1
|
Yu D, Kang J, Ju C, Wang Q, Qiao Y, Qiao L, Yang D. Dual disease co-expression analysis reveals potential roles of estrogen-related genes in postmenopausal osteoporosis and Parkinson's disease. Front Genet 2025; 15:1518471. [PMID: 39840278 PMCID: PMC11747517 DOI: 10.3389/fgene.2024.1518471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Introduction The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD. Methods Initially, pertinent data concerning PMO and PD were obtained from the GWAS database, followed by conducting a Bayesian colocalization analysis. Subsequently, co-expressed genes from the PMO dataset (GSE35956) and the PD dataset (GSE20164) were identified and cross-referenced with estrogen-related genes (ERGs). Differentially expressed genes (DEGs) among PMO, PD, and ERGs were subjected to an array of bioinformatics analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses, in addition to protein-protein interaction (PPI) network analysis. The study also involved constructing TF-gene interactions, TF-microRNA coregulatory networks, interactions of hub genes with diseases, and validation through quantitative reverse transcription polymerase chain reaction (qRT-PCR). Results The colocalization analysis uncovered shared genetic variants between PD and osteoporosis, with a posterior probability of colocalization (PPH4) measured at 0.967. Notably, rs3796661 was recognized as a shared genetic variant. A total of 11 genes were classified as DEGs across PMO, PD, and ERGs. Five principal KEGG pathways were identified, which include the p53 signaling pathway, TGF-beta signaling pathway, cell cycle, FoxO signaling pathway, and cellular senescence. Additionally, three hub genes-WT1, CCNB1, and SMAD7-were selected from the PPI network utilizing Cytoscape software. These three hub genes, which possess significant diagnostic value for PMO and PD, were further validated using GEO datasets. Interactions between transcription factors and genes, as well as between microRNAs and hub genes, were established. Ultimately, the expression trends of the identified hub genes were confirmed through qRT-PCR validation. Conclusions This study is anticipated to offer innovative approaches for identifying potential biomarkers and important therapeutic targets for both PMO and PD.
Collapse
Affiliation(s)
- Dongdong Yu
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jian Kang
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chengguo Ju
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qingyan Wang
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Ye Qiao
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Long Qiao
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Orthopedics and Traumatology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Dongxiang Yang
- First Clinical School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
2
|
Nagarajan A, Laird J, Ugochukwu O, Reppe S, Gautvik K, Ross RD, Bennett DA, Rosen C, Kiel DP, Higginbotham LA, Seyfried NT, Lary CW. Network Analysis of Brain and Bone Tissue Transcripts Reveals Shared Molecular Mechanisms Underlying Alzheimer's Disease and Related Dementias and Osteoporosis. J Gerontol A Biol Sci Med Sci 2024; 79:glae211. [PMID: 39194133 PMCID: PMC11503475 DOI: 10.1093/gerona/glae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Alzheimer's disease and related dementias (ADRD) and osteoporosis (OP) are 2 prevalent diseases of aging with demonstrated epidemiological association, but the underlying molecular mechanisms contributing to this association are unknown. METHODS We used network analysis of bone and brain transcriptomes to discover common molecular mechanisms underlying these 2 diseases. Our study included RNA-sequencing data from the dorsolateral prefrontal cortex tissue of autopsied brains in 629 participants from ROSMAP (Religious Orders Study and the Rush Memory and Aging Project), with a subgroup of 298 meeting criteria for inclusion in 5 ADRD categories, and RNA array data from transiliac bone biopsies in 84 participants from the Oslo study of postmenopausal women. After developing each network within each tissue, we analyzed associations between modules (groups of coexpressed genes) with multiple bone and neurological traits, examined overlap in modules between networks, and performed pathway enrichment analysis to discover conserved mechanisms. RESULTS We discovered 3 modules in ROSMAP that showed significant associations with ADRD and bone-related traits and 4 modules in Oslo that showed significant associations with multiple bone outcomes. We found significant module overlap between the 2 networks in modules linked to signaling, tissue homeostasis, and development, and Wingless-related integration site (Wnt) signaling was found to be highly enriched in OP and ADRD modules of interest. CONCLUSIONS These results provide translational opportunities in the development of treatments and biomarkers for ADRD and OP.
