1
|
Moubtahij Z, McCormack J, Bourgon N, Trost M, Sinet-Mathiot V, Fuller BT, Smith GM, Temming H, Steinbrenner S, Hublin JJ, Bouzouggar A, Turner E, Jaouen K. Isotopic evidence of high reliance on plant food among Later Stone Age hunter-gatherers at Taforalt, Morocco. Nat Ecol Evol 2024; 8:1035-1045. [PMID: 38684738 DOI: 10.1038/s41559-024-02382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/01/2024] [Indexed: 05/02/2024]
Abstract
The transition from hunting-gathering to agriculture stands as one of the most important dietary revolutions in human history. Yet, due to a scarcity of well-preserved human remains from Pleistocene sites, little is known about the dietary practices of pre-agricultural human groups. Here we present the isotopic evidence of pronounced plant reliance among Late Stone Age hunter-gatherers from North Africa (15,000-13,000 cal BP), predating the advent of agriculture by several millennia. Employing a comprehensive multi-isotopic approach, we conducted zinc (δ66Zn) and strontium (87Sr/86Sr) analysis on dental enamel, bulk carbon (δ13C) and nitrogen (δ15N) and sulfur (δ34S) isotope analysis on dentin and bone collagen, and single amino acid analysis on human and faunal remains from Taforalt (Morocco). Our results unequivocally demonstrate a substantial plant-based component in the diets of these hunter-gatherers. This distinct dietary pattern challenges the prevailing notion of high reliance on animal proteins among pre-agricultural human groups. It also raises intriguing questions surrounding the absence of agricultural development in North Africa during the early Holocene. This study underscores the importance of investigating dietary practices during the transition to agriculture and provides insights into the complexities of human subsistence strategies across different regions.
Collapse
Affiliation(s)
- Zineb Moubtahij
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
- Géosciences Environnement Toulouse, UMR 5563, CNRS, Observatoire Midi Pyrénées, Toulouse, France.
| | - Jeremy McCormack
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Goethe University Frankfurt, Institute of Geosciences, Frankfurt am Main, Germany
| | - Nicolas Bourgon
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- IsoTROPIC Research Group, Max Planck Institute for Geoanthropology, Jena, Germany
| | - Manuel Trost
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Virginie Sinet-Mathiot
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- PACEA, UMR 5199, CNRS, Université de Bordeaux, Ministère de la Culture, Pessac, France
- CBMN, UMR 5248 and Bordeaux Proteome Platform, Bordeaux INP, CNRS, Université de Bordeaux, Bordeaux, France
| | - Benjamin T Fuller
- Géosciences Environnement Toulouse, UMR 5563, CNRS, Observatoire Midi Pyrénées, Toulouse, France
| | - Geoff M Smith
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Heiko Temming
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sven Steinbrenner
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Chaire de Paléoanthropologie, CIRB (UMR 7241-U1050), Collège de France, Paris, France
| | - Abdeljalil Bouzouggar
- Institut National des Sciences de l'Archéologie et du Patrimoine, Origin and Evolution of Homo Sapiens Cultures, Rabat, Morocco
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Elaine Turner
- Monrepos Archaeological Research Centre and Museum for Human Behavioural Evolution, LEIZA, Neuwied, Germany
| | - Klervia Jaouen
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Géosciences Environnement Toulouse, UMR 5563, CNRS, Observatoire Midi Pyrénées, Toulouse, France
| |
Collapse
|
2
|
Cox SL, Nicklisch N, Francken M, Wahl J, Meller H, Haak W, Alt KW, Rosenstock E, Mathieson I. Socio-cultural practices may have affected sex differences in stature in Early Neolithic Europe. Nat Hum Behav 2024; 8:243-255. [PMID: 38081999 DOI: 10.1038/s41562-023-01756-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/09/2023] [Indexed: 02/21/2024]
Abstract
The rules and structure of human culture impact health as much as genetics or environment. To study these relationships, we combine ancient DNA (n = 230), skeletal metrics (n = 391), palaeopathology (n = 606) and dietary stable isotopes (n = 873) to analyse stature variation in Early Neolithic Europeans from North Central, South Central, Balkan and Mediterranean regions. In North Central Europe, stable isotopes and linear enamel hypoplasias indicate high environmental stress across sexes, but female stature is low, despite polygenic scores identical to males, and suggests that cultural factors preferentially supported male recovery from stress. In Mediterranean populations, sexual dimorphism is reduced, indicating male vulnerability to stress and no strong cultural preference for males. Our analysis indicates that biological effects of sex-specific inequities can be linked to cultural influences at least as early as 7,000 yr ago, and culture, more than environment or genetics, drove height disparities in Early Neolithic Europe.
