1
|
Oguntade E, Wigham C, Owuor L, Aryal U, O'Grady K, Acierto A, Zha RH, Henderson JH. Dry and wet wrinkling of a silk fibroin biopolymer by a shape-memory material with insight into mechanical effects on secondary structures in the silk network. J Mater Chem B 2024; 12:6351-6370. [PMID: 38864220 DOI: 10.1039/d4tb00112e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Surface wrinkling provides an approach to modify the surfaces of biomedical devices to better mimic features of the extracellular matrix and guide cell attachment, proliferation, and differentiation. Biopolymer wrinkling on active materials holds promise but is poorly explored. Here we report a mechanically actuated assembly process to generate uniaxial micro-and nanosized silk fibroin (SF) wrinkles on a thermo-responsive shape-memory polymer (SMP) substrate, with wrinkling demonstrated under both dry and hydrated (cell compatible) conditions. By systematically investigating the influence of SMP programmed strain magnitude, film thickness, and aqueous media on wrinkle stability and morphology, we reveal how to control the wrinkle sizes on the micron and sub-micron length scale. Furthermore, as a parameter fundamental to SMPs, we demonstrate that the temperature during the recovery process can also affect the wrinkle characteristics and the secondary structures in the silk network. We find that with increasing SMP programmed strain magnitude, silk wrinkled topographies with increasing wavelengths and amplitudes are achieved. Furthermore, silk wrinkling is found to increase β-sheet content, with spectroscopic analysis suggesting that the effect may be due primarily to tensile (e.g., Poisson effect and high-curvature wrinkle) loading modes in the SF, despite the compressive bulk deformation (uniaxial contraction) used to produce wrinkles. Silk wrinkles fabricated from sufficiently thick films (roughly 250 nm) persist after 24 h in cell culture medium. Using a fibroblast cell line, analysis of cellular response to the wrinkled topographies reveals high viability and attachment. These findings demonstrate use of wrinkled SF films under physiologically relevant conditions and suggest the potential for biopolymer wrinkles on biomaterials surfaces to find application in cell mechanobiology, wound healing, and tissue engineering.
Collapse
Affiliation(s)
- Elizabeth Oguntade
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Caleb Wigham
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Luiza Owuor
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Ujjwal Aryal
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Kerrin O'Grady
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - Anthony Acierto
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| | - R Helen Zha
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - James H Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
2
|
Jing H, Li R, Zou H. Preparation of Surface-Wrinkled Silica-Polystyrene Colloidal Composite Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11390-11400. [PMID: 38776219 DOI: 10.1021/acs.langmuir.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
In this work, we report a facile emulsion swelling route to prepare surface-wrinkled silica-polystyrene (SiO2-PS) composite particles. Submicrometer-sized, near-spherical SiO2-PS composite particles were first synthesized by dispersion polymerization of styrene in an ethanol/water mixture, and then, surface-wrinkled SiO2-PS particles were obtained by swelling the SiO2-PS particles with a toluene/water emulsion and subsequent drying. It is emphasized that no surface pretreatment on the SiO2-PS composite particles is required for the formation of the wrinkled surface, and the most striking feature is that the surface-wrinkled particle was not deformed from a single near-spherical SiO2-PS composite particle but from many ones. The influence of various swelling parameters including toluene/particle mass ratio, surfactant concentration, stirring rate, swelling temperature, swelling time, and silica size on the morphology of the composite particles was studied. This method represents a new paradigm for the preparation of concave polymer colloids.
Collapse
Affiliation(s)
- Hongyu Jing
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ruisi Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
3
|
Ghosh R, Arnheim A, van Zee M, Shang L, Soemardy C, Tang RC, Mellody M, Baghdasarian S, Sanchez Ochoa E, Ye S, Chen S, Williamson C, Karunaratne A, Di Carlo D. Lab on a Particle Technologies. Anal Chem 2024; 96:7817-7839. [PMID: 38650433 PMCID: PMC11112544 DOI: 10.1021/acs.analchem.4c01510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Affiliation(s)
- Rajesh Ghosh
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa Arnheim
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Mark van Zee
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Lily Shang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Citradewi Soemardy
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Rui-Chian Tang
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Michael Mellody
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Edwin Sanchez Ochoa
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Shun Ye
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Siyu Chen
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Cayden Williamson
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Amrith Karunaratne
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
| | - Dino Di Carlo
- Department
of Bioengineering, University of California,
Los Angeles, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, Los Angeles, California 90095, United States
| |
Collapse
|
4
|
Benabdderrahmane K, Stirnemann J, Ramtani S, Falentin-Daudré C. Development of a double-layer electrospun patch as a potential prenatal treatment for myelomeningocele. Wound Repair Regen 2024; 32:246-256. [PMID: 37957136 DOI: 10.1111/wrr.13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023]
Abstract
Myelomeningocele (MMC) is a congenital defect of the spine characterised by meningeal and spinal cord protrusion through the open vertebral arches. This defect causes progressive prenatal damage of the spinal cord, leading to lifelong handicap. Although mid-trimester surgical repair may reduce part of the handicap, an earlier and less invasive approach would further improve the prognosis, possibly minimising maternal and foetal risks. Several studies have proposed an alternative approach to surgical repair by covering the defect with a patch and protecting the exposed neural tissue. Our study aims to elaborate on a waterproof and biodegradable bioactive patch for MMC prenatal foetal repair. We developed a double-layer patch that can provide a waterproof coverage for the spinal cord, with a bioactive side, conducive to cell proliferation, and an antiadhesive side to avoid its attachment to the medulla.