Collapse
Affiliation(s)
- Archana Nagarajan
- Roux Institute, Northeastern University, Portland, Maine, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Jason Laird
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Obiadada Ugochukwu
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sjur Reppe
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Kaare Gautvik
- Unger-Vetlesen Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Ryan D Ross
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Clifford Rosen
- MaineHealth Institute for Research, Scarborough, Maine, USA
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lenora A Higginbotham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Christine W Lary
- Roux Institute, Northeastern University, Portland, Maine, USA
- MaineHealth Institute for Research, Scarborough, Maine, USA
| |
Collapse
|
3
|
Salichos L, Thayavally R, Kloen P, Hadjiargyrou M. Human nonunion tissues display differential gene expression in comparison to physiological fracture callus. Bone 2024; 183:117091. [PMID: 38570121 PMCID: PMC11023750 DOI: 10.1016/j.bone.2024.117091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The healing of bone fractures can become aberrant and lead to nonunions which in turn have a negative impact on patient health. Understanding why a bone fails to normally heal will enable us to make a positive impact in a patient's life. While we have a wealth of molecular data on rodent models of fracture repair, it is not the same with humans. As such, there is still a lack of information regarding the molecular differences between normal physiological repair and nonunions. This study was designed to address this gap in our molecular knowledge of the human repair process by comparing differentially expressed genes (DEGs) between physiological fracture callus and two different nonunion types, hypertrophic (HNU) and oligotrophic (ONU). RNA sequencing data revealed over ∼18,000 genes in each sample. Using the physiological callus as the control and the nonunion samples as the experimental groups, bioinformatic analyses identified 67 and 81 statistically significant DEGs for HNU and ONU, respectively. Out of the 67 DEGs for the HNU, 34 and 33 were up and down-regulated, respectively. Similarly, out of the 81 DEGs for the ONU, 48 and 33 were up and down-regulated, respectively. Additionally, we also identified common genes between the two nonunion samples; 8 (10.8 %) upregulated and 12 (22.2 %) downregulated. We further identified many biological processes, with several statistically significant ones. Some of these were related to muscle and were common between the two nonunion samples. This study represents the first comprehensive attempt to understand the global molecular events occurring in human nonunion biology. With further research, we can perhaps decipher new molecular pathways involved in aberrant healing of human bone fractures that can be therapeutically targeted.
Collapse
Affiliation(s)
- Leonidas Salichos
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA
| | - Rishika Thayavally
- Department of Biological & Chemical Sciences, New York Institute of Technology, New York, NY 10023, USA; Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA
| | - Peter Kloen
- Department of Orthopedic Surgery and Sports Medicine, Amsterdam UMC location, Meibergdreef 9, the Netherlands; Amsterdam Movement Sciences, (Tissue Function and Regeneration), Amsterdam, the Netherlands
| | - Michael Hadjiargyrou
- Center for Biomedical Data Science, New York Institute of Technology, New York, NY 10023, USA; Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, 11568, USA.
| |
Collapse
|
4
|
Fan W, Meng Y, Zhang J, Li M, Zhang Y, Qu X, Xiu X. To investigate the mechanism of Yiwei Decoction in the treatment of premature ovarian insufficiency-related osteoporosis using transcriptomics, network pharmacology and molecular docking techniques. Sci Rep 2023; 13:19016. [PMID: 37923747 PMCID: PMC10624676 DOI: 10.1038/s41598-023-45699-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
To investigate the molecular mechanism of Yiwei Decoction (YWD) in preventing Premature ovarian insufficiency (POI)-related osteoporosis from the hypothalamic perspective , and to screen for the key active and acting molecules in YWD. Cyclophosphamide was used to create the POI rat model. Groups A, B, and C were established. The Model + YWD group was group A, the model control group was group B, and the normal control group was group C. ELISA was used to determine serum GnRH and FSH levels after gavage. The transcription levels of mRNAs in each group's hypothalamus tissues were examined using RNA-seq sequencing technology. The GSEA method was used to enrich pathways based on the gene expression levels of each group. The TCM-active ingredient-target-disease network map was created using differentially expressed mRNAs (DEmRNAs) and network pharmacology. The molecular docking method was employed to investigate the affinity of the active ingredient with key targets. GnRH and FSH levels in POI rats' serum were reduced by YWD. Between groups A and B, there were 638 DEmRNAs (P < 0.05) and 55 high-significance DEmRNAs (P-adjust < 0.01). The MAPK, Hedgehog, Calcium, and B cell receptor pathways are primarily enriched in DEmRNAs from Group A and Group B. The GSEA pathway enrichment analysis indicates that YWD may regulate Long-term potentiation, Amphetamine addiction, and the Renin-angiotensin system and play a role in preventing osteoporosis. The Chinese herbal medicine (CHM)-Active ingredient-Target-disease network map includes 137 targets, 4 CHMs, and 22 active ingredients. The result of docking indicated that Stigmasterol, interacts well with the core proteins ALB, VCL and KAT5. Following the screening, we identified the targets, active components, and key pathways associated with YWD osteoporosis prevention. Most of these key targets and pathways are associated with osteoporosis, but further experimental validation is required.