Collapse
Affiliation(s)
- Samantha L Cox
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Physical Anthropology Section, Penn Museum, University of Pennsylvania, Philadelphia, PA, USA.
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria
| | - Michael Francken
- State Office for Cultural Heritage Management Baden-Württemberg, Osteology, Konstanz, Germany
| | - Joachim Wahl
- Paleoanthropology Section, Institute of Archaeological Sciences, Eberhard Karls University, Tübingen, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt, State Museum of Prehistory, Halle, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kurt W Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria
| | - Eva Rosenstock
- Bonn Center for ArchaeoSciences, Universität Bonn, Bonn, Germany
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Childebayeva A, Rohrlach AB, Barquera R, Rivollat M, Aron F, Szolek A, Kohlbacher O, Nicklisch N, Alt KW, Gronenborn D, Meller H, Friederich S, Prüfer K, Deguilloux MF, Krause J, Haak W. Population Genetics and Signatures of Selection in Early Neolithic European Farmers. Mol Biol Evol 2022; 39:6586604. [PMID: 35578825 PMCID: PMC9171004 DOI: 10.1093/molbev/msac108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human expansion in the course of the Neolithic transition in western Eurasia has been one of the major topics in ancient DNA research in the last 10 years. Multiple studies have shown that the spread of agriculture and animal husbandry from the Near East across Europe was accompanied by large-scale human expansions. Moreover, changes in subsistence and migration associated with the Neolithic transition have been hypothesized to involve genetic adaptation. Here, we present high quality genome-wide data from the Linear Pottery Culture site Derenburg-Meerenstieg II (DER) (N = 32 individuals) in Central Germany. Population genetic analyses show that the DER individuals carried predominantly Anatolian Neolithic-like ancestry and a very limited degree of local hunter-gatherer admixture, similar to other early European farmers. Increasing the Linear Pottery culture cohort size to ∼100 individuals allowed us to perform various frequency- and haplotype-based analyses to investigate signatures of selection associated with changes following the adoption of the Neolithic lifestyle. In addition, we developed a new method called Admixture-informed Maximum-likelihood Estimation for Selection Scans that allowed us test for selection signatures in an admixture-aware fashion. Focusing on the intersection of results from these selection scans, we identified various loci associated with immune function (JAK1, HLA-DQB1) and metabolism (LMF1, LEPR, SORBS1), as well as skin color (SLC24A5, CD82) and folate synthesis (MTHFR, NBPF3). Our findings shed light on the evolutionary pressures, such as infectious disease and changing diet, that were faced by the early farmers of Western Eurasia.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Adam Benjamin Rohrlach
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, Australia
| | - Rodrigo Barquera
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Maïté Rivollat
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Université de Bordeaux, CNRS, PACEA-UMR 5199, 33615 Pessac, France
| | - Franziska Aron
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany
| | - András Szolek
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Oliver Kohlbacher
- Applied Bioinformatics, Dept. of Computer Science, University of Tübingen, Tübingen, Germany.,Institute for Bioinformatics and Medical Informatics, University of Tübingen, Tübingen, Germany.,Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria.,State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Kurt W Alt
- Center of Natural and Cultural Human History, Danube Private University, Krems-Stein, Austria.,State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Detlef Gronenborn
- Römisch-Germanisches Zentralmuseum, Leibniz Research Institute for Archaeology, Ernst-Ludwig-Platz 2, 55116 Mainz, Germany
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt - State Museum of Prehistory, Halle (Saale), Germany
| | - Kay Prüfer
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | | | - Johannes Krause
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| | - Wolfgang Haak
- Archaeogenetics Department, Max Planck Institute for the Science of Human History, Kahlaische Straße 10, D-07745 Jena, Germany.,Archaeogenetics Department, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany
| |
Collapse
|
4
|
