1
|
Jurenka R. Fatty Acid Origin of Insect Pheromones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874890 DOI: 10.1007/5584_2024_813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pheromones are utilized to a great extent in insects. Many of these pheromones are biosynthesized through a pathway involving fatty acids. This chapter will provide examples where the biosynthetic pathways of fatty acid-derived pheromones have been studied in detail. These include pheromones from Lepidoptera, Coleoptera, and Hymenoptera. Many species of Lepidoptera utilize fatty acids as precursors to pheromones with a functional group that include aldehydes, alcohols, and acetate esters. In addition, the biosynthesis of hydrocarbons will be briefly examined because many insects utilize hydrocarbons or modified hydrocarbons as pheromones.
Collapse
|
2
|
Xu C, Fu N, Cai X, Li Z, Bian L, Xiu C, Chen Z, Ma L, Luo Z. Identification of Candidate Genes Associated with Type-II Sex Pheromone Biosynthesis in the Tea Geometrid ( Ectropis obliqua) (Lepidoptera: Geometridae). INSECTS 2024; 15:276. [PMID: 38667406 PMCID: PMC11050716 DOI: 10.3390/insects15040276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Ectropis obliqua, a notorious tea pest, produces a Type-II sex pheromone blend for mate communication. This blend contains (Z,Z,Z)-3,6,9-octadecatriene, (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene, and (Z,Z)-3,9-cis-6,7-epoxy-nonadecadiene. To elucidate the genes related to the biosynthesis of these sex pheromone components, transcriptome sequencing of the female E. obliqua pheromone gland and the abdomen without pheromone gland was performed. Comparative RNAseq analyses identified 52 putative genes, including 7 fatty acyl-CoA elongases (ELOs), 9 fatty acyl-CoA reductases (FARs), 1 decarbonylase (DEC), 3 lipophorins (LIPs), and 32 cytochrome P450 enzymes (CYPs). Tissue expression profiles revealed that two ELOs (ELO3 and ELO5), two FARs (FAR2 and FAR9), one DEC (CYP4G173), and one LIP (LIP1) displayed either abdomen-centric or -specific expression, suggesting potential roles in sex pheromone biosynthesis within the oenocytes of E. obliqua. Furthermore, the tissue expression patterns, combined with phylogenetic analysis, showed that CYP340BD1, which was expressed specifically and predominantly only in the pheromone gland, was clustered with the previously reported epoxidases, highlighting its potential role in the epoxidation of the unsaturated polytriene sex pheromone components. Collectively, our research provides valuable insights into the genes linked to sex pheromone biosynthesis.
Collapse
Affiliation(s)
- Changxia Xu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Nanxia Fu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Xiaoming Cai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zhaoqun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Lei Bian
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Chunli Xiu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Zongmao Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Long Ma
- College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zongxiu Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (C.X.); (N.F.); (X.C.); (Z.L.); (L.B.); (C.X.); (Z.C.)
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| |
Collapse
|
3
|
Zhang B, Li F, Qu C, Duan H, Fu Y, Luo C. A novel domain-duplicated SlitFAR3 gene involved in sex pheromone biosynthesis in Spodoptera litura. INSECT SCIENCE 2023; 30:611-624. [PMID: 36302113 DOI: 10.1111/1744-7917.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/15/2023]
Abstract
Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.
Collapse
Affiliation(s)
- Biyun Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Wu J, Sun T, Bashir MH, Qiu B, Wang X, Ali S. Comparative transcriptome analysis reveals differences in gene expression in whitefly following individual or combined applications of Akanthomyces attenuatus (Zare & Gams) and matrine. BMC Genomics 2022; 23:808. [PMID: 36474158 PMCID: PMC9727895 DOI: 10.1186/s12864-022-09048-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a serious pest of crops in different regions of the world. Our recent studies on the joint application of Akanthomyces attenuatus (a pathogenic insect fungus) and matrine (a botanical insecticide) against B. tabaci have shown promising results. Using RNA sequencing (RNA-Seq), we identified differentially expressed genes involved in whitefly responses to single or mixed applications of A. attenuatus and matrine. METHODS In this study, we compared the transcriptome profiles of B. tabaci treated with individual and combined treatments of A. attenuatus and matrine to determine variations in gene expression among whiteflies in response to different treatments. RESULTS Transcriptomic data analysis showed differential expression of 71, 1194, and 51 genes in response to A. attenuatus (BtA), matrine (BtM), and A. attenuatus + matrine (BtAM) treatment, respectively. A total of 65 common differentially expressed genes (DEGs) were identified between whiteflies treated with A. attenuatus (BtA) and matrine (BtM). A comparison of DEGs across the three treatments (BtA, BtM, and BtAM) revealed two common DEGs. The results also revealed that AMPK signaling, apoptosis, and drug metabolism pathways are likely involved in whitefly defense responses against A. attenuatus and matrine infection. Furthermore, a notable suppression of general metabolism and immune response genes was observed in whiteflies treated with A. attenuatus + matrine (BtAM) compared to whiteflies treated with individual A. attenuatus (BtA) or matrine (BtM) treatments. CONCLUSION Dynamic changes in the number of differentially expressed genes were observed in B. tabaci subjected to different treatments (BtA, BtM, and BtAM). To the best of our knowledge, this is the first report on the molecular interactions between whitefly and individual or combined treatments of A. attenuatus and matrine. These results will further improve our knowledge of the infection mechanism and complex biochemical processes involved in the synergistic action of A. attenuatus and matrine against B. tabaci.