Collapse
Affiliation(s)
- Weisen Fan
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yan Meng
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Jing Zhang
- School of Health, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Muzhen Li
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Yingjie Zhang
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China.
| | - Xintian Qu
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| | - Xin Xiu
- First Clinical College of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250013, China
| |
Collapse
|
5
|
Bearoff F, Dhavale D, Kotzbauer P, Kortagere S. Aggregated alpha-synuclein transcriptionally activates pro-inflammatory canonical and non-canonical NF-κB signaling pathways in peripheral monocytic cells. Mol Immunol 2023; 154:1-10. [PMID: 36571978 PMCID: PMC9905308 DOI: 10.1016/j.molimm.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/13/2022] [Indexed: 12/26/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by chronic neuroinflammation, loss of dopaminergic neurons in the substantia nigra, and in several cases accumulation of alpha-synuclein fibril (α-syn) containing Lewy-bodies (LBs). Peripheral inflammation may play a causal role in inducing and perpetuating neuroinflammation in PD and accumulation of fibrillar α-syn has been reported at several peripheral sites including the gut and liver. Peripheral fibrillar α-syn may induce activation of monocytes via recognition by toll-like receptors (TLRs) and stimulation of downstream NF-κB signaling; however, the specific mechanism by which this occurs is not defined. In this study we utilized the THP-1 monocytic cell line to model the peripheral transcriptional response to preformed fibrillar (PFF) α-syn. Compared to monomeric α-syn, PFF α-syn displays overt inflammatory gene upregulation and pathway activation including broad pan-TLR signaling pathway activation and increases in TNF and IL1B gene expression. Notably, the non-canonical NF-κB signaling pathway gene and PD genome wide association study (GWAS) candidate NFKB2 was upregulated. Additionally, non-canonical NF-κB activation-associated RANK and CD40 pathways were also upregulated. Transcriptional-phenotype analysis suggests PFFs induce transcriptional programs associated with differentiation of monocytes towards macrophages and osteoclasts via non-canonical NF-κB signaling as a potential mechanism in which myeloid/monocyte cells may contribute to peripheral inflammation and pathogenesis in PD.
Collapse
Affiliation(s)
- Frank Bearoff
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States
| | - Dhruva Dhavale
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paul Kotzbauer
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Sandhya Kortagere
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, United States.
| |
Collapse
|
6
|
Pan H, Cao J, Wu C, Huang F, Wu P, Lang J, Liu Y. Osteoporosis is associated with elevated baseline cerebrospinal fluid biomarkers and accelerated brain structural atrophy among older people. Front Aging Neurosci 2022; 14:958050. [PMID: 36185490 PMCID: PMC9523506 DOI: 10.3389/fnagi.2022.958050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Objective The aim of this study was to examine whether osteoporosis (OP) is associated with Alzheimer’s disease-related cerebrospinal fluid (CSF) biomarkers and brain structures among older people. Methods From the Alzheimer’s disease Neuroimaging Initiative database, we grouped participants according to the OP status (OP+/OP−) and compared the Alzheimer’s disease (AD)-related CSF biomarker levels and the regional brain structural volumes between the two groups using multivariable models. These models were adjusted for covariates including age, education, gender, diagnosis of Alzheimer’s disease, and apolipoprotein E4 carrier status. Results In the cross-sectional analyses at baseline, OP was related to higher CSF t-tau (total tau) and p-tau181 (tau phosphorylated at threonine-181) but not to CSF amyloid-beta (1–42) or the volumes of entorhinal cortex and hippocampus. In the longitudinal analyses, OP was not associated with the change in the three CSF biomarkers over time but was linked to a faster decline in the size of the entorhinal cortex and hippocampus. Conclusion OP was associated with elevated levels of CSF t-tau and p-tau181 at baseline, and accelerated entorhinal cortex and hippocampal atrophies over time among older people.
