of EVs and comparison with their cell of origin remains obscure. Here, we report that EVs enrich distinct proteo-transcriptome that does not linearly correlate with their cell of origin. We show that EVs enrich endosomal and extracellular proteins, small RNA (∼13-200 nucleotides) associated with cell differentiation, development, and Wnt signaling. EVs cargo specific RNAs (RNY3, vtRNA, and MIRLET-7) and their complementary proteins (YBX1, IGF2BP2, and SRSF1/2). To ensure an unbiased and independent analyses, we studied 12 cancer cell lines, matching EVs (inhouse and exRNA database), and serum EVs of patients with prostate cancer. Together, we show that EV-RNA-protein complexes may constitute a functional interaction network to protect and regulate molecular access until a function is achieved.
Collapse
Affiliation(s)
- Tzu-Yi Chen
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Edgar Gonzalez-Kozlova
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taliah Soleymani
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Sabrina La Salvia
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Natasha Kyprianou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Susmita Sahoo
- Department of Cardiology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Ashutosh K. Tewari
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gustavo Stolovitzky
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
- Sema4, Stamford, CT 06902, USA
| | - Navneet Dogra
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York 10029, USA
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
10
|
Bacteria as Nanoparticle Carriers for Immunotherapy in Oncology. Pharmaceutics 2022; 14:pharmaceutics14040784. [PMID: 35456618 PMCID: PMC9027800 DOI: 10.3390/pharmaceutics14040784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2023] Open
Abstract
The use of nanocarriers to deliver antitumor agents to solid tumors must overcome biological barriers in order to provide effective clinical responses. Once within the tumor, a nanocarrier should navigate into a dense extracellular matrix, overcoming intratumoral pressure to push it out of the diseased tissue. In recent years, a paradigm change has been proposed, shifting the target of nanomedicine from the tumoral cells to the immune system, in order to exploit the natural ability of this system to capture and interact with nanometric moieties. Thus, nanocarriers have been engineered to interact with immune cells, with the aim of triggering specific antitumor responses. The use of bacteria as nanoparticle carriers has been proposed as a valuable strategy to improve both the accumulation of nanomedicines in solid tumors and their penetration into the malignancy. These microorganisms are capable of propelling themselves into biological environments and navigating through the tumor, guided by the presence of specific molecules secreted by the diseased tissue. These capacities, in addition to the natural immunogenic nature of bacteria, can be exploited to design more effective immunotherapies that yield potent synergistic effects to induce efficient and selective immune responses that lead to the complete eradication of the tumor.
Collapse
|
11
|
Jiménez-Jiménez C, Moreno VM, Vallet-Regí M. Bacteria-Assisted Transport of Nanomaterials to Improve Drug Delivery in Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:288. [PMID: 35055305 PMCID: PMC8781131 DOI: 10.3390/nano12020288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022]
Abstract
Currently, the design of nanomaterials for the treatment of different pathologies is presenting a major impact on biomedical research. Thanks to this, nanoparticles represent a successful strategy for the delivery of high amounts of drugs for the treatment of cancer. Different nanosystems have been designed to combat this pathology. However, the poor penetration of these nanomaterials into the tumor tissue prevents the drug from entering the inner regions of the tumor. Some bacterial strains have self-propulsion and guiding capacity thanks to their flagella. They also have a preference to accumulate in certain tumor regions due to the presence of different chemo-attractants factors. Bioconjugation reactions allow the binding of nanoparticles in living systems, such as cells or bacteria, in a simple way. Therefore, bacteria are being used as a transport vehicle for nanoparticles, facilitating their penetration and the subsequent release of the drug inside the tumor. This review would summarize the literature on the anchoring methods of diverse nanosystems in bacteria and, interestingly, their advantages and possible applications in cancer therapy.