Collapse
Affiliation(s)
- K Benabdderrahmane
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
| | - J Stirnemann
- Obstetrics and Maternal-Fetal Medicine, Hôpital Necker Enfants Malades, AP-HP, Paris, France
- EA7328 Institut Imagine & Université de Paris-Cité, Paris, France
| | - S Ramtani
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
| | - C Falentin-Daudré
- LBPS/CSPBAT, UMR CNRS 7244, Institut Galilée, Université Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
5
|
Wang X, Chauhan G, Tacderas ARL, Muth A, Gupta V. Surface-Modified Inhaled Microparticle-Encapsulated Celastrol for Enhanced Efficacy in Malignant Pleural Mesothelioma. Int J Mol Sci 2023; 24:5204. [PMID: 36982279 PMCID: PMC10049545 DOI: 10.3390/ijms24065204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/22/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer affecting the pleural lining of the lungs. Celastrol (Cela), a pentacyclic triterpenoid, has demonstrated promising therapeutic potential as an antioxidant, anti-inflammatory, neuroprotective agent, and anti-cancer agent. In this study, we developed inhaled surface-modified Cela-loaded poly(lactic-co-glycolic) acid (PLGA) microparticles (Cela MPs) for the treatment of MPM using a double emulsion solvent evaporation method. The optimized Cela MPs exhibited high entrapment efficiency (72.8 ± 6.1%) and possessed a wrinkled surface with a mean geometric diameter of ~2 µm and an aerodynamic diameter of 4.5 ± 0.1 µm, suggesting them to be suitable for pulmonary delivery. A subsequent release study showed an initial burst release up to 59.9 ± 2.9%, followed by sustained release. The therapeutic efficacy of Cela MPs was evaluated against four mesothelioma cell lines, where Cela MP exhibited significant reduction in IC50 values, and blank MPs produced no toxicity to normal cells. Additionally, a 3D-spheroid study was performed where a single dose of Cela MP at 1.0 µM significantly inhibited spheroid growth. Cela MP was also able to retain the antioxidant activity of Cela only while mechanistic studies revealed triggered autophagy and an induction of apoptosis. Therefore, these studies highlight the anti-mesothelioma activity of Cela and demonstrate that Cela MPs are a promising inhalable medicine for MPM treatment.
Collapse
Affiliation(s)
- Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Gautam Chauhan
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Alison R. L. Tacderas
- Department of Biological Sciences, College of Liberal Arts and Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Aaron Muth
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
6
|
Lee G, Zarei M, Wei Q, Zhu Y, Lee SG. Surface Wrinkling for Flexible and Stretchable Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203491. [PMID: 36047645 DOI: 10.1002/smll.202203491] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Recent advances in nanolithography, miniaturization, and material science, along with developments in wearable electronics, are pushing the frontiers of sensor technology into the large-scale fabrication of highly sensitive, flexible, stretchable, and multimodal detection systems. Various strategies, including surface engineering, have been developed to control the electrical and mechanical characteristics of sensors. In particular, surface wrinkling provides an effective alternative for improving both the sensing performance and mechanical deformability of flexible and stretchable sensors by releasing interfacial stress, preventing electrical failure, and enlarging surface areas. In this study, recent developments in the fabrication strategies of wrinkling structures for sensor applications are discussed. The fundamental mechanics, geometry control strategies, and various fabricating methods for wrinkling patterns are summarized. Furthermore, the current state of wrinkling approaches and their impacts on the development of various types of sensors, including strain, pressure, temperature, chemical, photodetectors, and multimodal sensors, are reviewed. Finally, existing wrinkling approaches, designs, and sensing strategies are extrapolated into future applications.
Collapse
Affiliation(s)
- Giwon Lee
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Mohammad Zarei
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| | - Qingshan Wei
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan, 44776, South Korea
| |
Collapse
|
7
|
Mohammadi S, Ravanbakhsh H, Taheri S, Bao G, Mongeau L. Immunomodulatory Microgels Support Proregenerative Macrophage Activation and Attenuate Fibroblast Collagen Synthesis. Adv Healthc Mater 2022; 11:e2102366. [PMID: 35122412 DOI: 10.1002/adhm.202102366] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Indexed: 11/05/2022]
Abstract
Scars composed of fibrous connective tissues are natural consequences of injury upon incisional wound healing in soft tissues. Hydrogels that feature a sustained presentation of immunomodulatory cytokines are known to modulate wound healing. However, existing immunomodulatory hydrogels lack interconnected micropores to promote cell ingrowth. Other limitations include invasive delivery procedures and harsh synthesis conditions that are incompatible with drug molecules. Here, hybrid nanocomposite microgels containing interleukin-10 (IL-10) are reported to modulate tissue macrophage phenotype during wound healing. The intercalation of laponite nanoparticles in the polymer network yields microgels with tissue-mimetic elasticity (Young's modulus in the range of 2-6 kPa) and allows the sustained release of IL-10 to promote the differentiation of macrophages toward proregenerative phenotypes. The porous interstitial spaces between microgels promote fibroblast proliferation and fast trafficking (an average speed of ≈14.4 µm h-1 ). The incorporation of hyaluronic acid further enhances macrophage infiltration. The coculture of macrophages and fibroblasts treated with transforming growth factor-beta 1 resulted in a twofold reduction in collagen-I production for microgels releasing IL-10 compared to the IL-10 free group. The new microgels show potential toward regenerative healing by harnessing the antifibrotic behavior of host macrophages.
Collapse
Affiliation(s)
- Sepideh Mohammadi
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Hossein Ravanbakhsh
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Sareh Taheri
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Guangyu Bao
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| | - Luc Mongeau
- Department of Mechanical Engineering McGill University Montreal QC H3A 0C3 Canada
| |
Collapse
|
8
|
Raj SS, Mathew RM, Nair Y, S. T. A, T. P. V. Fabrication and Applications of Wrinkled Soft Substrates: An Overview. ChemistrySelect 2022. [DOI: 10.1002/slct.202200714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soorya S. Raj
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| | - Romina Marie Mathew
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| | - Yamuna Nair
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| | - Aruna S. T.