Collapse
Affiliation(s)
- Hao Pan
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiali Cao
- Department of Outpatient, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Congcong Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Furong Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peng Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yangbo Liu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yangbo Liu,,
| |
Collapse
|
7
|
Kwon MJ, Kim JH, Kim JH, Cho SJ, Nam ES, Choi HG. The Occurrence of Alzheimer's Disease and Parkinson's Disease in Individuals With Osteoporosis: A Longitudinal Follow-Up Study Using a National Health Screening Database in Korea. Front Aging Neurosci 2021; 13:786337. [PMID: 34955816 PMCID: PMC8692765 DOI: 10.3389/fnagi.2021.786337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Public health concerns regarding the potential link between osteoporosis and the increased occurrence of Alzheimer’s disease (AD) and Parkinson’s disease (PD) have been raised, but the results remain inconsistent and require further validation. Here, we investigated the long-term relationship of osteoporosis with the occurrence of AD/PD using data from a large-scale nationwide cohort. Methods: This longitudinal follow-up study included 78,994 patients with osteoporosis and 78,994 controls from the Korean National Health Insurance Service-Health Screening Cohort database (2002–2015) who were matched using propensity score matching at a 1:1 ratio based on age, sex, income, and residential area. A Cox proportional hazard model was used to assess the association between osteoporosis and the occurrence of AD/PD after adjusting for multiple covariates. Results: During the follow-up period, AD occurred in 5,856 patients with osteoporosis and 3,761 controls (incidence rates: 10.4 and 6.8 per 1,000 person-years, respectively), and PD occurred in 1,397 patients and 790 controls (incidence rates: 2.4 and 1.4 per 1,000 person-years, respectively). The incidences of AD and PD were significantly higher in the osteoporosis group than in the matched control group. After adjustment, the osteoporosis group exhibited 1.27-fold and 1.49-fold higher occurrences of AD (95% confidence interval (CI) = 1.22–1.32) and PD (95% CI = 1.36–1.63) than the controls, respectively. The results of subgroup analyses supported the increased occurrence of AD and PD in patients with osteoporosis, independent of income, residential area, obesity, smoking, alcohol consumption, hyperlipidemia, hypertension, or blood glucose level. Conclusion: Our results indicate that the presence of osteoporosis may increase the likelihood of developing two common neurodegenerative diseases in adults aged ≥40 years.
Collapse
Affiliation(s)
- Mi Jung Kwon
- Division of Neuropathology, Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Seong Jin Cho
- Department of Pathology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Eun Sook Nam
- Department of Pathology, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Hyo Geun Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| |
Collapse
|
8
|
Xiong L, Pan JX, Guo HH, Mei L, Xiong WC. Parkinson's in the bone. Cell Biosci 2021; 11:190. [PMID: 34740382 PMCID: PMC8569842 DOI: 10.1186/s13578-021-00702-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Patients with Parkinson’s disease (PD) exhibit systemic deficits, including arthritis and osteoporosis-like symptoms. However, the questions, how the deficits in periphery organs or tissues occur in PD patients, and what are the relationship (s) of the periphery tissue deficits with the brain pathology (e.g., dopamine neuron loss), are at the beginning stage to be investigated. Notice that both PD and osteoporosis are the products of a complex interaction of genetic and environmental risk factors. Genetic mutations in numerous genes have been identified in patients either with recessive or autosomal dominant PD. Most of these PD risk genes are ubiquitously expressed; and many of them are involved in regulation of bone metabolism. Here, we review the functions of the PD risk genes in regulating bone remodeling and homeostasis. The knowledge gaps in our understanding of the bone-to-brain axis in PD development are also outlined.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.,Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Louis Stoke VA Medical Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
9
|
Lary CW, Rosen CJ, Kiel DP. Osteoporosis and Dementia: Establishing a Link. J Bone Miner Res 2021; 36:2103-2105. [PMID: 34515377 PMCID: PMC8595864 DOI: 10.1002/jbmr.4431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.,Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Nevola KT, Nagarajan A, Hinton AC, Trajanoska K, Formosa MM, Xuereb-Anastasi A, van der Velde N, Stricker BH, Rivadeneira F, Fuggle NR, Westbury LD, Dennison EM, Cooper C, Kiel DP, Motyl KJ, Lary CW. Pharmacogenomic Effects of β-Blocker Use on Femoral Neck Bone Mineral Density. J Endocr Soc 2021; 5:bvab092. [PMID: 34195528 PMCID: PMC8237849 DOI: 10.1210/jendso/bvab092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
CONTEXT Recent studies have shown that β-blocker (BB) users have a decreased risk of fracture and higher bone mineral density (BMD) compared to nonusers, likely due to the suppression of adrenergic signaling in osteoblasts, leading to increased BMD. There is also variability in the effect size of BB use on BMD in humans, which may be due to pharmacogenomic effects. OBJECTIVE To investigate potential single-nucleotide variations (SNVs) associated with the effect of BB use on femoral neck BMD, we performed a cross-sectional analysis using clinical data, dual-energy x-ray absorptiometry, and genetic data from the Framingham Heart Study's (FHS) Offspring Cohort. We then sought to validate our top 4 genetic findings using data from the Rotterdam Study, the BPROOF Study, the Malta Osteoporosis Fracture Study (MOFS), and the Hertfordshire Cohort Study. METHODS We used sex-stratified linear mixed models to determine SNVs that had a significant interaction effect with BB use on femoral neck (FN) BMD across 11 gene regions. We also evaluated the association of our top SNVs from the FHS with microRNA (miRNA) expression in blood and identified potential miRNA-mediated mechanisms by which these SNVs may affect FN BMD. RESULTS One variation (rs11124190 in HDAC4) was validated in females using data from the Rotterdam Study, while another (rs12414657 in ADRB1) was validated in females using data from the MOFS. We performed an exploratory meta-analysis of all 5 studies for these variations, which further validated our findings. CONCLUSION This analysis provides a starting point for investigating the pharmacogenomic effects of BB use on BMD measures.
