1
|
Bhattacharya K, Chaudhary N, Bisht P, Satpati B, Manna S, Singh R, Mehta BR, Georgiev YM, Das S. High-Performance Visible-to-SWIR Photodetector Based on the Layered WS 2 Heterojunction with Light-Trapping Pyramidal Black Germanium. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48517-48525. [PMID: 39215749 DOI: 10.1021/acsami.4c08862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study presents a layered transition metal dichalcogenide/black germanium (b-Ge) heterojunction photodetector that exhibits superior performance across a broad spectrum of wavelengths spanning from visible (vis) to shortwave infrared (SWIR). The photodetector includes a thin layer of b-Ge, which is created by wet etching of germanium (Ge) wafer to form submicrometer pyramidal structures. On top of this b-Ge layer, the WS2 thin film is deposited using pulsed laser deposition. In comparison to conventional germanium, b-Ge absorbs about 25% more light between 850 and 1750 nm wavelengths. The WS2/b-Ge photodetector has a peak photoresponsivity of 0.65 A/W, which is more than twice the photoresponsivity of the WS2/Ge photodetector at 1540 nm. Additionally, it shows better responsivity and response speed compared with other similar state-of-the-art photodetectors. Such an improvement in the performance of the device is credited to the light-trapping effect enabled by the germanium pyramids. Theoretical simulations employing the finite-difference time-domain technique help validate the concept. This novel photodetector holds promise for efficient detection of light across the vis to SWIR spectrum.
Collapse
Affiliation(s)
- Kritika Bhattacharya
- Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Nahid Chaudhary
- School of Interdisciplinary Research, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Prashant Bisht
- Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Biswarup Satpati
- Surface Physics and Material Science Division, Saha Institute of Nuclear Physics, HBNI, 1/AF Bidhannagar, Kolkata 700064, India
| | - Santanu Manna
- Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bodh Raj Mehta
- Department of Physics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Yordan Marchev Georgiev
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Samaresh Das
- Centre for Applied Research in Electronics, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Sun H, Li D, Yue X, Hong R, Yang W, Liu C, Xu H, Lu J, Dong L, Wang G, Li D. A Review of Transition Metal Dichalcogenides-Based Biosensors. Front Bioeng Biotechnol 2022; 10:941135. [PMID: 35769098 PMCID: PMC9234135 DOI: 10.3389/fbioe.2022.941135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Transition metal dichalcogenides (TMDCs) are widely used in biosensing applications due to their excellent physical and chemical properties. Due to the properties of biomaterial targets, the biggest challenge that biosensors face now is how to improve the sensitivity and stability. A lot of materials had been used to enhance the target signal. Among them, TMDCs show excellent performance in enhancing biosensing signals because of their metallic and semi-conducting electrical capabilities, tunable band gap, large specific surface area and so on. Here, we review different functionalization methods and research progress of TMDCs-based biosensors. The modification methods of TMDCs for biosensor fabrication mainly include two strategies: non-covalent and covalent interaction. The article summarizes the advantages and disadvantages of different modification strategies and their effects on biosensing performance. The authors present the challenges and issues that TMDCs need to be addressed in biosensor applications. Finally, the review expresses the positive application prospects of TMDCs-based biosensors in the future.