- Surface Engineering Division CSIR – National Aerospace Laboratories HAL Airport Road Bangalore 560017 India
| | - Vinod T. P.
- Department of Chemistry CHRIST (Deemed to be University) Hosur Road Bangalore 560029 India
| |
Collapse
|
9
|
Zou H, Lv Y. Synthetic Strategies for Polymer Particles with Surface Concavities. Macromol Rapid Commun 2022; 43:e2200072. [PMID: 35322491 DOI: 10.1002/marc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
Over the past decade or so, there has been increasing interest in the synthesis of polymer particles with surface concavities, which mainly include golf ball-like, dimpled and surface-wrinkled polymer particles. Such syntheses generally can be classified into direct polymerization and post-treatment on preformed polymer particles. This review aims to provide an overview of the synthetic strategies of such particles. Some selected examples are given to present the formation mechanisms of the surface concavities. The applications and future development of these concave polymer particles are also briefly discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
10
|
Bjørge IM, Correia CR, Mano JF. Hipster microcarriers: exploring geometrical and topographical cues of non-spherical microcarriers in biomedical applications. MATERIALS HORIZONS 2022; 9:908-933. [PMID: 34908074 DOI: 10.1039/d1mh01694f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Structure and organisation are key aspects of the native tissue environment, which ultimately condition cell fate via a myriad of processes, including the activation of mechanotransduction pathways. By modulating the formation of integrin-mediated adhesions and consequently impacting cell contractility, engineered geometrical and topographical cues may be introduced to activate downstream signalling and ultimately control cell morphology, proliferation, and differentiation. Microcarriers appear as attractive vehicles for cell-based tissue engineering strategies aiming to modulate this 3D environment, but also as vehicles for cell-free applications, given the ease in tuning their chemical and physical properties. In this review, geometry and topography are highlighted as two preponderant features in actively regulating interactions between cells and the extracellular matrix. While most studies focus on the 2D environment, we focus on how the incorporation of these strategies in 3D systems could be beneficial. The techniques applied to design 3D microcarriers with unique geometries and surface topographical cues are covered, as well as specific tissue engineering approaches employing these microcarriers. In fact, successfully achieving a functional histoarchitecture may depend on a combination of fine-tuned geometrically shaped microcarriers presenting intricately tailored topographical cues. Lastly, we pinpoint microcarrier geometry as a key player in cell-free biomaterial-based strategies, and its impact on drug release kinetics, the production of steerable microcarriers to target tumour cells, and as protein or antibody biosensors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - Clara R Correia
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
11
|
Mao X, Wang M, Jin S, Rao J, Deng R, Zhu J. Monodispersed polymer particles with tunable surface structures: Droplet
microfluidic‐assisted
fabrication and biomedical applications. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xi Mao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Mian Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Shaohong Jin
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jingyi Rao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Renhua Deng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST) Wuhan China
| |
Collapse
|
12
|
Zheng Y, Wu Z, Lin L, Zheng X, Hou Y, Lin JM. Microfluidic droplet-based functional materials for cell manipulation. LAB ON A CHIP 2021; 21:4311-4329. [PMID: 34668510 DOI: 10.1039/d1lc00618e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Functional materials from the microfluidic-based droplet community are emerging as enabling tools for various applications in tissue engineering and cell biology. The innovative micro- and nano-scale materials with diverse sizes, shapes and components can be fabricated without the use of complicated devices, allowing unprecedented control over the cells that interact with them. Here, we review the current development of microfluidic-based droplet techniques for creation of functional materials (i.e., liquid droplet, microcapsule, and microparticle). We also describe their various applications for manipulating cell fate and function.
Collapse
Affiliation(s)
- Yajing Zheng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Zengnan Wu
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Ling Lin
- Department of Bioengineering, Beijing Technology and Business University, China.
| | - Xiaonan Zheng
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Textured and Hierarchically Constructed Polymer Micro- and Nanoparticles. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Microfluidic techniques allow for the tailored construction of specific microparticles, which are becoming increasingly interesting and relevant. Here, using a microfluidic hole-plate-device and thermal-initiated free radical polymerization, submicrometer polymer particles with a highly textured surface were synthesized. Two types of monomers were applied: (1) methylmethacrylate (MMA) combined with crosslinkers and (2) divinylbenzene (DVB). Surface texture and morphology can be influenced by a series of parameters such as the monomer–crosslinker–solvent composition, surfactants, and additives. Generally, the most structured surfaces with the simultaneously most uniform particles were obtained in the DVB–toluene–nonionic-tensides system. In a second approach, poly-MMA (PMMA) particles were used to build aggregates with bigger polymer particles. For this purpose, tripropyleneglycolediacrylate (TPGDA) particles were synthesized in a microfluidic co-flow arrangement and polymerized by light- irradiation. Then, PMMA particles were assembled at their surface. In a third step, these composites were dispersed in an aqueous acrylamide–methylenebisacrylamide solution, which again was run through a co-flow-device and photopolymerized. As such, entities consisting of particles of three different size ranges—typically 0.7/30/600 µm—were obtained. The particles synthesized by both approaches are potentially suitable for loading with or incorporation of analytic probes or catalysts such as dyes or metals.