Collapse
Affiliation(s)
- Kathleen T Nevola
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - Archana Nagarajan
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Alexandra C Hinton
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Angela Xuereb-Anastasi
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida MSD 2080, Malta
- Centre for Molecular Medicine and Biobanking, MSD 2080, Malta
| | - Nathalie van der Velde
- Department of Internal Medicine, Geriatrics, Amsterdam Public Health Research Institute, Amsterdam University Medical Center, Amsterdam, 1105 AZ, the Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center, Rotterdam 3015 GD, the Netherlands
| | - Nicholas R Fuggle
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
| | - Leo D Westbury
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- Victoria University of Wellington, Wellington, New Zealand
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, SO16 6YD, UK
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Douglas P Kiel
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
- Hinda and Arthur Marcus Institute for Aging Research Hebrew SeniorLife, Boston, MA 02131, USA
| | - Katherine J Motyl
- Center for Molecular Medicine, Maine Medical Center Research Institute, Maine Medical Center, Scarborough, ME 04074, USA
| | - Christine W Lary
- Center for Outcomes Research and Evaluation, Maine Medical Center Research Institute, Portland, ME 04101, USA
| |
Collapse
|
11
|
Innis SE, Reinaltt K, Civelek M, Anderson WD. GSEAplot: A Package for Customizing Gene Set Enrichment Analysis in R. J Comput Biol 2021; 28:629-631. [PMID: 33861629 DOI: 10.1089/cmb.2020.0426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gene Set Enrichment Analysis (GSEA) is used to identify differentially expressed gene sets that are enriched for annotated biological functions. The existing GSEA R code is not in the form of a flexible package with analysis and plotting customization options, and the results produced are not generated in the form of R objects. In this study, we introduce the GSEAplot R package with novel functionality for saving relevant information from the analysis to the current R workspace, and we introduce the ability to customize plots and databases. The GSEAplot package provides a novel utility that facilitates the implementation of GSEA R-based in genomics analysis pipelines.
Collapse
Affiliation(s)
- Sarah E Innis
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Kelsie Reinaltt
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Mete Civelek
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Warren D Anderson
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Zou Z, Liu R, Wang Y, Xing Y, Shi Z, Wang K, Dong D. IL1RN promotes osteoblastic differentiation via interacting with ITGB3 in osteoporosis. Acta Biochim Biophys Sin (Shanghai) 2021; 53:294-303. [PMID: 33493267 DOI: 10.1093/abbs/gmaa174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Indexed: 12/14/2022] Open
Abstract
The occurrence and progress of osteoporosis (OP) are partially caused by impaired osteoblast differentiation. Interleukin-I receptor antagonist (IL1RN) is an immune modulatory molecule that commonly functions by means of competing the binding site of IL-1R with IL-1. Although it was recently reported that IL1RN is involved in osteoblast differentiation, the role of IL1RN in osteogenesis remains unclear. In this work, we first investigated the expression pattern of IL1RN in ovariectomy mice and in vitro osteogenic induction of MC3T3-E1 and C3H10T1/2 cells. To verify the exact role of IL1RN in osteoblast differentiation, we established IL1RN-downregulated/upregulated cell lines. The results indicated that IL1RN was constantly expressed in MC3T3-E1 and C3H10T1/2 cells. Interestingly, an increase of IL1RN expression in osteoblasts occurred when osteoblasts were cultured in osteogenic medium (OM). As expected, silencing of IL1RN attenuated the osteogenic effect of OM, while IL1RN overexpression increased the osteogenic staining and promoted the expression of osteogenic markers, including alkaline phosphatase, osterix, and osteocalcin. In addition to evaluating the function of IL1RN in osteoblasts, we also investigated the molecular mechanism of the role of IL1RN in osteoblasts. We found that IL1RN interacts with integrin β3 to activate β-catenin signaling, which finally regulates osteoblast differentiation. Taken together, this study provides the framework that IL1RN, as a novel regulator of osteogenesis, may be a potential therapeutic target for the treatment of OP.