Collapse
Affiliation(s)
- Jianhui Wu
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| | - Tingfei Sun
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| | - Muhammad Hamid Bashir
- grid.413016.10000 0004 0607 1563Department of Entomology, University of Agriculture, Faisalabad, Pakistan
| | - Baoli Qiu
- grid.411575.30000 0001 0345 927XChongqing Key Laboratory of Vector Insects, College of Life Sciences, Chongqing Normal University, Chongqing, 401331 China
| | - Xingmin Wang
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| | - Shaukat Ali
- grid.20561.300000 0000 9546 5767Key Laboratory of Bio-Pesticide Innovation and Application, Engineering Research Centre of Biological Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Engineering Research Center of Biological Control, Ministry of Education and Guangdong Province, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
5
|
Cha WH, Lee DW. Suppression of pheromone biosynthesis and mating behavior by RNA interference of pheromone gland-specific fatty acyl reductase in Maruca vitrata. INSECT SCIENCE 2022; 29:1135-1144. [PMID: 34971127 DOI: 10.1111/1744-7917.12999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
In moths, various enzymes, such as fatty acid synthases, fatty acyl desaturases, and fatty acyl reductases (FARs), are involved in pheromone biosynthesis. In particular, pheromone gland-specific FAR (pgFAR) plays an important role in converting the functional group from carboxylic to alcohol during pheromone biosynthesis. A novel pgFAR of Maruca vitrata, Mvi-pgFAR, was identified through transcriptome sequencing of its pheromone gland. To investigate the involvement of Mvi-pgFAR in pheromone biosynthesis, Mvi-pgFAR was cloned from the pheromone gland and suppressed by RNA interference (RNAi). Mvi-pgFAR harbored several conserved motifs related to NAD(P)H-binding, N-glycosylation, and adenosine / guanosine triphosphate binding. Phylogenetic analysis revealed that Mvi-pgFAR with other lepidopteran pgFARs formed an independent clade. Mvi-pgFAR was specifically expressed only in the pheromone gland. Quantitative real-time polymerase chain reaction showed that the diurnal expression levels of Mvi-pgFAR in the pheromone gland were the highest at 2 h before the scotophase. After primarily confirming Mvi-pgFAR suppression by RNAi, (E,E)-10,12-hexadecadienal (E10E12-16:Ald), a major sex pheromone component, was quantified by gas chromatography. When Mvi-pgFAR was successfully suppressed, E10E12-16:Ald production was reduced by up to half of that of the control, and the mating rate was subsequently decreased. Our results demonstrate that Mvi-pgFAR downregulation can suppress mating behavior by changing the relative sex pheromone component ratio, suggesting that Mvi-pgFAR can be used as a novel control target.
Collapse
Affiliation(s)
- Wook Hyun Cha
- Department of Biosafety, Kyungsung University, Busan, Republic of Korea
| | - Dae-Weon Lee
- Department of Biosafety, Kyungsung University, Busan, Republic of Korea
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Republic of Korea
| |
Collapse
|
6
|
Marmonier A, Velt A, Villeroy C, Rustenholz C, Chesnais Q, Brault V. Differential gene expression in aphids following virus acquisition from plants or from an artificial medium. BMC Genomics 2022; 23:333. [PMID: 35488202 PMCID: PMC9055738 DOI: 10.1186/s12864-022-08545-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Poleroviruses, such as turnip yellows virus (TuYV), are plant viruses strictly transmitted by aphids in a persistent and circulative manner. Acquisition of either virus particles or plant material altered by virus infection is expected to induce gene expression deregulation in aphids which may ultimately alter their behavior. RESULTS By conducting an RNA-Seq analysis on viruliferous aphids fed either on TuYV-infected plants or on an artificial medium containing purified virus particles, we identified several hundreds of genes deregulated in Myzus persicae, despite non-replication of the virus in the vector. Only a few genes linked to receptor activities and/or vesicular transport were common between the two modes of acquisition with, however, a low level of deregulation. Behavioral studies on aphids after virus acquisition showed that M. persicae locomotion behavior was affected by feeding on TuYV-infected plants, but not by feeding on the artificial medium containing the purified virus particles. Consistent with this, genes potentially involved in aphid behavior were deregulated in aphids fed on infected plants, but not on the artificial medium. CONCLUSIONS These data show that TuYV particles acquisition alone is associated with a moderate deregulation of a few genes, while higher gene deregulation is associated with aphid ingestion of phloem from TuYV-infected plants. Our data are also in favor of a major role of infected plant components on aphid behavior.