Collapse
|
14
|
Correia CR, Bjørge IM, Nadine S, Mano JF. Minimalist Tissue Engineering Approaches Using Low Material-Based Bioengineered Systems. Adv Healthc Mater 2021; 10:e2002110. [PMID: 33709572 DOI: 10.1002/adhm.202002110] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/17/2021] [Indexed: 12/14/2022]
Abstract
From an "over-engineering" era in which biomaterials played a central role, now it is observed to the emergence of "developmental" tissue engineering (TE) strategies which rely on an integrative cell-material perspective that paves the way for cell self-organization. The current challenge is to engineer the microenvironment without hampering the spontaneous collective arrangement ability of cells, while simultaneously providing biochemical, geometrical, and biophysical cues that positively influence tissue healing. These efforts have resulted in the development of low-material based TE strategies focused on minimizing the amount of biomaterial provided to the living key players of the regenerative process. Through a "minimalist-engineering" approach, the main idea is to fine-tune the spatial balance occupied by the inanimate region of the regenerative niche toward maximum actuation of the key living components during the healing process.
Collapse
Affiliation(s)
- Clara R. Correia
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Isabel M. Bjørge
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - Sara Nadine
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| | - João F. Mano
- CICECO – Aveiro Institute of Materials Department of Chemistry University of Aveiro Campus Universitário de Santiago Aveiro 3810‐193 Portugal
| |
Collapse
|
15
|
Um E, Cho YK, Jeong J. Spontaneous Wrinkle Formation on Hydrogel Surfaces Using Photoinitiator Diffusion from Oil-Water Interface. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15837-15846. [PMID: 33689266 DOI: 10.1021/acsami.1c00449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Patterning wrinkles on three-dimensional curved or enclosed surfaces can be challenging due to difficulties in application of uniform films and stresses on such structures. In this study, we demonstrate a simple one-step wrinkle-formation method on various hydrogel structures utilizing the oil-water interfaces. By diffusion of the photoinitiator from the oil phase to the prepolymer solution in water through the interface, a characteristic cross-linking gradient is set up in the hydrogel. Then, after photopolymerization, we observe diverse patterns of wrinkles upon changing the concentration of the hydrogel or photoinitiator. As the wrinkle formation via photoinitiator diffusion through the interface requires only UV exposure for polymerization, while taking advantage of the oil-water interfacial tension, wrinkles can be developed easily on various curved structures. In addition, we illustrate the formation of wrinkles on surfaces underneath another layer of polymer or on completely enclosed surfaces, which is difficult with conventional methods. We expect that our results will lead to production of novel microstructures and provide a platform for studying the morphogenesis of wrinkles found in nature such as in curved substrates and multilayers.
Collapse
Affiliation(s)
- Eujin Um
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yoon-Kyoung Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Joonwoo Jeong
- Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
16
|
Polymeric non-spherical coarse microparticles fabricated by double emulsion-solvent evaporation for simvastatin delivery. Colloids Surf B Biointerfaces 2021; 199:111560. [DOI: 10.1016/j.colsurfb.2021.111560] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/18/2020] [Accepted: 01/03/2021] [Indexed: 01/24/2023]
|
17
|
Mirbagheri M, Kaur J, Pham HV, Adibnia V, Zarrin H, Banquy X, Hwang DK. Plasmon-Free Polymeric Nanowrinkled Substrates for Surface-Enhanced Raman Spectroscopy of Two-Dimensional Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:322-329. [PMID: 33347302 DOI: 10.1021/acs.langmuir.0c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report plasmon-free polymeric nanowrinkled substrates for surface-enhanced Raman spectroscopy (SERS). Our simple, rapid, and cost-effective fabrication method involves depositing a poly(ethylene glycol)diacrylate (PEGDA) prepolymer solution droplet on a fully polymerized, flat PEGDA substrate, followed by drying the droplet at room conditions and plasma treatment, which polymerizes the deposited layer. The thin polymer layer buckles under axial stress during plasma treatment due to its different mechanical properties from the underlying soft substrate, creating hierarchical wrinkled patterns. We demonstrate the variation of the wrinkling wavelength with the drying polymer molecular weight and concentration (direct relations are observed). A transition between micron to nanosized wrinkles is observed at 5 v % concentration of the lower molecular-weight polymer solution (PEGDA Mn 250). The wrinkled substrates are observed to be reproducible, stable (at room conditions), and, especially, homogeneous at and below the transition regime, where nanowrinkles dominate, making them suitable candidates for SERS. As a proof-of-concept, the enhanced SERS performance of micro/nanowrinkled surfaces in detecting graphene and hexagonal boron nitride (h-BN) is illustrated. Compared to the SiO2/Si surfaces, the wrinkled PEGDA substrates significantly enhanced the signature Raman band intensities of graphene and h-BN by a factor of 8 and 50, respectively.
