1
|
Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun 2023; 139:103070. [PMID: 37390745 PMCID: PMC10258587 DOI: 10.1016/j.jaut.2023.103070] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 07/02/2023]
Abstract
Infectious diseases are commonly implicated as potential initiators of autoimmune diseases (ADs) and represent the most commonly known factor in the development of autoimmunity in susceptible individuals. Epidemiological data and animal studies on multiple ADs suggest that molecular mimicry is one of the likely mechanisms for the loss of peripheral tolerance and the development of clinical disease. Besides molecular mimicry, other mechanisms such as defects in central tolerance, nonspecific bystander activation, epitope-determinant spreading, and/or constant antigenic stimuli, may also contribute for breach of tolerance and to the development of ADs. Linear peptide homology is not the only mechanism by which molecular mimicry is established. Peptide modeling (i.e., 3D structure), molecular docking analyses, and affinity estimation for HLAs are emerging as critical strategies when studying the links of molecular mimicry in the development of autoimmunity. In the current pandemic, several reports have confirmed an influence of SARS-CoV-2 on subsequent autoimmunity. Bioinformatic and experimental evidence support the potential role of molecular mimicry. Peptide dimensional analysis requires more research and will be increasingly important for designing and distributing vaccines and better understanding the role of environmental factors related to autoimmunity.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA; Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia.
| | - María Herrán
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Carolina Ramírez-Santana
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - Juan-Manuel Anaya
- Health Research and Innovation Center at Coosalud, Cartagena, 130001, Colombia
| | - William M Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, 95616, USA
| |
Collapse
|
2
|
Taghadosi M, Safarzadeh E, Asgarzadeh A, Roghani SA, Shamsi A, Jalili C, Assar S, Soufivand P, Pournazari M, Feizollahi P, Nicknam MH, Asghariazar V, Vaziri S, Shahriari H, Mohammadi A. Partners in crime: Autoantibodies complicit in COVID-19 pathogenesis. Rev Med Virol 2023; 33:e2412. [PMID: 36471421 PMCID: PMC9877745 DOI: 10.1002/rmv.2412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/06/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022]
Abstract
Autoantibodies (AABs) play a critical role in the pathogenesis of autoimmune diseases (AIDs) and serve as a diagnostic and prognostic tool in assessing these complex disorders. Viral infections have long been recognized as a principal environmental factor affecting the production of AABs and the development of autoimmunity. COVID-19 has primarily been considered a hyperinflammatory syndrome triggered by a cytokine storm. In the following, the role of maladaptive B cell response and AABs became more apparent in COVID-19 pathogenesis. The current review will primarily focus on the role of extrafollicular B cell response, Toll-like receptor-7 (TLR-7) activation, and neutrophil extracellular traps (NETs) formation in the development of AABs following SARS-CoV-2 infection. In the following, this review will clarify how these AABs dysregulate immune response to SARS-CoV-2 by disrupting cytokine function and triggering neutrophil hyper-reactivity. Finally, the pathologic effects of these AABs will be further described in COVID-19 associate clinical manifestations, including venous and arterial thrombosis, a multisystem inflammatory syndrome in children (MIS-C), acute respiratory distress syndrome (ARDS), and recently described post-acute sequelae of COVID-19 (PASC) or long-COVID.
Collapse
Affiliation(s)
- Mahdi Taghadosi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Safarzadeh
- Department of Microbiology, Parasitology, and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ali Asgarzadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Seyed Askar Roghani
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Afsaneh Shamsi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Department of Anatomy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shirin Assar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parviz Soufivand
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehran Pournazari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Feizollahi
- Immunology Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hossein Nicknam
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Research Centre, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Asghariazar
- Deputy of Research and Technology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Siavash Vaziri
- Infectious Disease Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Shahriari
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
3
|
Ionov S, Lee J. An Immunoproteomic Survey of the Antibody Landscape: Insights and Opportunities Revealed by Serological Repertoire Profiling. Front Immunol 2022; 13:832533. [PMID: 35178051 PMCID: PMC8843944 DOI: 10.3389/fimmu.2022.832533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
Immunoproteomics has emerged as a versatile tool for analyzing the antibody repertoire in various disease contexts. Until recently, characterization of antibody molecules in biological fluids was limited to bulk serology, which identifies clinically relevant features of polyclonal antibody responses. The past decade, however, has seen the rise of mass-spectrometry-enabled proteomics methods that have allowed profiling of the antibody response at the molecular level, with the disease-specific serological repertoire elucidated in unprecedented detail. In this review, we present an up-to-date survey of insights into the disease-specific immunological repertoire by examining how quantitative proteomics-based approaches have shed light on the humoral immune response to infection and vaccination in pathogenic illnesses, the molecular basis of autoimmune disease, and the tumor-specific repertoire in cancer. We address limitations of this technology with a focus on emerging potential solutions and discuss the promise of high-resolution immunoproteomics in therapeutic discovery and novel vaccine design.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
4
|
Large-scale analysis of 2,152 Ig-seq datasets reveals key features of B cell biology and the antibody repertoire. Cell Rep 2021; 35:109110. [PMID: 33979623 DOI: 10.1016/j.celrep.2021.109110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Antibody repertoire sequencing enables researchers to acquire millions of B cell receptors and investigate these molecules at the single-nucleotide level. This power and resolution in studying humoral responses have led to its wide applications. However, most of these studies were conducted with a limited number of samples. Given the extraordinary diversity, assessment of these key features with a large sample set is demanded. Thus, we collect and systematically analyze 2,152 high-quality heavy-chain antibody repertoires. Our study reveals that 52 core variable genes universally contribute to more than 99% of each individual's repertoire; a distal interspersed preferences characterize V gene recombination; the number of public clones between two repertoires follows a linear model, and the positive selection dominates at RGYW motif in somatic hypermutations. Thus, this population-level analysis resolves some critical features of the antibody repertoire and may have significant value to the large cadre of scientists.