Collapse
Affiliation(s)
- Aurélie Marmonier
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Amandine Velt
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Claire Villeroy
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Camille Rustenholz
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Quentin Chesnais
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France
| | - Véronique Brault
- Université de Strasbourg, Institut National de Recherche en Agriculture, Alimentation et Environnement, SVQV UMR-A1131, 68000, Colmar, France.
| |
Collapse
|
7
|
Xia YH, Ding BJ, Dong SL, Wang HL, Hofvander P, Löfstedt C. Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes. BMC Biol 2022; 20:80. [PMID: 35361182 PMCID: PMC8969271 DOI: 10.1186/s12915-022-01281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. RESULTS In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. CONCLUSIONS Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.
Collapse
Affiliation(s)
- Yi-Han Xia
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 4, SE-41296, Gothenburg, Sweden
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, CN-210095, China
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden.
| |
Collapse
|
8
|
Ding B, Wang H, Al‐Saleh MA, Löfstedt C, Antony B. Bioproduction of (Z,E)-9,12-tetradecadienyl acetate (ZETA), the major pheromone component of Plodia, Ephestia, and Spodoptera species in yeast. PEST MANAGEMENT SCIENCE 2022; 78:1048-1059. [PMID: 34773383 PMCID: PMC9300079 DOI: 10.1002/ps.6716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND (Z,E)-9,12-tetradecadienyl acetate (ZETA, Z9,E12-14:OAc) is a major sex pheromone component for many stored-product moth species. This pheromone is used worldwide for mating disruption, detection, monitoring, and mass trapping in raw and processed food storage facilities. In this study, we demonstrate the biological production of ZETA pheromone by engineered yeast Saccharomyces cerevisiae. RESULTS We mined the pheromone gland transcriptome data of the almond moth, Ephestia (Cadra) cautella (Walker), to trace a novel E12 fatty acyl desaturase and expressed candidates heterologously in yeast and Sf9 systems. Furthermore, we demonstrated a tailor-made ZETA pheromone bioproduction in yeast through metabolic engineering using this E12 desaturase, in combination with three genes from various sources coding for a Z9 desaturase, a fatty acyl reductase, and an acetyltransferase, respectively. Electrophysiological assays (gas chromatography coupled to an electroantennographic detector) proved that the transgenic yeast-produced ZETA pheromone component elicits distinct antennal responses. CONCLUSION The reconstructed biosynthetic pathway in yeast efficiently produces ZETA pheromone, leaves an undetectable level of biosynthetic intermediates, and paves the way for the economically competitive high-demand ZETA pheromone's bioproduction technology for high-value storage pest control.
Collapse
Affiliation(s)
| | | | - Mohammed Ali Al‐Saleh
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, Chemical Ecology and Functional Genomics LaboratoryCollege of Food and Agricultural SciencesRiyadhSaudi Arabia
| | | | - Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, Chemical Ecology and Functional Genomics LaboratoryCollege of Food and Agricultural SciencesRiyadhSaudi Arabia
| |
Collapse
|
9
|
Wang QH, Gao X, Yu HS, Zhang Z, Yu QY. Exploring the Terminal Pathway of Sex Pheromone Biosynthesis and Metabolism in the Silkworm. INSECTS 2021; 12:insects12121062. [PMID: 34940150 PMCID: PMC8706005 DOI: 10.3390/insects12121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Insect sex pheromone biosynthesis has received widespread attention, while the terminal pathway related to aldehyde synthesis and metabolism is still poorly understood at a molecular level. Previous studies found that the silkworm, Bombyx mori (Lepidoptera, Bombycidae), has two pheromone compounds, bombykol and bombykal, with a ratio of 11:1, while its closest wild relative, B. mandarina, only uses bombykol as a pheromone. In this study, sex pheromone gland transcriptomes were compared between the domestic and wild silkworms. All the candidate gene families were identified. Then we used the differentially expressed information, tissue and developmental expression profiles, and phylogenetic analysis to identify the putative causal genes involved in the terminal pathway. Our findings provide insights into the aldehyde synthesis and metabolism pathways and evolutionary conservation in moths. Abstract Sex pheromones are vital to sexual communication and reproduction in insects. Although some key enzymes in pheromone production have been well studied, information on genes involved in the terminal pathway is limited. The domestic silkworm employs a pheromone blend containing (E,Z)-10,12-hexadecadienol (bombykol) and analogous (E,Z)-10,12-hexadecadienal (bombykal); whereas, its wild ancestor B. mandarina uses only bombykol. The two closely related moths might be a good model for exploring the genes involved in aldehyde pheromone synthesis and metabolism. By deep sequencing and analyzing the sex pheromone gland (PG) transcriptomes; we identified 116 candidate genes that may be related to pheromone biosynthesis, metabolism, and chemoreception. Spatiotemporal expression profiles and differentially expressed analysis revealed that four alcohol oxidases (BmorAO1; 2; 3; and 4); one aldehyde reductase (BmorAR1); and one aldehyde oxidase (BmorAOX5) might be involved in the terminal pathway. Phylogenetic analysis showed that, except for BmorAO3 and MsexAO3, AOs did not show a conversed orthologous relationship among moths; whereas, ARs and AOXs were phylogenetically conserved. This study provides crucial candidates for further functional elucidation, and which may be utilized as potential targets to disrupt sexual communication in other moth pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Xing Gao