Collapse
Affiliation(s)
- Hongyu Sun
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Dujuan Li
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| | - Xiaojie Yue
- The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Rui Hong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
- School of Automation, Hangzhou Dianzi University, Hangzhou, China
| | - Weihuang Yang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Chaoran Liu
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jun Lu
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Linxi Dong
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Gaofeng Wang
- Ministry of Education Engineering Research Center of Smart Microsensors and Microsystems, School of Electronic Information, Hangzhou Dianzi University, Hangzhou, China
| | - Dongyang Li
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
- *Correspondence: Dujuan Li, ; Dongyang Li,
| |
Collapse
|
3
|
Sun Z, Han X, Cai Z, Yue S, Geng D, Rong D, Zhao L, Zhang YQ, Cheng P, Chen L, Zhou X, Huang Y, Wu K, Feng B. Exfoliation of 2D van der Waals crystals in ultrahigh vacuum for interface engineering. Sci Bull (Beijing) 2022; 67:1345-1351. [DOI: 10.1016/j.scib.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/26/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022]
|
4
|
Ramaraj SG, Nundy S, Zhao P, Elamaran D, Tahir AA, Hayakawa Y, Muruganathan M, Mizuta H, Kim SW. RF Sputtered Nb-Doped MoS 2 Thin Film for Effective Detection of NO 2 Gas Molecules: Theoretical and Experimental Studies. ACS OMEGA 2022; 7:10492-10501. [PMID: 35382281 PMCID: PMC8973088 DOI: 10.1021/acsomega.1c07274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/02/2022] [Indexed: 05/30/2023]
Abstract
Doping plays a significant role in affecting the physical and chemical properties of two-dimensional (2D) dichalcogenide materials. Controllable doping is one of the major factors in the modification of the electronic and mechanical properties of 2D materials. MoS2 2D materials have gained significant attention in gas sensing owing to their high surface-to-volume ratio. However, low response and recovery time hinder their application in practical gas sensors. Herein, we report the enhanced gas response and recovery of Nb-doped MoS2 gas sensor synthesized through physical vapor deposition (PVD) toward NO2 at different temperatures. The electronic states of MoS2 and Nb-doped MOS2 monolayers grown by PVD were analyzed based on their work functions. Doping with Nb increases the work function of MoS2 and its electronic properties. The Nb-doped MoS2 showed an ultrafast response and recovery time of t rec = 30/85 s toward 5 ppm of NO2 at their optimal operating temperature (100 °C). The experimental results complement the electron difference density functional theory calculation, showing both physisorption and chemisorption of NO2 gas molecules on niobium substitution doping in MoS2.
Collapse
Affiliation(s)
- Sankar Ganesh Ramaraj
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi 923-1211, Japan
| | - Srijita Nundy
- College
of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Penryn, Cornwall TR10
9FE, United Kingdom
| | - Pin Zhao
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Durgadevi Elamaran
- Graduate
School of Science and Technology, Shizuoka
University, Hamamatsu 432-8011, Japan
| | - Asif Ali Tahir
- College
of Engineering, Mathematics and Physical Sciences, Renewable Energy, University of Exeter, Penryn, Cornwall TR10
9FE, United Kingdom
| | - Yasuhiro Hayakawa
- Research
Institute of Electronics, Shizuoka University, Hamamatsu 432-8011, Japan
| | - Manoharan Muruganathan
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi 923-1211, Japan
| | - Hiroshi Mizuta
- School
of Materials Science, Japan Advanced Institute
of Science and Technology, Nomi 923-1211, Japan
| | - Sang-Woo Kim
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Pan R, Kang J, Li Y, Zhang Z, Li R, Yang Y. Highly Enhanced Photoluminescence of Monolayer MoS 2 in Plasmonic Hybrids with Double-Layer Stacked Ag Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12495-12503. [PMID: 35175732 DOI: 10.1021/acsami.1c21960] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a feasible method was proposed to prepare MoS2-based plasmonic hybrid systems with high photoluminescence (PL) emission enhancement. The enhancement effect of plasmonic hybrids on the PL emission of MoS2 has been systematically studied on MoS2/Ag spherical nanoparticle (SP) hybrid systems with different architectures by changing the stacking position of Ag SPs. It is demonstrated that the sandwich-like hybrid composed of monolayer MoS2 and dielectric Al2O3 layer between two layers of Ag SPs has the highest PL enhancement. Remarkably, after adding an Al2O3 layer under MoS2, the PL intensity enhancement up to 209 times was achieved in the sandwich-like hybrid system. Compared with the hybrid with single-layer SPs, the sandwich-like hybrid system with double-layer Ag SPs exhibited an obvious blue shift as a result of the selective enhancement of the A0 exciton in MoS2. These results demonstrate that MoS2/Ag SP hybrid nanosystems have significant implications for sensing and photoelectronic devices.