Collapse
Affiliation(s)
- Zehua Zou
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Ruixuan Liu
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yiwen Wang
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Yufei Xing
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Zuowei Shi
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Kaifu Wang
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| | - Daming Dong
- Department of Orthopedic, The First Affiliated Hospital of Harbin Medical University, Harbin 150000, China
| |
Collapse
|
13
|
Figueroa CA, Bajgain P, Stohn JP, Hernandez A, Brooks DJ, Houseknecht KL, Rosen CJ. Deletion of α-Synuclein in Prrx1-positive cells causes partial loss of function in the central nervous system (CNS) but does not affect ovariectomy induced bone loss. Bone 2020; 137:115428. [PMID: 32417536 PMCID: PMC8260189 DOI: 10.1016/j.bone.2020.115428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022]
Abstract
α-Synuclein is a small 140 amino acid polypeptide encoded by the Snca gene that is highly expressed in neural tissue, but it is also found in osteoblasts, erythroblasts, macrophages, and adipose tissue. Previously, using co-expression network analysis we found that Snca was a key regulator of skeletal homeostasis, and its deletion partially prevented bone loss after ovariectomy (OVX). Here we tested the hypothesis that Snca deletion in mesenchymal progenitors using the Prrx1Cre (Prrx1, Paired-related homeobox 1) limb enhancer would protect bone mass after OVX. Prrx1Cre;Sncafl/fl and littermate controls (Sncafl/fl) were sham operated or ovariectomized (OVX) at 8 weeks of age and sacrificed at 20 weeks. Independently, eight-week female and male Prrx1Cre;Sncafl/fl mice and littermate controls were administered a high fat (60% fat) or low fat (10% fat) diet for 15 weeks. Bone loss was not prevented in either genotype after ovariectomy, but the Prrx1Cre;Sncafl/fl. mice were partially protected from weight gain after OVX and high fat diet (HFD). Serum catecholamine levels were lower in the Prrx1Cre;Sncafl/fl both on a low fat diet (LFD) and HFD versus fl/fl controls. Importantly, mutant mice exhibited a number of physical and behavioral phenotypes that were associated with conditional deletion of Snca in several brain regions. Cells labeled with Prrx1 were noted throughout the central nervous system (CNS). These data support earlier preliminary reports of Prrx1 expression in neural progenitors, and raise a cautionary note about the evaluation of skeletal and body composition phenotypes when using this Cre driver to study osteoprogenitor development.
Collapse
Affiliation(s)
| | - Pratima Bajgain
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - J Patrizia Stohn
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| | - Daniel J Brooks
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA.
| | - Karen L Houseknecht
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME, USA..
| | - Clifford J Rosen
- Maine Medical Center Research Institute, MMCRI, Scarborough, ME, USA..
| |
Collapse
|
14
|
Rosen CJ, Figueroa CA. Parkinson's disease and osteoporosis: basic and clinical implications. Expert Rev Endocrinol Metab 2020; 15:185-193. [PMID: 32336178 PMCID: PMC7250483 DOI: 10.1080/17446651.2020.1756772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
Introduction: Parkinson's disease (PD) is the second most frequent neurodegenerative disease. Lewy bodies, the hallmark of this disease due to an accumulation of α-synuclein, lead to loss of dopamine-regulated motor circuits, concomitantly progressive immobilization and a broad range of nonmotor features. PD patients have more hospitalizations, endure longer recovery time from comorbidities, and exhibit higher mortality than healthy controls. Although often overlooked, secondary osteoporosis has been reported frequently and is associated with a worse prognosis.Areas covered: In this review, we discuss the pathophysiology of PD from a systemic perspective. We searched on PubMed articles from the last 20 years in PD, both clinical features and bone health status. We discuss possible neuro/endocrine mechanisms by which PD impacts the skeleton, review available therapy for osteoporotic fractures and highlight evidence gaps in defining skeletal co-morbid events.Expert opinion: Future research is essential to understand the local and systemic effects of dopaminergic signaling on bone remodeling and to determine how pathological α-synuclein deposition in the central nervous system might impact the skeleton. It is hoped that a systematic approach to the pathogenesis of this disease and its treatment will allow the informed use of osteoporotic drugs to prevent fractures in PD patients.