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Hong-Song Yu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, China;
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
- Correspondence:
| |
Collapse
|
10
|
Zhang X, Miao Q, Xu X, Ji B, Qu L, Wei Y. Developments in Fatty Acid-Derived Insect Pheromone Production Using Engineered Yeasts. Front Microbiol 2021; 12:759975. [PMID: 34858372 PMCID: PMC8632438 DOI: 10.3389/fmicb.2021.759975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
The use of traditional chemical insecticides for pest control often leads to environmental pollution and a decrease in biodiversity. Recently, insect sex pheromones were applied for sustainable biocontrol of pests in fields, due to their limited adverse impacts on biodiversity and food safety compared to that of other conventional insecticides. However, the structures of insect pheromones are complex, and their chemical synthesis is not commercially feasible. As yeasts have been widely used for fatty acid-derived pheromone production in the past few years, using engineered yeasts may be promising and sustainable for the low-cost production of fatty acid-derived pheromones. The primary fatty acids produced by Saccharomyces cerevisiae and other yeasts are C16 and C18, and it is also possible to rewire/reprogram the metabolic flux for other fatty acids or fatty acid derivatives. This review summarizes the fatty acid biosynthetic pathway in S. cerevisiae and recent progress in yeast engineering in terms of metabolic engineering and synthetic biology strategies to produce insect pheromones. In the future, insect pheromones produced by yeasts might provide an eco-friendly pest control method in agricultural fields.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Qin Miao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Lingbo Qu
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Laboratory of Synthetic Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
12
|
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. INSECTS 2021; 12:insects12060484. [PMID: 34071020 PMCID: PMC8224804 DOI: 10.3390/insects12060484] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.
Collapse
Affiliation(s)
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (A.G.)
| | - Angel Guerrero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia-CSIC, 08034 Barcelona, Spain
- Correspondence: (X.Z.); (A.G.)
| |
Collapse
|
13
|
Petkevicius K, Koutsoumpeli E, Betsi PC, Ding BJ, Kildegaard KR, Jensen H, Mezo N, Mazziotta A, Gabrielsson A, Sinkwitz C, Lorantfy B, Holkenbrink C, Löfstedt C, Raptopoulos D, Konstantopoulou M, Borodina I. Biotechnological production of the European corn borer sex pheromone in the yeast Yarrowia lipolytica. Biotechnol J 2021; 16:e2100004. [PMID: 33656777 DOI: 10.1002/biot.202100004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022]
Abstract
The European corn borer (ECB) Ostrinia nubilalis is a widespread pest of cereals, particularly maize. Mating disruption with the sex pheromone is a potentially attractive method for managing this pest; however, chemical synthesis of pheromones requires expensive starting materials and catalysts and generates hazardous waste. The goal of this study was to develop a biotechnological method for the production of ECB sex pheromone. Our approach was to engineer the oleaginous yeast Yarrowia lipolytica to produce (Z)-11-tetradecenol (Z11-14:OH), which can then be chemically acetylated to (Z)-11-tetradecenyl acetate (Z11-14:OAc), the main pheromone component of the Z-race of O. nubilalis. First, a C14 platform strain with increased biosynthesis of myristoyl-CoA was obtained by introducing a point mutation into the α-subunit of fatty acid synthase, replacing isoleucine 1220 with phenylalanine (Fas2pI1220F ). The intracellular accumulation of myristic acid increased 8.4-fold. Next, fatty acyl-CoA desaturases (FAD) and fatty acyl-CoA reductases (FAR) from nine different species of Lepidoptera were screened in the C14 platform strain, individually and in combinations. A titer of 29.2 ± 1.6 mg L-1 Z11-14:OH was reached in small-scale cultivation with an optimal combination of a FAD (Lbo_PPTQ) from Lobesia botrana and FAR (HarFAR) from Helicoverpa armigera. When the second copies of FAD and FAR genes were introduced, the titer improved 2.1-fold. The native FAS1 gene's overexpression led to a further 1.5-fold titer increase, reaching 93.9 ± 11.7 mg L-1 in small-scale cultivation. When the same engineered strain was cultivated in controlled 1 L bioreactors in fed-batch mode, 188.1 ± 13.4 mg L-1 of Z11-14:OH was obtained. Fatty alcohols were extracted from the biomass and chemically acetylated to obtain Z11-14:OAc. Electroantennogram experiments showed that males of the Z-race of O. nubilalis were responsive to biologically-derived pheromone blend. Behavioral bioassays in a wind tunnel revealed attraction of male O. nubilalis, although full precopulatory behavior was observed less often than for the chemically synthesized pheromone blend. The study paves the way for the production of ECB pheromone by fermentation.
