1
|
Schouten D, van der Laak J, van Ginneken B, Litjens G. Full resolution reconstruction of whole-mount sections from digitized individual tissue fragments. Sci Rep 2024; 14:1497. [PMID: 38233535 PMCID: PMC10794243 DOI: 10.1038/s41598-024-52007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/12/2024] [Indexed: 01/19/2024] Open
Abstract
Whole-mount sectioning is a technique in histopathology where a full slice of tissue, such as a transversal cross-section of a prostate specimen, is prepared on a large microscope slide without further sectioning into smaller fragments. Although this technique can offer improved correlation with pre-operative imaging and is paramount for multimodal research, it is not commonly employed due to its technical difficulty, associated cost and cumbersome integration in (digital) pathology workflows. In this work, we present a computational tool named PythoStitcher which reconstructs artificial whole-mount sections from digitized tissue fragments, thereby bringing the benefits of whole-mount sections to pathology labs currently unable to employ this technique. Our proposed algorithm consists of a multi-step approach where it (i) automatically determines how fragments need to be reassembled, (ii) iteratively optimizes the stitch using a genetic algorithm and (iii) efficiently reconstructs the final artificial whole-mount section on full resolution (0.25 µm/pixel). PythoStitcher was validated on a total of 198 cases spanning five datasets with a varying number of tissue fragments originating from different organs from multiple centers. PythoStitcher successfully reconstructed the whole-mount section in 86-100% of cases for a given dataset with a residual registration mismatch of 0.65-2.76 mm on automatically selected landmarks. It is expected that our algorithm can aid pathology labs unable to employ whole-mount sectioning through faster clinical case evaluation and improved radiology-pathology correlation workflows.
Collapse
Affiliation(s)
- Daan Schouten
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | - Jeroen van der Laak
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Bram van Ginneken
- Department of Radiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Geert Litjens
- Department of Pathology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
2
|
Han D, Liao J, Zhang M, Qin C, Han M, Wu C, Li J, Yao J, Liu Y. Reconstructing virtual large slides can improve the accuracy and consistency of tumor bed evaluation for breast cancer after neoadjuvant therapy. Diagn Pathol 2022; 17:40. [PMID: 35484579 PMCID: PMC9047297 DOI: 10.1186/s13000-022-01219-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To explore whether the "WSI Stitcher", a program we developed for reconstructing virtual large slide through whole slide imaging fragments stitching, can improve the efficiency and consistency of pathologists in evaluating the tumor bed after neoadjuvant treatment of breast cancer compared with the conventional methods through stack splicing of physical slides. METHODS This study analyzed the advantages of using software-assisted methods to evaluate the tumor bed after neoadjuvant treatment of breast cancer. This new method is to use "WSI Stitcher" to stitch all the WSI fragments together to reconstruct a virtual large slide and evaluate the tumor bed with the help of the built-in ruler and tumor proportion calculation functions. RESULTS Compared with the conventional method, the evaluation time of the software-assisted method was shortened by 35%(P < 0.001). In the process of tumor bed assessment after neoadjuvant treatment of breast cancer, the software-assisted method has higher intraclass correlation coefficient when measuring the length (0.994 versus 0.934), width (0.992 versus 0.927), percentage of residual tumor cells (0.947 versus 0.878), percentage of carcinoma in situ (0.983 versus 0.881) and RCB index(0.997 versus 0.772). The software-assisted method has higher kappa values when evaluating tumor staging(0.901 versus 0.687) and RCB grading (0.963 versus 0.857). CONCLUSION The "WSI Stitcher" is an effective tool to help pathologists with the assessment of breast cancer after neoadjuvant treatment.