Collapse
Affiliation(s)
- Clifford J Rosen
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Carolina A Figueroa
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
15
|
Ganta VC, Choi M, Farber CR, Annex BH. Antiangiogenic VEGF 165b Regulates Macrophage Polarization via S100A8/S100A9 in Peripheral Artery Disease. Circulation 2019; 139:226-242. [PMID: 30586702 PMCID: PMC6322929 DOI: 10.1161/circulationaha.118.034165] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Atherosclerotic occlusions decrease blood flow to the lower limbs, causing ischemia and tissue loss in patients with peripheral artery disease (PAD). No effective medical therapies are currently available to induce angiogenesis and promote perfusion recovery in patients with severe PAD. Clinical trials aimed at inducing vascular endothelial growth factor (VEGF)-A levels, a potent proangiogenic growth factor to induce angiogenesis, and perfusion recovery were not successful. Alternate splicing in the exon-8 of VEGF-A results in the formation of VEGFxxxa (VEGF165a) and VEGFxxxb (VEGF165b) isoforms with existing literature focusing on VEGF165b's role in inhibiting vascular endothelial growth factor receptor 2-dependent angiogenesis. However, we have recently shown that VEGF165b blocks VEGF-A-induced endothelial vascular endothelial growth factor receptor 1 (VEGFR1) activation in ischemic muscle to impair perfusion recovery. Because macrophage-secreted VEGF165b has been shown to decrease angiogenesis in peripheral artery disease, and macrophages were well known to play important roles in regulating ischemic muscle vascular remodeling, we examined the role of VEGF165b in regulating macrophage function in PAD. METHODS Femoral artery ligation and resection were used as an in vivo preclinical PAD model, and hypoxia serum starvation was used as an in vitro model for PAD. Experiments including laser-Doppler perfusion imaging, adoptive cell transfer to ischemic muscle, immunoblot analysis, ELISAs, immunostainings, flow cytometry, quantitative polymerase chain reaction analysis, and RNA sequencing were performed to determine a role of VEGF165b in regulating macrophage phenotype and function in PAD. RESULTS First, we found increased VEGF165b expression with increased M1-like macrophages in PAD versus non-PAD (controls) muscle biopsies. Next, using in vitro hypoxia serum starvation, in vivo pre clinical PAD models, and adoptive transfer of VEGF165b-expressing bone marrow-derived macrophages or VEGFR1+/- bone marrow-derived macrophages (M1-like phenotype), we demonstrate that VEGF165b inhibits VEGFR1 activation to induce an M1-like phenotype that impairs ischemic muscle neovascularization. Subsequently, we found S100A8/S100A9 as VEGFR1 downstream regulators of macrophage polarization by RNA-Seq analysis of hypoxia serum starvation-VEGFR1+/+ versus hypoxia serum starvation-VEGFR1+/- bone marrow-derived macrophages. CONCLUSIONS In our current study, we demonstrate that increased VEGF165b expression in macrophages induces an antiangiogenic M1-like phenotype that directly impairs angiogenesis. VEGFR1 inhibition by VEGF165b results in S100A8/S100A9-mediated calcium influx to induce an M1-like phenotype that impairs ischemic muscle revascularization and perfusion recovery.
Collapse
Affiliation(s)
- Vijay Chaitanya Ganta
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
- Division Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA
| | - Min Choi
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
| | - Charles R. Farber
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA
| | - Brian H. Annex
- Robert M Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA
- Division Cardiovascular Medicine, Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
16
|
Feng L, Wang Y, Zhou J, Tian B, Xia B. Screening of differentially expressed genes in male idiopathic osteoporosis via RNA sequencing. Mol Med Rep 2018; 18:67-76. [PMID: 29750314 PMCID: PMC6059696 DOI: 10.3892/mmr.2018.8985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
As a type of osteoporosis (OP), male idiopathic OP (MIO) is a bone disorder that occurs in young males and is a public health problem worldwide. However, the detailed pathogenesis of MIO remains to be elucidated. In the present study, blood samples of patients with MIO, senile OP, postmenopausal OP and normal controls (NCs) were obtained for RNA sequencing. Compared with the NC group, differentially expressed genes (DEGs) in the three types of OP were identified. DEGs that were common among the three types of OP and the DEGs that were unique to patients with MIO were determined. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted. MIO‑specific and OP‑specific protein‑protein interaction (PPI) networks were constructed. Compared with NCs, a total of 519, 368 and 1,472 DEGs were identified in samples from MIO, senile OP and postmenopausal OP, respectively. Tetraspanin 5 (TSPAN5) and α‑synuclein (SNCA) were unique DEGs in MIO that were not identified in the other two types of OP compared with NCs. Furthermore, the expression of carbonic anhydrase 1 (CA1) and S100 calcium‑binding protein P (S100P) in MIO was significantly different compared with senile OP, postmenopausal OP and NC samples. 'MAPK signaling pathway', 'type I diabetes mellitus' and 'hematopoietic cell lineage' were among significantly enriched pathways of DEGs in MIO. SNCA and CDC‑like kinase 1 were the hub genes in the MIO‑specific PPI network. In conclusion, the mitogen‑activated protein kinase signaling and type I diabetes mellitus pathways may be involved in bone formation; SNCA and TSPAN5 may be associated with bone resorption. These two pathways and two genes may serve a role in MIO. CA1 and S100P may regulate the process of MIO by modulation of calcification and dysregulation of calcium binding. These findings may have provided an experimental basis for elucidating the underlying mechanisms and developing potential diagnostic biomarkers of MIO.