Collapse
Affiliation(s)
- Marziye Mirbagheri
- Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center, Li Ki Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Jasneet Kaur
- Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Hoang Vu Pham
- Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center, Li Ki Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| | - Vahid Adibnia
- Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Hadis Zarrin
- Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montreal, Quebec H3C 3J7, Canada
| | - Dae Kun Hwang
- Department of Chemical Engineering, Faculty of Engineering & Architectural Science, Ryerson University, Toronto, Ontario M5B 2K3, Canada
- Keenan Research Center, Li Ki Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), St. Michael's Hospital, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
18
|
Devi M, Dhir A, Pradeep CP. Facile Synthesis of Large Wrinkled Gold Nanoparticles Using Anthracene‐Terminated Tripodal Amine Ligand and their Catalytic Efficiency. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manisha Devi
- School of Basic Sciences Indian Institute of Technology Mandi Mandi Kamand – 175005 Himachal Pradesh India
| | - Abhimanew Dhir
- Solid State and Structural Chemistry Unit Indian Institute of Science Bangalore India
| | - Chullikkattil P. Pradeep
- School of Basic Sciences Indian Institute of Technology Mandi Mandi Kamand – 175005 Himachal Pradesh India
| |
Collapse
|
19
|
Joyee EB, Szmelter A, Eddington D, Pan Y. 3D Printed Biomimetic Soft Robot with Multimodal Locomotion and Multifunctionality. Soft Robot 2020; 9:1-13. [PMID: 33275498 DOI: 10.1089/soro.2020.0004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Soft robots can outperform traditional rigid robots in terms of structural compliance, enhanced safety, and efficient locomotion. However, it is still a grand challenge to design and efficiently manufacture soft robots with multimodal locomotion capability together with multifunctionality for navigating in dynamic environments and meanwhile performing diverse tasks in real-life applications. This study presents a 3D-printed soft robot, which has spatially varied material compositions (0-50% particle-polymer weight ratio), multiscale hierarchical surface structures (10 nm, 1 μm, and 70 μm features on 5 mm wide robot footpads), and consists of functional components for multifunctionality. A novel additive manufacturing process, magnetic-field-assisted projection stereolithography (M-SL), is innovated to fabricate the proposed robot with prescribed material heterogeneity and structural hierarchy, and hence locally engineered flexibility and preprogrammed functionality. The robot incorporates untethered magnetic actuation with superior multimodal locomotion capabilities for completing tasks in harsh environments, including effective load carrying (up to ∼30 times of its own weight) and obstacle removing (up to 6.5 times of its own weight) in congested spaces (e.g., 5 mm diameter glass tube, gastric folds of a pig stomach) by gripping or pushing objects (e.g., 0.3-8 times of its own weight with a velocity up to 31 mm/s). Furthermore, the robot footpads are covered by multiscale hierarchical spike structures with features spanning from nanometers (e.g., 10 nm) to millimeters. Such high structural hierarchy enables multiple superior functions, including changing a naturally hydrophilic surface to hydrophobic, hairy adhesion, and excellent cell attaching and growth properties. It is found that the hairy adhesion and the engineered hydrophobicity of the robot footpad enable robust navigation in wet and slippery environments. The multimaterial multiscale robot design and the direct digital manufacturing method enable complex and versatile robot behaviors in sophisticated environments, facilitating a wide spectrum of real-life applications.
Collapse
Affiliation(s)
- Erina Baynojir Joyee
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Adam Szmelter
- Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - David Eddington
- Department of Bioengineering, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago (UIC), Chicago, Illinois, USA
| |
Collapse
|
20
|
Fabrication of biodegradable particles with tunable morphologies by the addition of resveratrol to oil in water emulsions. Int J Pharm 2020; 590:119917. [PMID: 33022356 DOI: 10.1016/j.ijpharm.2020.119917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
Particles for biomedical applications can be produced by emulsifying biocompatible polymers dissolved in an organic solvent in water. The emulsion is then transferred to an extraction bath that removes the solvent from the dispersed droplets, which leads to polymer precipitation and particle formation. Typically, the particles are smooth and spherical, likely because the droplets remain fluid throughout the solvent extraction process allowing minimization of surface area as the volume decreases. Few modifications to this technique exist that alter the spherical geometry, even though particle performance, from drug delivery to engaging cells of the body, can be tuned with morphology. Here we demonstrate that incorporation of resveratrol, with the aid of ethanol, into the oil phase of an emulsion of poly(lactide-co-glycolide) and dichloromethane in aqueous poly(vinyl alcohol) leads to a crumpled particle morphology. Video microscopy of particle formation revealed that during solvent extraction the droplet crumples in on itself, which does not occur when only ethanol is added to the emulsion. It is unclear why this occurs with resveratrol, but its hydroxyl groups appear to be optimally positioned because removal of the 4' hydroxyl or addition of a 3' hydroxyl resulted in a loss of crumpled particle morphology. We demonstrate that particle morphology can be tuned from that of a crumpled sheet of paper to a deflated sphere by switching out ethanol for a different cosolvent. We quantify the degree of particle deformation with surface area calculated from krypton adsorption isotherms and BET theory and find surface area correlates with resveratrol loading in the particle. Furthermore, spherical particles are achieved when ethyl acetate is used in lieu of dichloromethane and a cosolvent. We propose that during solvent extraction, resveratrol accumulates at the droplet surface where it inhibits polymer chain motion necessary to maintain a spherical geometry and the role of cosolvent is to redistribute resveratrol from the droplet bulk to its surface. This method of producing nonspherical particles extends to polycaprolactone and poly(L-lactic acid) and is compatible with the encapsulation of a hydrophobic fluorescent dye, suggesting hydrophobic bioactive agents could be encapsulated. Taken together, we demonstrate an ability to control morphology of biocompatible polymer particles produced by the widely practiced oil-in-water/solvent extraction protocol via the addition of resveratrol and a cosolvent to the oil phase. The methodology reported is straight forward, and scalable, and expected to be of utility in applications in which a deviation from the default smooth, spherical morphology is desired.