Collapse
Affiliation(s)
- Karolis Petkevicius
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,BioPhero ApS, Copenhagen Ø, Denmark
| | - Eleni Koutsoumpeli
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Petri Christina Betsi
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | - Maria Konstantopoulou
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,BioPhero ApS, Copenhagen Ø, Denmark
| |
Collapse
|
14
|
Hambalko J, Gajdoš P, Nicaud JM, Ledesma-Amaro R, Tupec M, Pichová I, Čertík M. Production of Long Chain Fatty Alcohols Found in Bumblebee Pheromones by Yarrowia lipolytica. Front Bioeng Biotechnol 2021; 8:593419. [PMID: 33490049 PMCID: PMC7820814 DOI: 10.3389/fbioe.2020.593419] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Fatty alcohols (FA-OH) are aliphatic unbranched primary alcohols with a chain of four or more carbon atoms. Besides potential industrial applications, fatty alcohols have important biological functions as well. In nature, fatty alcohols are produced as a part of a mixture of pheromones in several insect species, such as moths, termites, bees, wasps, etc. In addition, FA-OHs have a potential for agricultural applications, for example, they may be used as a suitable substitute for commercial insecticides. The insecticides have several drawbacks associated with their preparation, and they exert a negative impact on the environment. Currently, pheromone components are prepared mainly through the catalytic hydrogenation of plant oils and petrochemicals, which is an unsustainable, ecologically unfriendly, and highly expensive process. The biotechnological production of the pheromone components using engineered microbial strains and through the expression of the enzymes participating in the biosynthesis of these components is a promising approach that ensures ecological sustenance as well. The present study was aimed at evaluating the production of FA-OHs in the oleaginous yeast, Yarrowia lipolytica, with different lengths of fatty-acyl chains by expressing the fatty acyl-CoA reductase (FAR) BlapFAR4 from B. lapidarius, producing C16:0-OH, C16:1Δ9-OH, and lower quantities of both C14:0-OH and C18:1Δ9-OH, and BlucFAR1 from B. lucorum, producing FA-OHs with a chain length of 18-26 carbon atoms, in this yeast. Among the different novel Y. lipolytica strains used in the present study, the best results were obtained with JMY7086, which carried several lipid metabolism modifications and expressed the BlucFAR1 gene under the control of a strong constitutive promoter 8UAS-pTEF. JMY7086 produced only saturated fatty alcohols with chain lengths from 18 to 24 carbon atoms. The highest titer and accumulation achieved were 166.6 mg/L and 15.6 mg/g DCW of fatty alcohols, respectively. Unlike JMY7086, the BlapFAR4-expressing strain JMY7090 produced only 16 carbon atom-long FA-OHs with a titer of 14.6 mg/L.
Collapse
Affiliation(s)
- Jaroslav Hambalko
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Gajdoš
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| | - Jean-Marc Nicaud
- French National Research Institute for Agriculture (INRAE), Food and Environment, AgroParisTech, Micalis Institute, Université Paris-Saclay, Jouy-en-Josas, France
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Faculty of Engineering, Imperial College London, London, United Kingdom
| | - Michal Tupec
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Milan Čertík
- Faculty of Chemical and Food Technology, Institute of Biotechnology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
15
|
Yao S, Zhou S, Li X, Liu X, Zhao W, Wei J, Du M, An S. Transcriptome Analysis of Ostrinia furnacalis Female Pheromone Gland: Esters Biosynthesis and Requirement for Mating Success. Front Endocrinol (Lausanne) 2021; 12:736906. [PMID: 34603212 PMCID: PMC8485726 DOI: 10.3389/fendo.2021.736906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Female moths use sex pheromones to attract males, and corresponding regulatory mechanism underlying sex pheromone biosynthesis is species-dependent. However, the detailed mechanism involved in sex pheromone biosynthesis in Ostrinia furnacalis has not yet been fully addressed. In the present study, transcriptome sequencing of O. furnacalis pheromone glands screened a serials of candidate genes involved in sex pheromone biosynthesis. Our analysis showed that sex pheromone release in O. furnacalis females arrives its peak at the 2nd scotophase, consistent with its mating behavior. Pheromone biosynthesis-activating neuropeptide (PBAN) was confirmed to regulate sex pheromone biosynthesis, and Ca2+ is the secondary messenger of PBAN signaling in O. furnacalis. The functional analysis of candidate genes demonstrated that the decreased mRNA levels or activities of calcineurin (CaN) and acetyl-CoA carboxylase (ACC) led to significant decrease in sex pheromone production and female capability to attract males, as demonstrated by RNAi-mediated knockdown and pharmacological inhibitor assay. Most importantly, the activities of CaN and ACC depend on the activation of PBAN/PBANR/Ca2+. Furthermore, fatty-acyl reductase 14 was involved in PBAN-mediated sex pheromone biosynthesis. Altogether, our results demonstrated that PBAN regulates sex pheromone biosynthesis through PBANR/Ca2+/CaN/ACC pathway to promote sex pheromone biosynthesis in O. furnacalis and provided a reference for non-model organism to study neuropeptide signal transduction.