Collapse
Affiliation(s)
- Ruhao Pan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Jianyu Kang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Yutong Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhongshan Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Renfei Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, China
| |
Collapse
|
6
|
Ettabib MA, Marti A, Liu Z, Bowden BM, Zervas MN, Bartlett PN, Wilkinson JS. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sens 2021; 6:2025-2045. [PMID: 34114813 DOI: 10.1021/acssensors.1c00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Waveguide enhanced Raman spectroscopy (WERS) utilizes simple, robust, high-index contrast dielectric waveguides to generate a strong evanescent field, through which laser light interacts with analytes residing on the surface of the waveguide. It offers a powerful tool for the direct identification and reproducible quantification of biochemical species and an alternative to surface enhanced Raman spectroscopy (SERS) without reliance on fragile noble metal nanostructures. The advent of low-cost laser diodes, compact spectrometers, and recent progress in material engineering, nanofabrication techniques, and software modeling tools have made realizing portable and cheap WERS Raman systems with high sensitivity a realistic possibility. This review highlights the latest progress in WERS technology and summarizes recent demonstrations and applications. Following an introduction to the fundamentals of WERS, the theoretical framework that underpins the WERS principles is presented. The main WERS design considerations are then discussed, and a review of the available approaches for the modification of waveguide surfaces for the attachment of different biorecognition elements is provided. The review concludes by discussing and contrasting the performance of recent WERS implementations, thereby providing a future roadmap of WERS technology where the key opportunities and challenges are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Ettabib
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Almudena Marti
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Zhen Liu
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Bethany M. Bowden
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Michalis N. Zervas
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip N. Bartlett
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James S. Wilkinson
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
7
|
Pollmann E, Sleziona S, Foller T, Hagemann U, Gorynski C, Petri O, Madauß L, Breuer L, Schleberger M. Large-Area, Two-Dimensional MoS 2 Exfoliated on Gold: Direct Experimental Access to the Metal-Semiconductor Interface. ACS OMEGA 2021; 6:15929-15939. [PMID: 34179637 PMCID: PMC8223410 DOI: 10.1021/acsomega.1c01570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional semiconductors such as MoS2 are promising for future electrical devices. The interface to metals is a crucial and critical aspect for these devices because undesirably high resistances due to Fermi level pinning are present, resulting in unwanted energy losses. To date, experimental information on such junctions has been obtained mainly indirectly by evaluating transistor characteristics. The fact that the metal-semiconductor interface is typically embedded, further complicates the investigation of the underlying physical mechanisms at the interface. Here, we present a method to provide access to a realistic metal-semiconductor interface by large-area exfoliation of single-layer MoS2 on clean polycrystalline gold surfaces. This approach allows us to measure the relative charge neutrality level at the MoS2-gold interface and its spatial variation almost directly using Kelvin probe force microscopy even under ambient conditions. By bringing together hitherto unconnected findings about the MoS2-gold interface, we can explain the anomalous Raman signature of MoS2 in contact to metals [ACS Nano. 7, 2013, 11350] which has been the subject of intense recent discussions. In detail, we identify the unusual Raman mode as the A1g mode with a reduced Raman shift (397 cm-1) due to the weakening of the Mo-S bond. Combined with our X-ray photoelectron spectroscopy data and the measured charge neutrality level, this is in good agreement with a previously predicted mechanism for Fermi level pinning at the MoS2-gold interface [Nano Lett. 14, 2014, 1714]. As a consequence, the strength of the MoS2-gold contact can be determined from the intensity ratio between the reduced A1greduced mode and the unperturbed A1g mode.