Collapse
|
21
|
Joyee EB, Szmelter A, Eddington D, Pan Y. Magnetic Field-Assisted Stereolithography for Productions of Multimaterial Hierarchical Surface Structures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42357-42368. [PMID: 32815365 DOI: 10.1021/acsami.0c11693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural organisms provide inspirations for various functional structures and surfaces with significant applications in multidisciplinary fields. These biological systems are generally composed of multiscale surface structures with high geometric complexity and a variety of materials, making it challenging to replicate their characteristics in engineering. This study presents a novel multiscale multimaterial 3D printing method, magnetic field-assisted stereolithography (M-SL), for fabricating hierarchical particle-polymer structures with surface features ranging from a few nanometers to millimeters or even centimeters. Taking inspiration from nature, this study describes the design and fabrication of a bioinspired multiscale hierarchical surface structure, which is characterized of microscale cones, nanoscale pores, and surface wrinkles at a few nanometers. To understand the fundamental physics underlying the hierarchical surface structure fabrication in the proposed M-SL process, the complexities among the M-SL process parameters, material parameters, and printed geometries are discussed. The accuracy of the developed printing method is investigated by comparing the printed geometries and digital designs. Effects of the printed hierarchical surface structure on hydrophobicity and cell viability were characterized and discussed. It was found that the highly hierarchical surface structure changed the polymer composite surface from hydrophilic (contact angle: ∼38°) to hydrophobic (∼146°). In addition, the hierarchical surface structure also created a better environment for cell attachment and growth, with 900% more living cells at 72 h after cell seeding, compared with cells on the nonstructured smooth surface. Local and selective cell seeding can also be enabled by the surface structure design. Experimental results validated the effectiveness of the M-SL 3D printing method on fabricating multimaterial functional objects with hierarchically structured surfaces for a wide spectrum of applications.
Collapse
Affiliation(s)
- Erina Baynojir Joyee
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago 60607-7042 Illinois, United States
| | - Adam Szmelter
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60607-7042 Illinois, United States
| | - David Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago 60607-7042 Illinois, United States
| | - Yayue Pan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago 60607-7042 Illinois, United States
| |
Collapse
|
22
|
Tan Y, Hu B, Song J, Chu Z, Wu W. Bioinspired Multiscale Wrinkling Patterns on Curved Substrates: An Overview. NANO-MICRO LETTERS 2020; 12:101. [PMID: 34138101 PMCID: PMC7770713 DOI: 10.1007/s40820-020-00436-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/14/2020] [Indexed: 05/23/2023]
Abstract
The surface wrinkling of biological tissues is ubiquitous in nature. Accumulating evidence suggests that the mechanical force plays a significant role in shaping the biological morphologies. Controlled wrinkling has been demonstrated to be able to spontaneously form rich multiscale patterns, on either planar or curved surfaces. The surface wrinkling on planar substrates has been investigated thoroughly during the past decades. However, most wrinkling morphologies in nature are based on the curved biological surfaces and the research of controllable patterning on curved substrates still remains weak. The study of wrinkling on curved substrates is critical for understanding the biological growth, developing three-dimensional (3D) or four-dimensional (4D) fabrication techniques, and creating novel topographic patterns. In this review, fundamental wrinkling mechanics and recent advances in both fabrications and applications of the wrinkling patterns on curved substrates are summarized. The mechanics behind the wrinkles is compared between the planar and the curved cases. Beyond the film thickness, modulus ratio, and mismatch strain, the substrate curvature is one more significant parameter controlling the surface wrinkling. Curved substrates can be both solid and hollow with various 3D geometries across multiple length scales. Up to date, the wrinkling morphologies on solid/hollow core-shell spheres and cylinders have been simulated and selectively produced. Emerging applications of the curved topographic patterns have been found in smart wetting surfaces, cell culture interfaces, healthcare materials, and actuators, which may accelerate the development of artificial organs, stimuli-responsive devices, and micro/nano fabrications with higher dimensions.
Collapse
Affiliation(s)
- Yinlong Tan
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Biru Hu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Jia Song
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China
| | - Zengyong Chu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| | - Wenjian Wu
- College of Liberal Arts and Science, National University of Defense Technology, Changsha, 410073, People's Republic of China.
| |
Collapse
|
23
|
Nguyen DHK, Bazaka O, Bazaka K, Crawford RJ, Ivanova EP. Three-Dimensional Hierarchical Wrinkles on Polymer Films: From Chaotic to Ordered Antimicrobial Topographies. Trends Biotechnol 2020; 38:558-571. [PMID: 32302580 DOI: 10.1016/j.tibtech.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/22/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Microbial contamination of polymer surfaces has become a significant challenge in domestic, industrial, and biomedical applications. Recent progress in our understanding of how topographical features of different length scales can be used to effectively and selectively control the attachment and proliferation of different cell types has provided an alternative strategy for imparting antibacterial activity to these surfaces. Among the well-recognized engineered models of antibacterial surface topographies, self-organized wrinkles have shown particular promise with respect to their antimicrobial characteristics. Here, we critically review the mechanisms by which wrinkles form on the surface of different types of polymer material and how they interact with various biomolecules and cell types. We also discuss the feasibility of using this antimicrobial strategy in real-life biomedical applications.
Collapse
Affiliation(s)
- Duy H K Nguyen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Olha Bazaka
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Kateryna Bazaka
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, The Australian National University, Canberra ACT 2600, Australia
| | - Russell J Crawford
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia
| | - Elena P Ivanova
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, VIC, Australia.
| |
Collapse
|
24
|
Influence of Extracellular Mimicked Hierarchical Nano-Micro-Topography on the Bacteria/Abiotic Interface. Polymers (Basel) 2020; 12:polym12040828. [PMID: 32260531 PMCID: PMC7240582 DOI: 10.3390/polym12040828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
The study of interfaces between engineered surfaces and prokaryotic cells is a subject whose actual relevance has been reinforced by the current outbreaks due to unknown viruses and antibiotic-resistant bacteria. Studies aiming at the development of antibacterial surfaces are based on two pillars: surface chemistry or topographical cues. This work reports the study of only the topographic aspect by the development of thin films of polyamide, which present attractive surface chemistry for bacterial adhesion. The same chemistry with only nano- or hierarchical nano- and micro-topography that mimics the extracellular matrix is obtained by sputter-depositing the thin films onto Si and polydimethylsiloxane (PDMS), respectively. The surface average roughness of the Si-modified surfaces was around 1 nm, while the hierarchical topography presented values from 750 to 1000 nm, with wavelengths and amplitudes ranging from 15–30 µm and 1–3 µm, respectively, depending on the deposition parameters. The surface topography, wettability, surface charge, and mechanical properties were determined and related to interface performance with two Gram+ and two Gram- bacterial strains. The overall results show that surfaces with only nano-topographic features present less density of bacteria, regardless of their cell wall composition or cell shape, if the appropriate surface chemistry is present.