Collapse
Affiliation(s)
| | | | | | | | | | - Jizhen Wei
- *Correspondence: Jizhen Wei, ; Shiheng An,
| | | | - Shiheng An
- *Correspondence: Jizhen Wei, ; Shiheng An,
| |
Collapse
|
16
|
Wang QH, Gong Q, Fang SM, Liu YQ, Zhang Z, Yu QY. Identification of genes involved in sex pheromone biosynthesis and metabolic pathway in the Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2020; 163:1487-1497. [PMID: 32755713 DOI: 10.1016/j.ijbiomac.2020.07.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The Chinese oak silkworm, Antheraea pernyi, has not only been semi-domesticated as an important economical insect but also used for genetic research. The female moths of A. pernyi employ a pheromone blend containing (E,Z)-6,11-hexadecadienal (E6,Z11-16:Ald), (E,Z)-6,11-hexadecadienyl acetate (E6,Z11-16:OAc), and (E,Z)-4,9-tetradecadienyl acetate (E4,Z9-14:OAc). While its biosynthesis pathway is largely unknown. By deep sequencing and de novo assembly of sex pheromone gland (PG) transcriptome, we identified 141 candidate genes that are putatively related to pheromone biosynthesis, degradation, and chemoreception in A. pernyi. Gene expression patterns and phylogenetic analysis revealed that two desaturases (AperDES1 and 2), two fatty acid reductase (AperFAR1 and 2), and three acetyltransferase genes (AperACT1, 2 and 3) showed PG-biased or specific expression and were phylogenetically related to genes known to be involved in pheromone synthesis in other species. Furthermore, two carboxylesterases (AperCOE6 and 11) and two chemosensory protein (AperCSP1 and 6) were also expressed specifically or predominantly in the PGs, which might be related to sex pheromone degradation and transportation, respectively. Based on these results, the sex pheromone biosynthesis and metabolic pathway was proposed in A. pernyi. This study provides some crucial candidates for further functional elucidation, and may be used for interfering sexual communication in other Saturniidae pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Qian Gong
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
17
|
Petkevicius K, Löfstedt C, Borodina I. Insect sex pheromone production in yeasts and plants. Curr Opin Biotechnol 2020; 65:259-267. [DOI: 10.1016/j.copbio.2020.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
|
18
|
Hu P, Wang D, Gao C, Lu P, Tao J, Luo Y. Pheromone biosynthetic pathway and chemoreception proteins in sex pheromone gland of Eogystia hippophaecolus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100702. [PMID: 32544860 DOI: 10.1016/j.cbd.2020.100702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023]
Abstract
The moth Eogystia hippophaecolus (Hua et al.) is a major threat to sea buckthorn plantations in China. Specific and highly efficient artificial sex pheromone traps have been developed and used to control this pest species. However, the biosynthesis of sex pheromones Z7-14: Ac and E3-14:Ac remains poorly understood. We investigated the female pheromone gland transcriptome of E. hippophaecolus and identified two pheromone biosynthesis-activating neuropeptides (PBANs), two pheromone biosynthesis-activating neuropeptide receptors (PBANrs), five acetyl-CoA carboxylases (ACCs), six fatty acid synthases (FASs), 16 Acyl-CoA desaturases (DESs), 26 reductases (REDs), 13 acetyltransferases (ACTs), one fatty acid transport protein (FATP), one acyl-CoA-binding protein (ACBP), and five elongation of very long-chain fatty acid proteins (ELOs) in pheromone biosynthesis pathways. Additionally, we identified 11 odorant-degrading enzymes (ODEs) and 16 odorant-binding proteins (OBPs), 14 chemosensory proteins (CSPs), two sensory neuron membrane proteins (SNMPs), three odorant receptors (ORs), seven ionotropic receptors (IRs), and six gustatory receptors (GRs). 77 unigenes involved in female pheromone biosynthesis, 31 chemoreception proteins and 11 odorant degradation enzymes were identified, which provided insight into the regulation of the pheromone components and pheromone recognition in the sex pheromone gland, and knowledge pertinent to new integrated pest management strategy of interference pheromone biosynthesis and recognition.
Collapse
Affiliation(s)
- Ping Hu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; Guangxi University, Nanning 530004, China
| | - Dongbai Wang
- Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chenglong Gao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Pengfei Lu
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jing Tao
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Youqing Luo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| |
Collapse
|
19
|
Dou X, Zhang A, Jurenka R. Functional identification of fatty acyl reductases in female pheromone gland and tarsi of the corn earworm, Helicoverpa zea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 116:103260. [PMID: 31682920 DOI: 10.1016/j.ibmb.2019.103260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Most moths utilize sex pheromones released by the female to attract a mate. Females produce the sex pheromone in the pheromone gland in a biosynthetic pathway which consists of several key enzymes. Fatty acyl-CoA reductase is one of the key enzymes, which catalyzes the conversion of fatty acyl-CoA to the corresponding alcohol, playing an important role in producing the final proportion of each pheromone component. In Helicoverpa zea, (Z)-11-hexadecenal is the major sex pheromone component in female pheromone glands and previously a large amount of hexadecanal was also found in female and male tarsi. In our previous study, we compared the transcriptome between pheromone glands and tarsi and found 20 fatty acyl-CoA reductases in both tissues. In this study, we functionally characterized four FARs which were expressed at high levels according to the transcriptome of pheromone glands and tarsi. Fatty acyl-CoA reductase 1 was homologous to other moth pheromone gland specific fatty acyl-CoA reductases, and it was also present in male tarsi. Functional expression in yeast cells indicates that only fatty acyl-CoA reductase 1 was able to produce fatty alcohols. In addition, a decreased mRNA level of fatty acyl-CoA reductase 1 in female pheromone glands and male tarsi by RNAi knockdown caused a significant decrease in the production of (Z)-11-hexadecenal in pheromone glands and hexadecanal in male tarsi. This study is the first to demonstrate the direct function of a fatty acyl-CoA reductase in male tarsi and also confirms its role in sex pheromone biosynthesis in H. zea.