Collapse
Affiliation(s)
- Erik Pollmann
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Stephan Sleziona
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Tobias Foller
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Ulrich Hagemann
- ICAN
and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Claudia Gorynski
- Faculty
of Engineering and CENIDE, University Duisburg-Essen, D-47057 Duisburg, Germany
| | - Oliver Petri
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Lukas Madauß
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Lars Breuer
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| | - Marika Schleberger
- Faculty
of Physics and CENIDE, University of Duisburg-Essen, D-47057 Duisburg, Germany
| |
Collapse
|
8
|
Er E, Sánchez-Iglesias A, Silvestri A, Arnaiz B, Liz-Marzán LM, Prato M, Criado A. Metal Nanoparticles/MoS 2 Surface-Enhanced Raman Scattering-Based Sandwich Immunoassay for α-Fetoprotein Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8823-8831. [PMID: 33583183 PMCID: PMC7908013 DOI: 10.1021/acsami.0c22203] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 05/14/2023]
Abstract
The detection of cancer biomarkers at an early stage of tumor development is vital for effective diagnosis and treatment of cancer. Current diagnostic tools can often detect cancer only when the biomarker levels are already too high, so that the tumors have spread and treatments are less effective. It is urgent therefore to develop highly sensitive assays for the detection of such biomarkers at the lowest possible concentration. In this context, we developed a sandwich immunoassay based on surface-enhanced Raman scattering (SERS) for the ultrasensitive detection of α-fetoprotein (AFP), which is typically present in human serum as a biomarker indicative of early stages of hepatocellular carcinoma. In the immunoassay design, molybdenum disulfide (MoS2) modified with a monoclonal antibody was used as a capture probe for AFP. A secondary antibody linked to an SERS-encoded nanoparticle was employed as the Raman signal reporter, that is, the transducer for AFP detection. The sandwich immunocomplex "capture probe/target/SERS tag" was deposited on a silicon wafer and decorated with silver-coated gold nanocubes to increase the density of "hot spots" on the surface of the immunosensor. The developed SERS immunosensor exhibits a wide linear detection range (1 pg mL-1 to 10 ng mL-1) with a limit of detection as low as 0.03 pg mL-1 toward AFP with good reproducibility (RSD < 6%) and stability. These parameters demonstrate that the proposed immunosensor has the potential to be used as an analytical platform for the detection of early-stage cancer biomarkers in clinical applications.
Collapse
Affiliation(s)
- Engin Er
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Department
of Analytical Chemistry, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| | - Ana Sánchez-Iglesias
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
| | - Alessandro Silvestri
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Blanca Arnaiz
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Centro
de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 20014 Donostia-San
Sebastián, Spain
- Department
of Applied Chemistry, University of the
Basque Country, 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Maurizio Prato
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department
of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San
Sebastián, Spain
| |
Collapse
|
9
|
Liu Y, Ma H, Han XX, Zhao B. Metal-semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. MATERIALS HORIZONS 2021; 8:370-382. [PMID: 34821260 DOI: 10.1039/d0mh01356k] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
After 45 years of its first observation, surface-enhanced Raman spectroscopy (SERS) has become an ultrasensitive tool applied in chemical analysis, materials science, and biomedical research. SERS-active nanomaterials, such as noble metals, transition metals, and semiconductors, have undergone extensive development. The hybridization of semiconductors with plasmonic metal nanomaterials is highly effective in boosting light harvesting and conversion, which enables the rapid growth of metal-semiconductor hybrid nanostructures in SERS-based research fields. With the combination of the unique photoelectric properties and giant SERS signals attributed to the synergistic contribution of plasmons and change transfer (CT), metal-semiconductor heterostructures allow diverse and novel applications of SERS in CT investigations for the rational design of photovoltaic devices and ultrasensitive chemical or biological sensing. In this review, we specifically discuss SERS-active metal-semiconductor heterostructures including their building blocks, enhancement mechanisms, and applications. Moreover, we highlight the current challenges and opportunities for future research in this field based on our recent studies and other related research.