Marciniak S, Bergey CM, Silva AM, Hałuszko A, Furmanek M, Veselka B, Velemínský P, Vercellotti G, Wahl J, Zariņa G, Longhi C, Kolář J, Garrido-Pena R, Flores-Fernández R, Herrero-Corral AM, Simalcsik A, Müller W, Sheridan A, Miliauskienė Ž, Jankauskas R, Moiseyev V, Köhler K, Király Á, Gamarra B, Cheronet O, Szeverényi V, Kiss V, Szeniczey T, Kiss K, Zoffmann ZK, Koós J, Hellebrandt M, Maier RM, Domboróczki L, Virag C, Novak M, Reich D, Hajdu T, von Cramon-Taubadel N, Pinhasi R, Perry GH. An integrative skeletal and paleogenomic analysis of stature variation suggests relatively reduced health for early European farmers. Proc Natl Acad Sci U S A 2022; 119:e2106743119. [PMID: 35389750 PMCID: PMC9169634 DOI: 10.1073/pnas.2106743119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 02/24/2022] [Indexed: 12/02/2022] Open
Abstract
Human culture, biology, and health were shaped dramatically by the onset of agriculture ∼12,000 y B.P. This shift is hypothesized to have resulted in increased individual fitness and population growth as evidenced by archaeological and population genomic data alongside a decline in physiological health as inferred from skeletal remains. Here, we consider osteological and ancient DNA data from the same prehistoric individuals to study human stature variation as a proxy for health across a transition to agriculture. Specifically, we compared “predicted” genetic contributions to height from paleogenomic data and “achieved” adult osteological height estimated from long bone measurements for 167 individuals across Europe spanning the Upper Paleolithic to Iron Age (∼38,000 to 2,400 B.P.). We found that individuals from the Neolithic were shorter than expected (given their individual polygenic height scores) by an average of −3.82 cm relative to individuals from the Upper Paleolithic and Mesolithic (P = 0.040) and −2.21 cm shorter relative to post-Neolithic individuals (P = 0.068), with osteological vs. expected stature steadily increasing across the Copper (+1.95 cm relative to the Neolithic), Bronze (+2.70 cm), and Iron (+3.27 cm) Ages. These results were attenuated when we additionally accounted for genome-wide genetic ancestry variation: for example, with Neolithic individuals −2.82 cm shorter than expected on average relative to pre-Neolithic individuals (P = 0.120). We also incorporated observations of paleopathological indicators of nonspecific stress that can persist from childhood to adulthood in skeletal remains into our model. Overall, our work highlights the potential of integrating disparate datasets to explore proxies of health in prehistory.
Collapse
Affiliation(s)
- Stephanie Marciniak
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
| | - Christina M. Bergey
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854
| | - Ana Maria Silva
- Research Centre for Anthropology and Health (Centro de Investigação em Antropologia e Saúde - CIAS), Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra 3000-456, Portugal
- Archeology Center of the University of Lisbon (UNIARQ), University of Lisbon, Lisbon 1600-214, Portugal
| | - Agata Hałuszko
- Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
- Archeolodzy.org Foundation, Wrocław 50-316, Poland
| | - Mirosław Furmanek
- Institute of Archaeology, University of Wrocław, Wrocław 50-139, Poland
| | - Barbara Veselka
- Department of Chemistry, Analytical Environmental and Geo-Chemistry Research Unit, Vrije Univeristeit Brussels, Brussels 1050, Belgium
- Department of Art Studies and Archaeology, Maritime Cultures Research Institute, Vrije Univeristeit Brussels, Brussels 1050, Belgium
| | - Petr Velemínský
- Department of Anthropology, National Museum, Prague 115-79, Czech Republic
| | - Giuseppe Vercellotti
- Department of Anthropology, Ohio State University, Columbus, OH 43210
- Institute for Research and Learning in Archaeology and Bioarchaeology, Columbus, OH 43215
| | - Joachim Wahl
- Institute for Scientific Archaeology, Working Group Palaeoanthropology, University of Tübingen, Tübingen 72074, Germany
| | - Gunita Zariņa
- Institute of Latvian History, University of Latvia, Riga 1050, Latvia
| | - Cristina Longhi
- Soprintendenza Archeologia, Belle Arti e Paesaggio, Rome 00186, Italy
| | - Jan Kolář
- Department of Vegetation Ecology, Institute of Botany of the Czech Academy of Sciences, Průhonice 252-43, Czech Republic
- Institute of Archaeology and Museology, Masaryk University, Brno 602-00, Czech Republic
| | - Rafael Garrido-Pena
- Department of Prehistory and Archaeology, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | | | - Angela Simalcsik
- Olga Necrasov Center for Anthropological Research, Romanian Academy - Iasi Branch, Iasi 700481, Romania
- Orheiul Vechi Cultural-Natural Reserve, Orhei 3506, Republic of Moldova
| | - Werner Müller
- Laboratoire d'archéozoologie, Université de Neuchâtel, Neuchâtel 2000, Switzerland