Collapse
Affiliation(s)
- Xiaoyi Dou
- Department of Entomology, Iowa State University, Ames, IA, 50010, USA
| | - Aijun Zhang
- Invasive Insect Biocontrol and Behavior Laboratory, USDA-ARS, Beltsville, MD, 20705, USA
| | - Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA, 50010, USA.
| |
Collapse
|
20
|
Tupec M, Buček A, Valterová I, Pichová I. Biotechnological potential of insect fatty acid-modifying enzymes. ACTA ACUST UNITED AC 2018; 72:387-403. [PMID: 28742527 DOI: 10.1515/znc-2017-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/25/2017] [Indexed: 01/26/2023]
Abstract
There are more than one million described insect species. This species richness is reflected in the diversity of insect metabolic processes. In particular, biosynthesis of secondary metabolites, such as defensive compounds and chemical signals, encompasses an extraordinarily wide range of chemicals that are generally unparalleled among natural products from other organisms. Insect genomes, transcriptomes and proteomes thus offer a valuable resource for discovery of novel enzymes with potential for biotechnological applications. Here, we focus on fatty acid (FA) metabolism-related enzymes, notably the fatty acyl desaturases and fatty acyl reductases involved in the biosynthesis of FA-derived pheromones. Research on insect pheromone-biosynthetic enzymes, which exhibit diverse enzymatic properties, has the potential to broaden the understanding of enzyme specificity determinants and contribute to engineering of enzymes with desired properties for biotechnological production of FA derivatives. Additionally, the application of such pheromone-biosynthetic enzymes represents an environmentally friendly and economic alternative to the chemical synthesis of pheromones that are used in insect pest management strategies.
Collapse
|
21
|
Hu YH, Chen XM, Yang P, Ding WF. Characterization and functional assay of a fatty acyl-CoA reductase gene in the scale insect, Ericerus pela Chavannes (Hemiptera: Coccoidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21445. [PMID: 29277917 DOI: 10.1002/arch.21445] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ericerus pela Chavannes (Hemiptera: Coccoidae) is an economically important scale insect because the second instar males secrete a harvestable wax-like substance. In this study, we report the molecular cloning of a fatty acyl-CoA reductase gene (EpFAR) of E. pela. We predicted a 520-aa protein with the FAR family features from the deduced amino acid sequence. The EpFAR mRNA was expressed in five tested tissues, testis, alimentary canal, fat body, Malpighian tubules, and mostly in cuticle. The EpFAR protein was localized by immunofluorescence only in the wax glands and testis. EpFAR expression in High Five insect cells documented the recombinant EpFAR reduced 26-0:(S) CoA and to its corresponding alcohol. The data illuminate the molecular mechanism for fatty alcohol biosynthesis in a beneficial insect, E. pela.
Collapse
Affiliation(s)
- Yan-Hong Hu
- College of Forest Resources and Environment, Nanjing Forestry University, Nanjing, China
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
- College of Forest, Henan Science and Technology University, Luoyang, China
| | - Xiao-Ming Chen
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Pu Yang
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| | - Wei-Feng Ding
- Research Institute of Resource Insects, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
22
|
Calderón-Fernández GM, Moriconi DE, Dulbecco AB, Juárez MP. Transcriptome Analysis of the Triatoma infestans (Hemiptera: Reduviidae) Integument. JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:1531-1542. [PMID: 29029205 DOI: 10.1093/jme/tjx151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 06/07/2023]
Abstract
The insect integument, formed by the cuticle and the underlying epidermis, is essential for insect fitness, regulation of lipid biosynthesis and storage, insect growth and feeding, together with development progress. Its participation in insecticide resistance has also been outlined. Triatoma infestans Klug (Hemiptera: Reduviidae) is one of the major vectors of Chagas disease in South America; however, genomic data are scarce. In this study, we performed a transcriptome analysis of the nymph integument in order to identify which genes are expressed and their putative role. Using the 454 GS-FLX sequencing platform, we obtained approximately 144,620 reads from the integument tissue. These reads were assembled into 6,495 isotigs and 8,504 singletons. Based on BLAST similarity searches, about 8,000 transcripts were annotated with known genes, conserved domains, and/or Gene Ontology terms.The most abundant transcripts corresponded to transcription factors and nucleic acid metabolism, membrane receptors, cell signaling, and proteins related to cytoskeleton, transport, and cell energy processes, among others. More than 10% of the transcripts-encoded proteins putatively involved in the metabolism of fatty acids and related components (fatty acid synthases, elongases, desaturases, fatty alcohol reductases), structural integument proteins, and the insecticide detoxification system (among them, cytochrome P450s, esterases, and glutathione transferases). Real-time qPCR assays were used to investigate their putative participation in the resistance mechanism. This preliminary study is the first transcriptome analysis of a triatomine integument, and together with prior biochemical information, will help further understandthe role of the integument in a wide array of mechanisms.