Collapse
Affiliation(s)
- Carla Jiménez-Jiménez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
| | - Víctor M. Moreno
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| | - María Vallet-Regí
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain;
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12, 28040 Madrid, Spain;
| |
Collapse
|
12
|
Moghimipour E, Abedishirehjin S, Baghbadorani MA, Handali S. Bacteria and Archaea: A new era of cancer therapy. J Control Release 2021; 338:1-7. [PMID: 34391833 DOI: 10.1016/j.jconrel.2021.08.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 01/20/2023]
Abstract
Cancer is one of the most important mortality in the world. The major drawbacks of chemotherapy are the poor absorption of drugs into tumor tissues and development of resistance against anti-cancer agents. To overcome these limitations, the use of microorganisms has been extensively considered in the treatment of cancer. Microorganisms (bacteria/Archaea) secrete different bioactive compounds that can efficiently inhibit cancer cells growth. Biological nanocarriers derived from microorganisms including outer membrane vesicles (OMVs), bacterial ghosts (BGs) and archaeosomes have also been considered as drug delivery systems. Conjugation of drug loaded nanocarriers to bacteria strongly kills the cancer cells after internalization through the bacteria. Merging of microbiology and nanotechnology may provide versatile microbial nano-hybrids for promising treatment of cancer. This strategy causes more amount of drug to enter into cancer cells. In this review, we present evidence that microorganism, their derivatives as well as their intervention with nanotechnology can be a powerful vehicle for eradication cancer.
Collapse
Affiliation(s)
- Eskandar Moghimipour
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Samaneh Abedishirehjin
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Somayeh Handali
- Medical Biomaterial Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Arslanova A, Dugyala VR, Reichel EK, Reddy N, Fransaer J, Clasen C. 'Sweeping rods': cargo transport by self-propelled bimetallic microrods moving perpendicular to their long axis. SOFT MATTER 2021; 17:2369-2373. [PMID: 33606868 DOI: 10.1039/d1sm00042j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A possible application of self-propelling particles is the transport of microscopic cargo. Maximizing the collection and transport efficiency of particulate matter requires the area swept by the moving particle to be as large as possible. One such particle geometry are rods propelled perpendicular to their long axis, that act as "sweepers" for collecting particles. Here we report on the required Janus coating to achieve such motion, and on the dynamics of the collection and transport of microscopic cargo by sideways propelled Janus rods.
Collapse
Affiliation(s)
- Alina Arslanova
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| | - Venkateshwar Rao Dugyala
- Department of Chemical Engineering, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India
| | - Erwin Konrad Reichel
- Institute for Microelectronics and Microsensors, Johannes Kepler University, Altenberger Strasse 69, Linz 4040, Austria
| | - Naveen Reddy
- Faculty of Engineering Technology, University of Hasselt, Martelarenlaan 42, Hasselt 3500, Belgium and IMO-IMOMEC, Wetenschapspark 1, Diepenbeek 3590, Belgium
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Leuven 3001, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, KU Leuven, Leuven 3001, Belgium.
| |
Collapse
|
14
|
Luo GF, Chen WH, Zeng X, Zhang XZ. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem Soc Rev 2021; 50:945-985. [PMID: 33226037 DOI: 10.1039/d0cs00152j] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cell primitive-based functional materials that combine the advantages of natural substances and nanotechnology have emerged as attractive therapeutic agents for cancer therapy. Cell primitives are characterized by distinctive biological functions, such as long-term circulation, tumor specific targeting, immune modulation etc. Moreover, synthetic nanomaterials featuring unique physical/chemical properties have been widely used as effective drug delivery vehicles or anticancer agents to treat cancer. The combination of these two kinds of materials will catalyze the generation of innovative biomaterials with multiple functions, high biocompatibility and negligible immunogenicity for precise cancer therapy. In this review, we summarize the most recent advances in the development of cell primitive-based functional materials for cancer therapy. Different cell primitives, including bacteria, phages, cells, cell membranes, and other bioactive substances are introduced with their unique bioactive functions, and strategies in combining with synthetic materials, especially nanoparticulate systems, for the construction of function-enhanced biomaterials are also summarized. Furthermore, foreseeable challenges and future perspectives are also included for the future research direction in this field.