Collapse
Affiliation(s)
- Dandan Han
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jun Liao
- AI Lab, Tencent, Tencent Binhai Building, No. 33, Haitian Second Road, Nanshan District, Shenzhen, 518054, Guangdong, China
| | - Meng Zhang
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Chenchen Qin
- AI Lab, Tencent, Tencent Binhai Building, No. 33, Haitian Second Road, Nanshan District, Shenzhen, 518054, Guangdong, China
| | - Mengxue Han
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Chun Wu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jinze Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jianhua Yao
- AI Lab, Tencent, Tencent Binhai Building, No. 33, Haitian Second Road, Nanshan District, Shenzhen, 518054, Guangdong, China.
| | - Yueping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
3
|
Correlation between MRI phenotypes and a genomic classifier of prostate cancer: preliminary findings. Eur Radiol 2019; 29:4861-4870. [PMID: 30847589 DOI: 10.1007/s00330-019-06114-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/07/2019] [Accepted: 02/15/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES We sought to evaluate the correlation between MRI phenotypes of prostate cancer as defined by PI-RADS v2 and the Decipher Genomic Classifier (used to estimate the risk of early metastases). METHODS This single-center, retrospective study included 72 nonconsecutive men with prostate cancer who underwent MRI before radical prostatectomy performed between April 2014 and August 2017 and whose MRI registered lesions were microdissected from radical prostatectomy specimens and then profiled using Decipher (89 lesions; 23 MRI invisible [PI-RADS v2 scores ≤ 2] and 66 MRI visible [PI-RADS v2 scores ≥ 3]). Linear regression analysis was used to assess clinicopathologic and MRI predictors of Decipher results; correlation coefficients (r) were used to quantify these associations. AUC was used to determine whether PI-RADS v2 could accurately distinguish between low-risk (Decipher score < 0.45) and intermediate-/high-risk (Decipher score ≥ 0.45) lesions. RESULTS MRI-visible lesions had higher Decipher scores than MRI-invisible lesions (mean difference 0.22; 95% CI 0.13, 0.32; p < 0.0001); most MRI-invisible lesions (82.6%) were low risk. PI-RADS v2 had moderate correlation with Decipher (r = 0.54) and had higher accuracy (AUC 0.863) than prostate cancer grade groups (AUC 0.780) in peripheral zone lesions (95% CI for difference 0.01, 0.15; p = 0.018). CONCLUSIONS MRI phenotypes of prostate cancer are positively correlated with Decipher risk groups. Although PI-RADS v2 can accurately distinguish between lesions classified by Decipher as low or intermediate/high risk, some lesions classified as intermediate/high risk by Decipher are invisible on MRI. KEY POINTS • MRI phenotypes of prostate cancer as defined by PI-RADS v2 positively correlated with a genomic classifier that estimates the risk of early metastases. • Most but not all MRI-invisible lesions had a low risk for early metastases according to the genomic classifier. • MRI could be used in conjunction with genomic assays to identify lesions that may carry biological potential for early metastases.
Collapse
|
4
|
Kapsokalyvas D, Wilbers A, Boogers IA, Appeldoorn MM, Kabel MA, Loos J, Van Zandvoort MA. Biomass Pretreatment and Enzymatic Hydrolysis Dynamics Analysis Based on Particle Size Imaging. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2018; 24:517-525. [PMID: 30334516 PMCID: PMC6378656 DOI: 10.1017/s1431927618015143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
Parameters such as pretreatment method, enzyme type and concentration, determine the conversion efficiency of biomass' cellulose and hemicellulose to glucose and mainly xylose in biomass-based fuel production. Chemical quantification of these processes offers no information on the effect of enzymatic hydrolysis (EH) on particle morphology. We report on the development of a microscopy method for imaging pretreated biomass particles at different EH stages. The method was based on acquiring large field of view images, typically 20×10 mm2 containing thousands of particles. Morphology of particles with lengths between 2 μm and 5 mm could be visualized and analyzed. The particle length distribution of corn stover samples, pretreated with increasing amounts of sulfuric acid at different EH stages, was measured. Particle size was shown to be dependent on pretreatment severity and EH time. The methodology developed could offer an alternative method for characterization of EH of biomass for second generation biofuels and visualization of recalcitrant structures.