Collapse
Affiliation(s)
- Li Feng
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Yan Wang
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Jing Zhou
- Department of Gynecology, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Baofang Tian
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| | - Bo Xia
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
17
|
Zhu X, Wang Z, Zhao Y, Jiang C. Investigation of candidate genes and mechanisms underlying postmenopausal osteoporosis using bioinformatics analysis. Mol Med Rep 2018; 17:1561-1572. [PMID: 29138843 PMCID: PMC5780095 DOI: 10.3892/mmr.2017.8045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/06/2017] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to determine candidate genes, chemicals and mechanisms underlying postmenopausal osteoporosis (PMOP). A gene expression profile (accession no. GSE68303), which included 12 tissue samples from ovariectomized mice (OVX group) and 11 normal tissue samples from sham surgery mice (control group), was downloaded from the Gene Expression Omnibus database. The identification of differentially expressed genes (DEGs), and Gene Ontology functional enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses, was performed, followed by an investigation of protein‑protein interactions (PPI), PPI modules, transcription factors (TFs) and chemicals. A total of 784 upregulated and 729 downregulated DEGs between the two groups were identified. Furthermore, 2 upregulated modules and 6 downregulated modules were determined. The upregulated DEGs in modules were enriched in 'sensory perception of smell' function and 'olfactory transduction' pathway, and a number of genes belonging to the olfactory receptor (OLFR) family were identified in upregulated modules. The downregulated DEGs in modules were enriched in 'DNA replication initiation' function and 'cell cycle' pathway. A total of 8 TFs, including SP1 TF (SP1) and protein C‑ets‑1 (ETS1), were associated with PMOP. Furthermore, estradiol and resveratrol were identified as key chemicals in the chemical‑gene interaction network. Therefore, TFs, including SP1 and ETS1, in addition to members of the OLFR gene family, may be employed as novel targets for treatment of PMOP. Furthermore, functions including 'sensory perception of smell' and 'replication initiation', and 'olfactory transduction' and 'cell cycle' pathways, may serve roles in PMOP. In addition, based on the chemical‑gene interaction network, estradiol and resveratrol may also be considered for the treatment PMOP.
Collapse
Affiliation(s)
- Xiaozhong Zhu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University, Shanghai 200065, P.R. China
| | - Zhiyuan Wang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University, Shanghai 200065, P.R. China
| | - Yanxun Zhao
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University, Shanghai 200065, P.R. China
| | - Chao Jiang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji University, Shanghai 200065, P.R. China
| |
Collapse
|
18
|
Vertebrate food products as a potential source of prion-like α-synuclein. NPJ PARKINSONS DISEASE 2017; 3:33. [PMID: 29184902 PMCID: PMC5701169 DOI: 10.1038/s41531-017-0035-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/08/2023]
Abstract
The aberrant aggregation of the protein α-synuclein is thought to be involved in Parkinson’s disease (PD). However, the factors that lead to initiation and propagation of α-synuclein aggregation are not clearly understood. Recently, the hypothesis that α-synuclein aggregation spreads via a prion-like mechanism originating in the gut has gained much scientific attention. If α-synuclein spreads via a prion-like mechanism, then an important question becomes, what are the origins of this prion-like species? Here we review the possibility that α-synuclein aggregation could be seeded via the ingestion of a prion-like α-synuclein species contained within food products originating from vertebrates. To do this, we highlight current evidence for the gut-to-brain hypothesis of PD, and put this in context of available routes of α-synuclein prion infectivity via the gastrointestinal (GI) tract. We then discuss meat as a ready exogenous source of α-synuclein and how certain risk factors, including inflammation, may allow for dietary α-synuclein to pass from the GI lumen into the host to induce pathology. Lastly, we review epidemiological evidence that dietary factors may be involved in PD. Overall, research to date has yet to directly test the contribution of dietary α-synuclein to the mechanism of initiation and progression of the disease. However, numerous experimental findings, including the potent seeding and spreading behavior of α-synuclein fibrils, seem to support, at least in part, the feasibility of an infection with a prion α-synuclein particle via the GI tract. Further studies are required to determine whether dietary α-synuclein contributes to seeding pathology in the gut.
Collapse
|
19
|
Liron T, Raphael B, Hiram‐Bab S, Bab IA, Gabet Y. Bone loss in C57BL/6J‐OlaHsd mice, a substrain of C57BL/6J carrying mutated alpha‐synuclein and multimerin‐1 genes. J Cell Physiol 2017; 233:371-377. [DOI: 10.1002/jcp.25895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Tamar Liron
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Bitya Raphael
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Sahar Hiram‐Bab
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| | - Itai A. Bab
- Bone LaboratoryThe Hebrew University of JerusalemJerusalemIsrael
| | - Yankel Gabet
- Sackler Faculty of MedicineDepartment of Anatomy and AnthropologyTel Aviv UniversityTel AvivIsrael
| |
Collapse
|