Collapse
|
5
|
Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses 2019; 11:v11080762. [PMID: 31430946 PMCID: PMC6723519 DOI: 10.3390/v11080762] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
For a long time, viruses have been shown to modify the clinical picture of several autoimmune diseases, including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), Sjögren’s syndrome (SS), herpetic stromal keratitis (HSK), celiac disease (CD), and multiple sclerosis (MS). Best examples of viral infections that have been proposed to modulate the induction and development of autoimmune diseases are the infections with enteric viruses such as Coxsackie B virus (CVB) and rotavirus, as well as influenza A viruses (IAV), and herpesviruses. Other viruses that have been studied in this context include, measles, mumps, and rubella. Epidemiological studies in humans and experimental studies in animal have shown that viral infections can induce or protect from autoimmunopathologies depending on several factors including genetic background, host-elicited immune responses, type of virus strain, viral load, and the onset time of infection. Still, data delineating the clear mechanistic interaction between the virus and the immune system to induce autoreactivity are scarce. Available data indicate that viral-induced autoimmunity can be activated through multiple mechanisms including molecular mimicry, epitope spreading, bystander activation, and immortalization of infected B cells. Contrarily, the protective effects can be achieved via regulatory immune responses which lead to the suppression of autoimmune phenomena. Therefore, a better understanding of the immune-related molecular processes in virus-induced autoimmunity is warranted. Here we provide an overview of the current understanding of viral-induced autoimmunity and the mechanisms that are associated with this phenomenon.
Collapse
|
6
|
VanDuijn MM, Dekker LJ, van IJcken WFJ, Sillevis Smitt PAE, Luider TM. Immune Repertoire after Immunization As Seen by Next-Generation Sequencing and Proteomics. Front Immunol 2017; 8:1286. [PMID: 29085363 PMCID: PMC5650670 DOI: 10.3389/fimmu.2017.01286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/24/2023] Open
Abstract
The immune system produces a diverse repertoire of immunoglobulins in response to foreign antigens. During B-cell development, VDJ recombination and somatic mutations generate diversity, whereas selection processes remove it. Using both proteomic and NGS approaches, we characterized the immune repertoires in groups of rats after immunization with purified antigens. Proteomics and NGS data on the repertoire are in qualitative agreement, but did show quantitative differences that may relate to differences between the biological niches that were sampled for these approaches. Both methods contributed complementary information in the characterization of the immune repertoire. It was found that the immune repertoires resulting from each antigen had many similarities that allowed samples to cluster together, and that mutated immunoglobulin peptides were shared among animals with a response to the same antigen significantly more than for different antigens. However, the number of shared sequences decreased in a log-linear fashion relative to the number of animals that share them, which may affect future applications. A phylogenetic analysis on the NGS reads showed that reads from different individuals immunized with the same antigen populated distinct branches of the phylogram, an indication that the repertoire had converged. Also, similar mutation patterns were found in branches of the phylogenetic tree that were associated with antigen-specific immunoglobulins through proteomics data. Thus, data from different analysis methods and different experimental platforms show that the immunoglobulin repertoires of immunized animals have overlapping and converging features. With additional research, this may enable interesting applications in biotechnology and clinical diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Theo M Luider
- Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
7
|
D'Lima NG, Khitun A, Rosenbloom AD, Yuan P, Gassaway BM, Barber KW, Rinehart J, Slavoff SA. Comparative Proteomics Enables Identification of Nonannotated Cold Shock Proteins in E. coli. J Proteome Res 2017; 16:3722-3731. [PMID: 28861998 PMCID: PMC5647875 DOI: 10.1021/acs.jproteome.7b00419] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Recent advances in mass spectrometry-based
proteomics have revealed
translation of previously nonannotated microproteins from thousands
of small open reading frames (smORFs) in prokaryotic and eukaryotic
genomes. Facile methods to determine cellular functions of these newly
discovered microproteins are now needed. Here, we couple semiquantitative
comparative proteomics with whole-genome database searching to identify
two nonannotated, homologous cold shock-regulated microproteins in Escherichia coli K12 substr. MG1655, as well as two
additional constitutively expressed microproteins. We apply molecular
genetic approaches to confirm expression of these cold shock proteins
(YmcF and YnfQ) at reduced temperatures and identify the noncanonical
ATT start codons that initiate their translation. These proteins are
conserved in related Gram-negative bacteria and are predicted to be
structured, which, in combination with their cold shock upregulation,
suggests that they are likely to have biological roles in the cell.