Collapse
Affiliation(s)
- Yawen Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
| | | | | | | |
Collapse
|
10
|
Wan W, Yin J, Wu Y, Zheng X, Yang W, Wang H, Zhou J, Chen J, Wu Z, Li X, Kang J. Polarization-Controllable Plasmonic Enhancement on the Optical Response of Two-Dimensional GaSe Layers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19631-19637. [PMID: 31038912 DOI: 10.1021/acsami.9b03880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resonant plasmonic coupling has been considered as a promising strategy to enhance the optical response and manipulate the polarization of two-dimensional (2D) layer materials toward the practical applications. Here, a hybrid structure with periodic Ag nanoprism arrays was designed and fabricated on 2D GaSe layers to enhance these optical properties. By using the optimized hybrid structure with well-matched resonance, significant enhanced Raman scattering and band edge emission were successfully realized, and it is also interestingly found that the higher enhancement would be achieved while decreasing the thickness of GaSe layers. Theoretical simulation indicated that the strongly enhanced local field and the modified charge densities are the main reasons. By further introducing the patterned gratings on the plasmonic hybrid structure, selective excitation with controllable polarization was readily realized, besides the strongly enhanced photoluminescence intensity. This work provides a strategy for the plasmonic engineering of polarization controllable 2D optoelectronic devices.
Collapse
Affiliation(s)
| | | | | | | | - Weihuang Yang
- Key Laboratory of RF Circuits and System of Ministry of Education , Hangzhou Dianzi University , Hangzhou 310018 , P. R. China
| | | | | | | | | | | | | |
Collapse
|
11
|
Silver A, Kitadai H, Liu H, Granzier-Nakajima T, Terrones M, Ling X, Huang S. Chemical and Bio Sensing Using Graphene-Enhanced Raman Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E516. [PMID: 30986978 PMCID: PMC6523487 DOI: 10.3390/nano9040516] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 01/16/2023]
Abstract
Graphene is a two-dimensional (2D) material consisting of a single sheet of sp² hybridized carbon atoms laced in a hexagonal lattice, with potentially wide usage as a Raman enhancement substrate, also termed graphene-enhanced Raman scattering (GERS), making it ideal for sensing applications. GERS improves upon traditional surface-enhanced Raman scattering (SERS), combining its single-molecule sensitivity and spectral fingerprinting of molecules, and graphene's simple processing and superior uniformity. This enables fast and highly sensitive detection of a wide variety of analytes. Accordingly, GERS has been investigated for a wide variety of sensing applications, including chemical- and bio-sensing. As a derivative of GERS, the use of two-dimensional materials other than graphene for Raman enhancement has emerged, which possess remarkably interesting properties and potential wider applications in combination with GERS. In this review, we first introduce various types of 2D materials, including graphene, MoS₂, doped graphene, their properties, and synthesis. Then, we describe the principles of GERS and comprehensively explain how the GERS enhancement factors are influenced by molecular and 2D material properties. In the last section, we discuss the application of GERS in chemical- and bio-sensing, and the prospects of such a novel sensing method.
Collapse
Affiliation(s)
- Alexander Silver
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Hikari Kitadai
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
| | - He Liu
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | - Mauricio Terrones
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA.
- Department of Materials Science and Engineering and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Xi Ling
- Department of Chemistry, Boston University, Boston, MA 02215, USA.
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA.
- The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Shengxi Huang
- Department of Electrical Engineering, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
12
|
Luong DH, Lee HS, Ghimire G, Lee J, Kim H, Yun SJ, An GH, Lee YH. Enhanced Light-Matter Interactions in Self-Assembled Plasmonic Nanoparticles on 2D Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802949. [PMID: 30303606 DOI: 10.1002/smll.201802949] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Two-dimensional (2D) transition-metal dichalcogenide (TMD) monolayers of versatile material library are spotlighted for numerous unexplored research fields. While monolayer TMDs exhibit an efficient excitonic emission, the weak light absorption arising from their low dimensionality limits potential applications. To enhance the light-matter interactions of TMDs, while various plasmonic hybridization methods have been intensively studied, controlling plasmonic nanostructures via self-assembly processes remains challenging. Herein, strong light-matter interactions are reported in plasmonic Ag nanoparticles (NPs) hybridized on TMDs via an aging-based self-assembly process at room temperature. This hybridization is implemented by transferring MoS2 monolayers grown via chemical vapor deposition onto thin-spacer-covered Ag films. After a few weeks of aging in a vacuum desiccator, the Ag atoms in the heterolayered film diffuse to the MoS2 layers through a SiO2 spacer and self-cluster onto MoS2 point defects, resulting in the formation of Ag-NPs with an estimated diameter of ≈50 nm. The photoluminescence intensities for the Ag-NP/MoS2 hybrids are enhanced up to 35-fold compared with bare MoS2 owing to the local field enhancement near the plasmonic Ag-NPs. The localized surface plasmon resonances modes of this hybrid are systematically investigated via numerical simulations and dark-field scattering microscopy.