Collapse
Affiliation(s)
- Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
15
|
Modulated Viscosity-Dependent Parameters for MHD Blood Flow in Microvessels Containing Oxytactic Microorganisms and Nanoparticles. Symmetry (Basel) 2020. [DOI: 10.3390/sym12122114] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
This work’s primary purpose is to implement a numerical study that simulates blood flow through a microvessel involving oxytactic microorganisms and nanoparticles. The oxytactic microorganisms exhibit negative chemotaxis to gradients of oxygen (oxygen repellents). These microorganisms are to batter infected hypoxic tumor cells as drug-carriers. The viscosity of blood is to vary with temperature, shear-thinning, and nanoparticle concentration. We have formulated a mathematical model then simplified it under assumptions of long wavelength and low Reynold’s number. The resulting non-linear coupled differential equation system is solved numerically with the MATHEMATICA software aid using the built-in command (ParametricNDSolve). This study treated all non-dimensional parameters defined in terms of viscosity to be variables (VP-Model), unlike some previous literature attempts that have considered these parameters mentioned above as constants (CP-Model). The achieved results assured the reliability of the (VP-Model) over the (CP-Model). Our results reveal that temperature and microorganism density increase with the thermophoresis parameter. The impact of increasing the Brownian motion parameter is to increase temperature and lessen microorganism density. Outcomes also indicate an enhancement in the microorganism density towards the hypoxic tumor regions located aside the microvessel walls by boosting oxygen concentrations in the streamflow. The current study is believed to provide further opportunities to improve drug-carrier applications in hypoxic tumor regions by better recognizing the flow features, heat, and mass transfer in such zones.
Collapse
|
16
|
Santiago I, Simmel FC. Self-Propulsion Strategies for Artificial Cell-Like Compartments. NANOMATERIALS 2019; 9:nano9121680. [PMID: 31775256 PMCID: PMC6956199 DOI: 10.3390/nano9121680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 12/14/2022]
Abstract
Reconstitution of life-like properties in artificial cells is a current research frontier in synthetic biology. Mimicking metabolism, growth, and sensing are active areas of investigation; however, achieving motility and directional taxis are also challenging in the context of artificial cells. To tackle this problem, recent progress has been made that leverages the tools of active matter physics in synthetic biology. This review surveys the most significant achievements in designing motile cell-like compartments. In this context, strategies for self-propulsion are summarized, including, compartmentalization of catalytically active particles, phoretic propulsion of vesicles and emulsion droplet motion driven by Marangoni flows. This work showcases how the realization of motile protocells may impact biomedical engineering while also aiming at answering fundamental questions in locomotion of prebiotic cells.
Collapse
|
17
|
Dogra N, Balaraman RP, Kohli P. Chemically Engineered Synthetic Lipid Vesicles for Sensing and Visualization of Protein-Bilayer Interactions. Bioconjug Chem 2019; 30:2136-2149. [PMID: 31314501 DOI: 10.1021/acs.bioconjchem.9b00366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From pathogen intrusion to immune response, the cell membrane plays an important role in signal transduction. Such signals are important for cellular proliferation and survival. However, measurement of these subtle signals through the lipid membrane scaffold is challenging. We present a chromatic model membrane vesicle system engineered to covalently bind with lysine residues of protein molecules for investigation of cellular interactions and signaling. We discovered that different protein molecules induced differential spectroscopic signals, which is based on the chemical and physical properties of protein interacting at the vesicle surface. The observed chromatic response (CR) for bound protein molecules with higher molecular weight was much larger (∼5-15×) than those for low molecular weight proteins. Through mass spectrometry (MS), we found that only 6 out of 60 (10%) lysine groups present in bovine serum albumin (BSA) were accessible to the membrane of the vesicles. Finally, a "sphere-shell" model representing the protein-vesicle complex was used for evaluating the contribution of van der Waals interactions between proteins and vesicles. Our analysis points to contributions from van der Waals, hydrophobic, and electrostatic interactions toward observed CR signals resulting from molecular interactions at the vesicle membrane surface. Overall, this study provided a convenient, chromatic, semiquantitative method of detecting biomolecules and their interactions with model membranes at sub-nanomolar concentration.