These results reveal that previously unknown factors are involved
in the response of E. coli to lowered
temperatures and suggest that further nonannotated, stress-regulated E. coli microproteins may remain to be found. More
broadly, comparative proteomics may enable discovery of regulated,
and therefore potentially functional, products of smORF translation
across many different organisms and conditions.
Collapse
Affiliation(s)
- Nadia G D'Lima
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alexandra Khitun
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Aaron D Rosenbloom
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Peijia Yuan
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Brandon M Gassaway
- Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut 06520, United States.,Systems Biology Institute, Yale University , West Haven, Connecticut 06511, United States
| | - Karl W Barber
- Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut 06520, United States.,Systems Biology Institute, Yale University , West Haven, Connecticut 06511, United States
| | - Jesse Rinehart
- Department of Cellular and Molecular Physiology, Yale University , New Haven, Connecticut 06520, United States.,Systems Biology Institute, Yale University , West Haven, Connecticut 06511, United States
| | - Sarah A Slavoff
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, Connecticut 06529, United States
| |
Collapse
|
8
|
Cotham VC, Horton AP, Lee J, Georgiou G, Brodbelt JS. Middle-Down 193-nm Ultraviolet Photodissociation for Unambiguous Antibody Identification and its Implications for Immunoproteomic Analysis. Anal Chem 2017; 89:6498-6504. [PMID: 28517930 DOI: 10.1021/acs.analchem.7b00564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mass spectrometry (MS) has emerged as a powerful tool within the growing field of immunoproteomics, which aims to understand antibody-mediated immunity at the molecular-level based on the direct determination of serological antibody repertoire. To date, these methods have relied on the use of high-resolution bottom-up proteomic strategies that require effective sampling and characterization of low abundance peptides derived from the antigen-binding domains of polyclonal antibody mixtures. Herein, we describe a method that uses restricted Lys-C enzymatic digestion to increase the average mass of proteolytic IgG peptides (≥4.5 kDa) and produce peptides which uniquely derive from single antibody species. This enhances the capacity to discriminate between very similar antibodies present within polyclonal mixtures. Furthermore, our use of 193-nm ultraviolet photodissociation (UVPD) improves spectral coverage of the antibody sequence relative to conventional collision- and electron-based fragmentation methods. We apply these methods to both a monoclonal and an antibody mixture. By identifying from a database search of approximately 15 000 antibody sequences those which compose the mixture, we demonstrate the analytical potential of middle-down UVPD for MS-based serological repertoire analysis.
Collapse
Affiliation(s)
- Victoria C Cotham
- Department of Chemistry, ‡Center for Systems and Synthetic Biology, §Department of Biomedical Engineering, ∥Department of Chemical Engineering, ⊥Institute for Cellular and Molecular Biology, #Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Andrew P Horton
- Department of Chemistry, ‡Center for Systems and Synthetic Biology, §Department of Biomedical Engineering, ∥Department of Chemical Engineering, ⊥Institute for Cellular and Molecular Biology, #Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jiwon Lee
- Department of Chemistry, ‡Center for Systems and Synthetic Biology, §Department of Biomedical Engineering, ∥Department of Chemical Engineering, ⊥Institute for Cellular and Molecular Biology, #Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - George Georgiou
- Department of Chemistry, ‡Center for Systems and Synthetic Biology, §Department of Biomedical Engineering, ∥Department of Chemical Engineering, ⊥Institute for Cellular and Molecular Biology, #Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, ‡Center for Systems and Synthetic Biology, §Department of Biomedical Engineering, ∥Department of Chemical Engineering, ⊥Institute for Cellular and Molecular Biology, #Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|