| | - Alison Sheridan
- Department of Scottish History & Archaeology, National Museums Scotland, Edinburgh EH1 1JF, Scotland
| | - Žydrūnė Miliauskienė
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius 01513, Lithuania
| | - Rimantas Jankauskas
- Department of Anatomy, Histology and Anthropology, Vilnius University, Vilnius 01513, Lithuania
| | - Vyacheslav Moiseyev
- Department of Physical Anthropology, Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, St. Petersburg 199034, Russia
| | - Kitti Köhler
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Ágnes Király
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Beatriz Gamarra
- Institut Català de Paleoecologia Humana i Evolució Social, Tarragona 43007, Spain
- Departament d’Història i Història de l’Art, Universitat Rovira i Virgili, Tarragona 43003, Spain
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna 1030, Austria
| | - Vajk Szeverényi
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
- Department of Archaeology, Déri Múzeum, Debrecen 4026, Hungary
| | - Viktória Kiss
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, Budapest 1097, Hungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
| | - Krisztián Kiss
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
- Department of Anthropology, Hungarian Natural History Museum, Budapest 1083, Hungary
| | | | - Judit Koós
- Department of Archaeology, Herman Ottó Museum, Miskolc 3530, Hungary
| | | | - Robert M. Maier
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - László Domboróczki
- Department of Archaeology, István Dobó Castle Museum, Eger 3300, Hungary
| | - Cristian Virag
- Department of Archaeology, Satu Mare County Museum, Satu Mare 440031, Romania
| | - Mario Novak
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb 10000, Croatia
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138
- The Max Planck–Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Boston, MA 02115
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
- HHMI, Harvard Medical School, Cambridge, MA 02138
| | - Tamás Hajdu
- Department of Biological Anthropology, Eötvös Loránd University, Budapest 1053, Hungary
| | - Noreen von Cramon-Taubadel
- Buffalo Human Evolutionary Morphology Lab, Department of Anthropology, University at Buffalo, Buffalo, NY 14261-0026
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna 1030, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna 1030, Austria
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
- Deutsche Forschungsgemeinschaft (DFG) Center for Advanced Studies, University of Tübingen, Tübingen 72074, Germany
| |
Collapse
|
5
|
Zdilla MJ, Nestor NS, Rothschild BM, Lambert HW. Cribra orbitalia is correlated with the meningo-orbital foramen and is vascular and developmental in nature. Anat Rec (Hoboken) 2021; 305:1629-1671. [PMID: 34741429 DOI: 10.1002/ar.24825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/08/2022]
Abstract
Cribra orbitalia is a phenomenon with interdisciplinary interest. However, the etiology of cribra orbitalia remains unclear. Recently, the appearance of cribra orbitalia was identified as vascular in nature. This study assessed the relationship between anatomical variation of vasculature, as determined by the presence of meningo-orbital foramina, and the presence of cribra orbitalia in 178 orbits. Cribra orbitalia was identified in 27.5% (49:178) of orbits (22.7%, 35:154 adult orbits and 58.3%, 14:24 subadult orbits) and meningo-orbital foramina were identified in 65.8% (100:152) of orbits. Among the 150 total intact adult orbits (i.e., orbital roof and posterior orbits both intact), cribra orbitalia was found in 35 (23.3%). Of these 35 occurrences of cribra orbitalia, 32 (91.4%) had the concurrent finding of a meningo-orbital foramen. However, in the absence of the meningo-orbital foramen, cribra orbitalia was only found in three sides out of the total sample of intact orbits (3:150; 2.0%). Fisher's exact test revealed that the presence of cribra orbitalia and the meningo-orbital foramen were statistically dependent variables (p = .0002). Visual evidence corroborated statistical findings-vascular impressions joined cribra orbitalia to meningo-orbital foramina. This study identifies that individuals who possess a meningo-orbital foramen are anatomically predisposed to developing cribra orbitalia. Conversely, cribra orbitalia is unlikely to occur in an individual who does not possess a meningo-orbital foramen. Thus, the antecedent of cribra orbitalia is both vascular and developmental in nature. This report represents an important advancement in the understanding of cribra orbitalia-there is an anatomical predisposition to the development of cribra orbitalia.