Collapse
Affiliation(s)
- Gustavo M Calderón-Fernández
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - Débora E Moriconi
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - Andrea B Dulbecco
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| | - M Patricia Juárez
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), Facultad de Ciencias Médicas, La Plata, Argentina
| |
Collapse
|
23
|
Du M, Zhao W, Jurenka R, Liu X, Yin X, Song Q, An S. Transcriptome analysis of Helicoverpa armigera male hairpencils: Alcohol biosynthesis and requirement for mating success. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:154-164. [PMID: 28705633 DOI: 10.1016/j.ibmb.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
Many female animals use different strategies to assess male quality to increase their own reproductive fitness. In moths, females usually use chemical signals (sex pheromones) to attract males from a distance. Once males approach a female, they release close range pheromones from hairpencils to facilitate female acceptance. However, detailed mechanisms involved in male sex pheromone biosynthesis and its action in promoting female acceptance have not yet been fully characterized. This study screened a series of candidate genes via a transcriptome analysis of the male hairpencil of Helicoverpa armigera. Using pharmacological inhibitor and RNAi-mediated knockdown assays, we demonstrated that Ca2+ and cyclic-AMP were involved in pheromone biosynthesis activating neuropeptide (PBAN)-induced male sex pheromone biosynthesis. The functional analysis of candidate enzymes involved in the male sex pheromone biosynthesis pathway demonstrated that a decreased mRNA levels of acetyl-CoA carboxylase, Δ11-desaturase, and fatty-acyl reductase 2 by RNAi-mediated knockdown led to a significant decrease in the production of fatty acyl alcohols and the efficacy of female acceptance. Our results demonstrated the important role of the fatty acyl alcohol biosynthetic pathway in a PBAN-induced male sex pheromone biosynthesis and the importance of hairpencil compounds in female mating acceptance.
Collapse
Affiliation(s)
- Mengfang Du
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Wenhui Zhao
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Russell Jurenka
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | - Xiaoguang Liu
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xinming Yin
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Shiheng An
- State Key Laboratory of Wheat and Maize Crop Science/College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, PR China.
| |
Collapse
|
24
|
Luo J, Liang S, Li J, Xu Z, Li L, Zhu B, Li Z, Lei C, Lindsey K, Chen L, Jin S, Zhang X. A transgenic strategy for controlling plant bugs (Adelphocoris suturalis) through expression of double-stranded RNA homologous to fatty acyl-coenzyme A reductase in cotton. THE NEW PHYTOLOGIST 2017; 215:1173-1185. [PMID: 28608990 DOI: 10.1111/nph.14636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Plant bugs (Miridae species), which are sap-sucking insects, have emerged as major pests of cotton in China. Most Miridae species are not sensitive to commercial Bacillus thuringiensis (Bt) cotton, resulting in significant economic losses and an increased application of insecticide, which eventually may compromise the future of Bt cotton. We demonstrate that FATTY ACYL-COA REDUCTASE (AsFAR) plays an essential role in the reproduction of the bug Adelphocoris suturalis. Down-regulation of AsFAR expression by injection of double-stranded RNA suppresses ovarian development and female fertility, resulting in females producing few viable offspring. To determine the viability of an RNA interference approach to limit FAR expression and reproductive ability in A. suturalis, a dsRNA targeting the AsFAR gene (dsAsFAR) of A. suturalis was expressed in transgenic cotton plants. AsFAR transcription levels were significantly downregulated in A. suturalis feeding on the transgenic plants. In contained field trials, the transgenic cotton lines significantly suppressed the development of A. suturalis populations and were resistant to damage caused by plant bug infestation. These results suggest a new strategy for the management of plant bug pests of cotton.
Collapse
Affiliation(s)
- Jing Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sijia Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongping Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bangqin Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhe Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Lizhen Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
25
|
He P, Zhang YF, Hong DY, Wang J, Wang XL, Zuo LH, Tang XF, Xu WM, He M. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses. BMC Genomics 2017; 18:219. [PMID: 28249567 PMCID: PMC5333385 DOI: 10.1186/s12864-017-3592-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Background Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. Results A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. Conclusions To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3592-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| | - Yun-Fei Zhang
- Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Duan-Yang Hong
- The High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability, Guizhou Medical University, Huaxi university town, Guian new district, 550025, Guizhou, People's Republic of China
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Xing-Liang Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Ling-Hua Zuo
- Agriculture Economic and Rural Development, RENMIN University of China, Beijing, 100872, People's Republic of China
| | - Xian-Fu Tang
- Guizhou Grass Jelly Biotechnology Company Limited, Chishui, Zhunyi, 564700, People's Republic of China
| | - Wei-Ming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China
| | - Ming He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, People's Republic of China.
| |
Collapse
|