Collapse
|
25
|
Odeleye AOO, Baudequin T, Chui CY, Cui Z, Ye H. An additive manufacturing approach to bioreactor design for mesenchymal stem cell culture. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Hussain M, Xie J, Wang K, Wang H, Tan Z, Liu Q, Geng Z, Shezad K, Noureen L, Jiang H, Xu J, Zhang L, Zhu J. Biodegradable Polymer Microparticles with Tunable Shapes and Surface Textures for Enhancement of Dendritic Cell Maturation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:42734-42743. [PMID: 31622077 DOI: 10.1021/acsami.9b14286] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this report, we present a facile approach to produce biodegradable polymeric microparticles with uniform sizes and controllable morphologies by blending hydrophobic poly(d, l-lactic-co-glycolide) (PLGA) and amphiphilic poly(d, l-lactic acid)-b-poly(ethylene glycol) (PLA-b-PEG) in a microfluidic chip. Microparticles with tentacular, hollow hemispherical, and Janus structures were obtained after complete evaporation of the organic solvent by manipulating the interfacial behavior of emulsion droplets and the phase separation behavior inside the droplets. The number and length of the tentacles on the surface of tentacular microparticles could be tailored by varying the initial concentration and blending ratios of the polymers. The organic solvent played an important role in controlling the morphologies of microparticles. For example, blending PLA16k-b-PEG5k with PLGA100k in dichloromethane resulted in tentacular microparticles, whereas hollow hemispherical microparticles were obtained in trichloromethane. Moreover, these microparticles with controllable shapes and surface textures have significant influence on the immune response of dendritic cells (DCs), showing a morphology-dependent enhancement of DC maturation.
Collapse
Affiliation(s)
- Mubashir Hussain
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jun Xie
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Ke Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hua Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Zhengping Tan
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Qianqian Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Zhen Geng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Khurram Shezad
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Laila Noureen
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Hao Jiang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Lianbin Zhang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| |
Collapse
|
27
|
Yuan H, Wu K, Zhang J, Wang Y, Liu G, Sun J. Curvature-Controlled Wrinkling Surfaces for Friction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900933. [PMID: 31058399 DOI: 10.1002/adma.201900933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Topographical patterns endow material surfaces with unique and intriguing physical and chemical properties. Spontaneously formed wrinkling has been harnessed to generate surface topography for various functionalities. Despite promising applications in biomedical devices and robot engineering, the friction behavior of wrinkling on curved surfaces remains unclear. Herein, wrinkled surfaces are induced by sputtering metals on soft polymer microspheres. The wrinkle morphologies and length scales can be controlled precisely by tailoring the microsphere radius (substrate curvature) and film thickness. The wrinkled surfaces exhibit controlled friction property, depending on the wrinkling patterns and length scales. An increase in friction force with increasing surface roughness is generally found for dimple patterns and labyrinth patterns. The dimple patterns show the lowest friction due to strong curvature constraint. The herringbone patterns exhibit apparent friction anisotropy with respect to topographic orientation. These results will guide future design of wrinkled surfaces for friction by harnessing substrate curvature.
Collapse
Affiliation(s)
- Haozhi Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Kai Wu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinyu Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yaqiang Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Gang Liu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
28
|
Golchin A, Hosseinzadeh S, Staji M, Soleimani M, Ardeshirylajimi A, Khojasteh A. Biological behavior of the curcumin incorporated chitosan/poly(vinyl alcohol) nanofibers for biomedical applications. J Cell Biochem 2019; 120:15410-15421. [DOI: 10.1002/jcb.28808] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Simzar Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Masumeh Staji
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Masoud Soleimani
- Department of Hematology, School of Medical Sciences Tarbiat Modares University Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Medical Nanotechnology and Tissue Engineering Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|
29
|
Feng Y, Lee Y. Microfluidic assembly of food-grade delivery systems: Toward functional delivery structure design. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.02.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
30
|
Feng Y, Lee Y. Microfluidic fabrication of wrinkled protein microcapsules and their nanomechanical properties affected by protein secondary structure. J FOOD ENG 2019. [DOI: 10.1016/j.jfoodeng.2018.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Wang J, Le-The H, Wang Z, Li H, Jin M, van den Berg A, Zhou G, Segerink LI, Shui L, Eijkel JCT. Microfluidics Assisted Fabrication of Three-Tier Hierarchical Microparticles for Constructing Bioinspired Surfaces. ACS NANO 2019; 13:3638-3648. [PMID: 30856322 DOI: 10.1021/acsnano.9b00245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Construction of textured bioinspired surfaces with refined structures that exhibit superior wetting properties is of great importance for many applications ranging from self-cleaning, antibiofouling, anti-icing, oil/water separation, smart membrane, and microfluidic devices. Previously, the preparation of artificial surfaces generally relies on the combination of different approaches together, which is a lack of flexibility to control over the individual architecture unit, the surface topology, as well as the complex procedure needed. In this work, we report a method for rapid fabrication of three-tier hierarchical microunits (structures consisting of multiple levels) using a facile droplet microfluidics approach. These units include the first-tier microspheres consisting of the second-tier close-packed polystyrene (PS) nanoparticles decorated with the third-tier elegant polymer nanowrinkles. These nanowrinkles on the PS nanoparticles are formed according to the interfacial instability induced by gradient photopolymerization of N-isopropylacrylamide (NIPAM) monomers. The formation process and topologies of nanowrinkles can be regulated by the photopolymerization process and the fraction of carboxylic groups on the PS nanoparticle surface. Such a hierarchical microsphere mimics individual units of bioinspired surfaces. Therefore, the surfaces from self-assembly of these fabricated two-tier and three-tier hierarchical microunits collectively exhibit "gecko" and "rose petal" wetting states, with the micro- and nanoscale structures amplifying the initial hydrophobicity but still being highly adhesive to water. This approach offers promising advantages of high-yield fabrication, precise control over the size and component of the microspheres, and integration of microfluidic droplet generation, colloidal nanoparticle self-assembly, and interfacial polymerization-induced nanowrinkles in a straightforward manner.