Collapse
Affiliation(s)
- Matthew J Zdilla
- Department of Pathology, Anatomy, and Laboratory Medicine (PALM), West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Nicholas S Nestor
- Department of Pathology, Anatomy, and Laboratory Medicine (PALM), West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | - H Wayne Lambert
- Department of Pathology, Anatomy, and Laboratory Medicine (PALM), West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
6
|
Kendall E, Millard A, Beaumont J. The "weanling's dilemma" revisited: Evolving bodies of evidence and the problem of infant paleodietary interpretation. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175 Suppl 72:57-78. [PMID: 33460467 DOI: 10.1002/ajpa.24207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/23/2020] [Accepted: 12/06/2020] [Indexed: 01/02/2023]
Abstract
Breastfeeding is known to be a powerful mediator of maternal and childhood health, with impacts throughout the life course. Paleodietary studies of the past 30 years have accordingly taken an enduring interest in the health and diet of young children as a potential indicator of population fertility, subsistence, and mortality patterns. While progress has been made in recent decades toward acknowledging the agency of children, many paleodietary reconstructions have failed to incorporate developments in cognate disciplines revealing synergistic dynamics between maternal and offspring biology. Paleodietary interpretation has relied heavily on the "weanling's dilemma," in which infants are thought to face a bleak choice between loss of immunity or malnutrition. Using a review of immunological and epidemiological evidence for the dynamic and supportive role that breastfeeding plays throughout the complementary feeding period, this article offers context and nuance for understanding past feeding transitions. We suggest that future interpretative frameworks for infant paleodietary and bioarchaeological research should include a broad knowledge base that keeps pace with relevant developments outside of those disciplines.
Collapse
Affiliation(s)
- Ellen Kendall
- Department of Archaeology, Durham University, Durham, UK
| | - Andrew Millard
- Department of Archaeology, Durham University, Durham, UK
| | - Julia Beaumont
- School of Archaeological and Forensic Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
7
|
Holder S, Miliauskienė Ž, Jankauskas R, Dupras T. An integrative approach to studying plasticity in growth disruption and outcomes: A bioarchaeological case study of Napoleonic soldiers. Am J Hum Biol 2020; 33:e23457. [PMID: 32618057 DOI: 10.1002/ajhb.23457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/15/2020] [Accepted: 05/30/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The aim of this study was to investigate how much variation in adult stature and body mass can be explained by growth disruption among soldiers who served in Napoleon's Grand Army during the Russian Campaign of 1812. METHODS Linear enamel hypoplasia (LEH) were recorded as representations of early life growth disruption, while the impact on future growth was assessed using maximum femur length (n = 73) as a proxy for stature and maximum femoral head diameter (n = 25) as a proxy for body mass. LEH frequency, severity, age at first formation, and age at last formation served as explanatory variables in a multiple regression analysis to test the effect of these variables on maximum femur length and maximum femoral head diameter. RESULTS The multiple regression model produced statistically significant results for maximum femur length (F-statistic = 3.05, df = 5 and 67, P = .02), with some variation in stature (adjusted r2 = 0.13) attributable to variation in growth disruption. The multiple regression model for maximum femoral head diameter was not statistically significant (F-statistic = 1.87, df = 5 and 19, P = .15). CONCLUSIONS We hypothesized stress events during early life growth and development would have significant, negative, and cumulative effects on growth outcomes in adulthood. The results did not support our hypothesis. Instead, some variables and interactions had negative effects on stature, whereas others had positive effects. This is likely due to catch-up growth, the relationship between acute and chronic stress and growth, resilience, and plasticity in human growth over the life course.