Collapse
Affiliation(s)
- Navneet Dogra
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States.,IBM T. J. Watson Research Center , Yorktown Heights , New York 10058 , United States.,Department of Genetics and Genomic Sciences , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Rajesh P Balaraman
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Punit Kohli
- Department of Chemistry and Biochemistry , Southern Illinois University , Carbondale , Illinois 62901 , United States
| |
Collapse
|
18
|
Rismani Yazdi S, Agrawal P, Morales E, Stevens CA, Oropeza L, Davies PL, Escobedo C, Oleschuk RD. Facile actuation of aqueous droplets on a superhydrophobic surface using magnetotactic bacteria for digital microfluidic applications. Anal Chim Acta 2019; 1085:107-116. [PMID: 31522724 DOI: 10.1016/j.aca.2019.08.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/09/2019] [Accepted: 08/01/2019] [Indexed: 12/17/2022]
Abstract
Magnetic actuation provides a low-cost, simple method for droplet manipulation on a digital microfluidic platform. The impetus to move the droplets on a low friction surface can come from internal superparamagnetic particles or paramagnetic salts. Recently, the use of microbes for bio-actuation has been established, where the thrust produced by the microbes can be exploited to exert the force required for droplet movement. This study presents biologically-driven magnetic actuation of droplets on a superhydrophobic surface using magnetotactic bacteria (MTB). MTB-droplets were impelled along various trajectories such as rectangular and figure-of-eight-shaped paths. Droplets were reproducibly actuated with speeds up of to 30 mm s-1. We demonstrated the ability to sequentially merge and mix multiple droplets by merging a 10 μL MTB droplet with two 4 μL colored droplets. The reorientation of MTB in the droplet enhanced mixing rate of the merged fluids by ∼40% compared with the control experiment where no actuation was used. Biologically-driven magnetic actuation was compared with actuation by superparamagnetic particles and paramagnetic salts, in terms of controllability and speed. MTB droplet was moved with the same average speed as other two methods and showed higher response time as the magnet acceleration increased. Lastly, MTB were used to perform a phosphatase assay using endogenous enzyme. The relative absorbance at 405 nm, indicating the production of the yellow product, increased over time and levels off after 75 min.
Collapse
Affiliation(s)
- Saeed Rismani Yazdi
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Prashant Agrawal
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Erick Morales
- School of Engineering, Department of Electrical Engineering, UNAM, Mexico City, 04510, Mexico
| | - Corey A Stevens
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Laura Oropeza
- School of Engineering, Department of Electrical Engineering, UNAM, Mexico City, 04510, Mexico
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Carlos Escobedo
- Department of Chemical Engineering, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Richard D Oleschuk
- Department of Chemistry, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
19
|
Chang X, Tang W, Feng Y, Yu H, Wu Z, Xu T, Dong H, Li T. Coexisting Cooperative Cognitive Micro‐/Nanorobots. Chem Asian J 2019; 14:2357-2368. [DOI: 10.1002/asia.201900286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/10/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Xiaocong Chang
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Wentian Tang
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yiwen Feng
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Hao Yu
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Zhiguang Wu
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
- Institute of PharmacySechenov University Moscow 119991 Russia
| | - Tailin Xu
- Research Center for Bioengineering and Sensing TechnologyUniversity of Science and Technology Beijing Beijing 100083 China
| | - Huijuan Dong
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Tianlong Li
- State Key Laboratory of Robotics and SystemHarbin Institute of Technology Harbin Heilongjiang 150001 China
- Institute of PharmacySechenov University Moscow 119991 Russia
| |
Collapse
|