Collapse
Affiliation(s)
- Dimitrios Kapsokalyvas
- Department of Molecular Cell Biology, CARIM, GROW, Maastricht University, Maastricht, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Arnold Wilbers
- Royal DSM N.V., Materials Science Center, Urmonderbaan 22, Geleen6167 RD, The Netherlands
| | - Ilco A.L.A. Boogers
- Royal DSM N.V., Biotechnology Center, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands
| | - Maaike M. Appeldoorn
- Royal DSM N.V., Biotechnology Center, Alexander Fleminglaan 1, 2613 AXDelft, The Netherlands
| | - Mirjam A. Kabel
- Laboratory of Food Chemistry, Wageningen University, Bornse Weilanden 9, Wageningen6708 WG, The Netherlands
| | - Joachim Loos
- Royal DSM N.V., Materials Science Center, Urmonderbaan 22, Geleen6167 RD, The Netherlands
| | - Marc A.M.J. Van Zandvoort
- Department of Molecular Cell Biology, CARIM, GROW, MHeNs, NUTRIM, Maastricht University, Universiteitssingel 50, Maastricht6229 ER, The Netherlands
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, Pauwelstrasse 30, Aachen52704, Germany
| |
Collapse
|
5
|
Penzias G, Singanamalli A, Elliott R, Gollamudi J, Shih N, Feldman M, Stricker PD, Delprado W, Tiwari S, Böhm M, Haynes AM, Ponsky L, Fu P, Tiwari P, Viswanath S, Madabhushi A. Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI: Preliminary findings. PLoS One 2018; 13:e0200730. [PMID: 30169514 PMCID: PMC6118356 DOI: 10.1371/journal.pone.0200730] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 07/02/2018] [Indexed: 12/29/2022] Open
Abstract
Translation of radiomics into the clinic may require a more comprehensive understanding of the underlying morphologic tissue characteristics they reflect. In the context of prostate cancer (PCa), some studies have correlated gross histological measurements of gland lumen, epithelium, and nuclei with disease appearance on MRI. Quantitative histomorphometry (QH), like radiomics for radiologic images, is the computer based extraction of features for describing tumor morphology on digitized tissue images. In this work, we attempt to establish the histomorphometric basis for radiomic features for prostate cancer by (1) identifying the radiomic features from T2w MRI most discriminating of low vs. intermediate/high Gleason score, (2) identifying QH features correlated with the most discriminating radiomic features previously identified, and (3) evaluating the discriminative ability of QH features found to be correlated with spatially co-localized radiomic features. On a cohort of 36 patients (23 for training, 13 for validation), Gabor texture features were identified as being most predictive of Gleason grade on MRI (AUC of 0.69) and gland lumen shape features were identified as the most predictive QH features (AUC = 0.75). Our results suggest that the PCa grade discriminability of Gabor features is a consequence of variations in gland shape and morphology at the tissue level.
Collapse
Affiliation(s)
- Gregory Penzias
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Asha Singanamalli
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Robin Elliott
- University Hospitals, Cleveland, OH, United States of America
| | - Jay Gollamudi
- University Hospitals, Cleveland, OH, United States of America
| | - Natalie Shih
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Michael Feldman
- Department of Pathology, University of Pennsylvania, Philadelphia, PA, United States of America
| | | | - Warick Delprado
- Douglass Hanly Moir Pathology, Macquarie Park, NSW, Australia
| | - Sarita Tiwari
- Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Maret Böhm
- Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Anne-Maree Haynes
- Garvan Institute of Medical Research/The Kinghorn Cancer Centre, Darlinghurst, NSW, Australia
| | - Lee Ponsky
- University Hospitals, Cleveland, OH, United States of America
| | - Pingfu Fu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, United States of America
| | - Pallavi Tiwari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Satish Viswanath
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| | - Anant Madabhushi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States of America
| |
Collapse
|
6
|
Pichat J, Iglesias JE, Yousry T, Ourselin S, Modat M. A Survey of Methods for 3D Histology Reconstruction. Med Image Anal 2018; 46:73-105. [DOI: 10.1016/j.media.2018.02.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/02/2018] [Accepted: 02/14/2018] [Indexed: 02/08/2023]
|