Collapse
Affiliation(s)
- Dinh Hoa Luong
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ganesh Ghimire
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jubok Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyun Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok Joon Yun
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
13
|
Abid I, Chen W, Yuan J, Najmaei S, Peñafiel EC, Péchou R, Large N, Lou J, Mlayah A. Surface enhanced resonant Raman scattering in hybrid MoSe 2@Au nanostructures. OPTICS EXPRESS 2018; 26:29411-29423. [PMID: 30470105 DOI: 10.1364/oe.26.029411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
We report on the surface enhanced resonant Raman scattering (SERRS) in hybrid MoSe2@Au plasmonic-excitonic nanostructures, focusing on the situation where the localized surface plasmon resonance of Au nanodisks is finely tuned to the exciton absorption of monolayer MoSe2. Using a resonant excitation, we investigate the SERRS in MoSe2@Au and the resonant Raman scattering (RRS) in a MoSe2@SiO2 reference. Both optical responses are compared to the non-resonant Raman scattering signal, thus providing an estimate of the relative contributions from the localized surface plasmons and the confined excitons to the Raman scattering enhancement. We determine a SERRS/RRS enhancement factor exceeding one order of magnitude. Furthermore, using numerical simulations, we explore the optical near-field properties of the hybrid MoSe2@Au nanostructure and investigate the SERRS efficiency dependence on the nanodisk surface morphology and on the excitation wavelength. We demonstrate that a photothermal effect, due to the resonant plasmonic pumping of electron-hole pairs into the MoSe2 layer, and the surface roughness of the metallic nanostructures are the main limiting factors of the SERRS efficiency.
Collapse
|
14
|
Lu Z, Si H, Li Z, Yu J, Liu Y, Feng D, Zhang C, Yang W, Man B, Jiang S. Sensitive, reproducible, and stable 3D plasmonic hybrids with bilayer WS 2 as nanospacer for SERS analysis. OPTICS EXPRESS 2018; 26:21626-21641. [PMID: 30130866 DOI: 10.1364/oe.26.021626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
The highly enhanced local electromagnetic field occurring through nanometer gap between the plamonic nanostructures provides the dominant contribution in surface enhancement Raman scattering (SERS) enhancement. Thence, we designed the remarkable SERS platform (AuNPs/WS2@AuNPs hybrids) by introducing bilayer WS2 film as the precise nanospacer. Bilayer WS2 film can realize the facile and tight combination with AuNPs via the thermal decomposition approach. Dense three-dimension (3D) hot spots provided by this hybrid plasmonic nanostructures are responsible for the extremely satisfying SERS performances. Using rhodamine 6G (R6G) as the probe molecules, the AuNPs/WS2@AuNPs hybrids perform the excellent sensitivity with the minimum detectable concentration as low as 10-11 M. Uniform and reproducible SERS signals illustrate that the synthesized SERS hybrids perform the splendid spot-to-spot reproducibility (RSD~5.4%) and substrate-to-substrate reproducibility (RSD~5.7%). The stability of AuNPs and the protection of WS2 film endow this hybrid plasmonic nanostructures with the brilliant anti-oxidation stability. Moreover, the enhanced electric field distribution simulated with the COMSOL software proves the remarkable SERS performance in theory. Therefore, AuNPs/WS2@AuNPs substrate not only widens the SERS research filed of WS2, but also shows vast potential as excellent SERS sensor for practical applicability.