Collapse
Affiliation(s)
- Sammantha Holder
- Department of Anthropology, University of Georgia, Athens, Georgia, USA
| | - Žydrūnė Miliauskienė
- Department of Anatomy, Histology & Anthropology, Vilnius University, Vilnius, Lithuania
| | - Rimantas Jankauskas
- Department of Anatomy, Histology & Anthropology, Vilnius University, Vilnius, Lithuania
| | - Tosha Dupras
- Department of Anthropology, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
8
|
Orellana-González E, Sparacello VS, Bocaege E, Varalli A, Moggi-Cecchi J, Dori I. Insights on patterns of developmental disturbances from the analysis of linear enamel hypoplasia in a Neolithic sample from Liguria (northwestern Italy). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2020; 28:123-136. [PMID: 31901428 DOI: 10.1016/j.ijpp.2019.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To assess developmental disturbances through the analysis of linear enamel hypoplasia (LEH) frequency and to infer environmental stress and life history within Neolithic communities from Liguria (Italy). MATERIALS 43 unworn/minimally worn permanent anterior teeth of 13 individuals recovered from nearby caves and dated to c. 4800-4400 cal. BCE. METHODS LEH defects were identified with high-resolution macrophotos of dental replicas, age at LEH was calculated via perikymata counts. LEH defects matched between two or more teeth were considered as systemic disturbances. LEH frequency by age classes was analyzed via GLZ and Friedman ANOVA. RESULTS Number of matched defects per individual range between 2-12. The mean LEH per individual was highest in the 2.5-2.99 age category, with a significant increase relative to earlier growth stages, followed by a decline. CONCLUSION LEH may reflect life-history in the local ecology of Neolithic Liguria, where several individuals with osteoarticular tuberculosis have been recorded. Disease burden may have triggered developmental disturbances around the time of weaning. Age at first defect was negatively correlated with age at death and positively with the total number of defects, suggesting that early stress may have affected survivorship. SIGNIFICANCE The study contributes to the reconstruction of ecological pressures among Neolithic people of Liguria, and informs on environmental challenges during the Neolithic adaptive expansion. LIMITATIONS The visual examination of macrophotos is prone to observer error; mid-crown tends to display more visible LEH due to tooth architecture. SUGGESTIONS FOR FURTHER RESEARCH Apply different quantitative methods to examine severity and duration of disturbances.
Collapse
Affiliation(s)
| | | | - Emmy Bocaege
- Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Alessandra Varalli
- Univ. Bordeaux, CNRS, MC, PACEA, UMR 5199, 33615 Pessac, France; Department of Archaeology, Durham University, UK
| | - Jacopo Moggi-Cecchi
- Department of Biology, Laboratory of Anthropology, University of Florence, via del Proconsolo 12, 50122 Florence, Italy
| | - Irene Dori
- Univ. Bordeaux, CNRS, MC, PACEA, UMR 5199, 33615 Pessac, France; Department of Biology, Laboratory of Anthropology, University of Florence, via del Proconsolo 12, 50122 Florence, Italy; Soprintendenza Archeologia, Belle Arti e Paesaggio per le province di Verona, Rovigo e Vicenza, Piazza S. Fermo 3, 37121 Verona, Italy.
| |
Collapse
|
9
|
Interactions between earliest Linearbandkeramik farmers and central European hunter gatherers at the dawn of European Neolithization. Sci Rep 2019; 9:19544. [PMID: 31863024 PMCID: PMC6925266 DOI: 10.1038/s41598-019-56029-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/01/2019] [Indexed: 01/19/2023] Open
Abstract
Archaeogenetic research over the last decade has demonstrated that European Neolithic farmers (ENFs) were descended primarily from Anatolian Neolithic farmers (ANFs). ENFs, including early Neolithic central European Linearbandkeramik (LBK) farming communities, also harbored ancestry from European Mesolithic hunter gatherers (WHGs) to varying extents, reflecting admixture between ENFs and WHGs. However, the timing and other details of this process are still imperfectly understood. In this report, we provide a bioarchaeological analysis of three individuals interred at the Brunn 2 site of the Brunn am Gebirge-Wolfholz archeological complex, one of the oldest LBK sites in central Europe. Two of the individuals had a mixture of WHG-related and ANF-related ancestry, one of them with approximately 50% of each, while the third individual had approximately all ANF-related ancestry. Stable carbon and nitrogen isotope ratios for all three individuals were within the range of variation reflecting diets of other Neolithic agrarian populations. Strontium isotope analysis revealed that the ~50% WHG-ANF individual was non-local to the Brunn 2 area. Overall, our data indicate interbreeding between incoming farmers, whose ancestors ultimately came from western Anatolia, and local HGs, starting within the first few generations of the arrival of the former in central Europe, as well as highlighting the integrative nature and composition of the early LBK communities.
Collapse
|