Collapse
|
15
|
Bang S, Duong NT, Lee J, Cho YH, Oh HM, Kim H, Yun SJ, Park C, Kwon MK, Kim JY, Kim J, Jeong MS. Augmented Quantum Yield of a 2D Monolayer Photodetector by Surface Plasmon Coupling. NANO LETTERS 2018; 18:2316-2323. [PMID: 29561626 DOI: 10.1021/acs.nanolett.7b05060] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Monolayer (1L) transition metal dichalcogenides (TMDCs) are promising materials for nanoscale optoelectronic devices because of their direct band gap and wide absorption range (ultraviolet to infrared). However, 1L-TMDCs cannot be easily utilized for practical optoelectronic device applications (e.g., photodetectors, solar cells, and light-emitting diodes) because of their extremely low optical quantum yields (QYs). In this investigation, a high-gain 1L-MoS2 photodetector was successfully realized, based on the surface plasmon (SP) of the Ag nanowire (NW) network. Through systematic optical characterization of the hybrid structure consisting of a 1L-MoS2 and the Ag NW network, it was determined that a strong SP and strain relaxation effect influenced a greatly enhanced optical QY. The photoluminescence (PL) emission was drastically increased by a factor of 560, and the main peak was shifted to the neutral exciton of 1L-MoS2. Consequently, the overall photocurrent of the hybrid 1L-MoS2 photodetector was observed to be 250 times better than that of the pristine 1L-MoS2 photodetector. In addition, the photoresponsivity and photodetectivity of the hybrid photodetector were effectively improved by a factor of ∼1000. This study provides a new approach for realizing highly efficient optoelectronic devices based on TMDCs.
Collapse
Affiliation(s)
- Seungho Bang
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Ngoc Thanh Duong
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Jubok Lee
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Yoo Hyun Cho
- Department of Photonic Engineering , Chosun University , Gwangju 61452 , Republic of Korea
- Bio-Health Research Center , Korea Photonics Technology Institute (KOPTI) , Gwangju 61007 , Republic of Korea
| | - Hye Min Oh
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Hyun Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Seok Joon Yun
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Chulho Park
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Min-Ki Kwon
- Department of Photonic Engineering , Chosun University , Gwangju 61452 , Republic of Korea
| | - Ja-Yeon Kim
- Bio-Health Research Center , Korea Photonics Technology Institute (KOPTI) , Gwangju 61007 , Republic of Korea
| | - Jeongyong Kim
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Mun Seok Jeong
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
16
|
Jiang S, Guo J, Zhang C, Li C, Wang M, Li Z, Gao S, Chen P, Si H, Xu S. A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS2@Ag nanoparticles@pyramidal silicon. RSC Adv 2017. [DOI: 10.1039/c6ra26879j] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
By combine the Ag nanoparticles, pyramidal silicon and molybdenum disulfide, the MoS2@AgNPs@PSi substrate shows high performance in terms of sensitivity, uniformity, reproducibility and stability.
Collapse
Affiliation(s)
- Shouzhen Jiang
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Jia Guo
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Chao Zhang
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Chonghui Li
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Minghong Wang
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Zhen Li
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Saisai Gao
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Peixi Chen
- School of Physics and Electronics
- Shandong Normal University
- Jinan 250014
- China
| | - Haipeng Si
- Department of Orthopaedics
- Qilu Hospital
- Shandong University
- Jinan 250012
- China
| | - Shicai Xu
- Shandong Provincial Key Laboratory of Biophysics
- College of Physics and Electronic Information
- Dezhou University
- Dezhou 253023
- PR China
| |
Collapse
|
17
|
Zhang D, Wu YC, Yang M, Liu X, Coileáin CÓ, Xu H, Abid M, Abid M, Wang JJ, Shvets IV, Liu H, Wang Z, Yin H, Liu H, Chun BS, Zhang X, Wu HC. Probing thermal expansion coefficients of monolayers using surface enhanced Raman scattering. RSC Adv 2016. [DOI: 10.1039/c6ra20623a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A non-destructive method has been proposed to probe thermal expansion coefficients of the monolayer materials using surface-enhanced Raman spectroscopy.
Collapse
|