Collapse
Affiliation(s)
- Juan Wang
- National Center for International Research on Green Optoelectronics and South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , China
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics , University of Twente , Enschede 7522NB , The Netherlands
| | - Hai Le-The
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics , University of Twente , Enschede 7522NB , The Netherlands
| | - Zuankai Wang
- Department of Mechanical and Biomedical Engineering , City University of Hong Kong , Hong Kong 999077 , China
| | - Hao Li
- National Center for International Research on Green Optoelectronics and South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , China
| | - Mingliang Jin
- National Center for International Research on Green Optoelectronics and South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , China
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics , University of Twente , Enschede 7522NB , The Netherlands
| | - Guofu Zhou
- National Center for International Research on Green Optoelectronics and South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , China
| | - Loes I Segerink
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics , University of Twente , Enschede 7522NB , The Netherlands
| | - Lingling Shui
- National Center for International Research on Green Optoelectronics and South China Academy of Advanced Optoelectronics , South China Normal University , Guangzhou 510006 , China
- School of Information and Optoelectronic Science and Engineering , South China Normal University , Guangzhou 510006 , China
| | - Jan C T Eijkel
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, Technical Medical Centre and Max Planck Center for Complex Fluid Dynamics , University of Twente , Enschede 7522NB , The Netherlands
| |
Collapse
|
32
|
Application of Bio-Based Wrinkled Surfaces as Cell Culture Scaffolds. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2020015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Zhang T, Li M, Wang X, Zhou Z, Yuan W, Ma J. Facile synthesis of polylactide coarse microspheres as artificial antigen-presenting cells. Chem Commun (Camb) 2018; 54:11356-11359. [DOI: 10.1039/c8cc04958k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Magnetic poly(l-lactide) coarse microspheres as artificial antigen-presenting cells were synthesized via simple chemical etching and antibody immobilization.
Collapse
Affiliation(s)
- Tong Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Min Li
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials
- Tianjin
- China
| | - Xiaotong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin Key Laboratory of Biomedical Materials
- Tianjin
- China
| | - Wei Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| |
Collapse
|
34
|
Zhang Y, Schattling PS, Itel F, Städler B. Planar and Cell Aggregate-Like Assemblies Consisting of Microreactors and HepG2 Cells. ACS OMEGA 2017; 2:7085-7095. [PMID: 30023539 PMCID: PMC6045345 DOI: 10.1021/acsomega.7b01234] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/05/2017] [Indexed: 05/04/2023]
Abstract
The assembly of microreactors has made considerable progress toward the fabrication of artificial cells. However, their characterization remains largely limited to buffer solution-based assays in the absence of their natural role model-the biological cells. Herein, the combination of microreactors with HepG2 cells either in planar cell cultures or in the form of cell aggregates is reported. Alginate (Alg)-based microreactors loaded with catalase are assembled by droplet microfluidics, and their activity is confirmed. The acceptance of polymer-coated ∼40 μm Alg particles by proliferating HepG2 cells is depending on the terminating polymer layer. When these functional microreactors are cocultured with HepG2 cells, they can be employed for detoxification, that is, hydrogen peroxide removal, and by doing so, they assist the cells to survive. This report is among the first successful combination of microreactors with biological cells, that is, HepG2 cells, contributing to the fundamental understanding of integrating synthetic and biological partners toward the maturation of this semisynthetic concept for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhang
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Philipp S. Schattling
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Fabian Itel
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| | - Brigitte Städler
- Interdisciplinary Nanoscience (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus 8000, Denmark
| |
Collapse
|
35
|
Nania M, Foglia F, Matar OK, Cabral JT. Sub-100 nm wrinkling of polydimethylsiloxane by double frontal oxidation. NANOSCALE 2017; 9:2030-2037. [PMID: 28106209 DOI: 10.1039/c6nr08255f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate nanoscale wrinkling on polydimethylsiloxane (PDMS) at sub-100 nm length scales via a (double) frontal surface oxidation coupled with a mechanical compression. The kinetics of the glassy skin propagation is resolved by neutron and X-ray reflectivity, and atomic force microscopy, combined with mechanical wrinkling experiments to evaluate the resulting pattern formation. In conventional PDMS surface oxidation, the smallest wrinkling patterns attainable have an intrinsic lower wavelength limit due to the coupling of skin formation and front propagation at fixed strain εprestrain, whose maximum is, in turn, set by material failure. However, combining two different oxidative processes, ultra-violet ozonolysis followed by air plasma exposure, we break this limit by fabricating trilayer laminates with excellent interfacial properties and a sequence of moduli and layer thicknesses able to trivially reduce the surface topography to sub-100 nm dimensions. This method provides a powerful, yet simple, non-lithographic approach to extend surface patterning from visible to the deep UV range.
Collapse
Affiliation(s)
- Manuela Nania
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Fabrizia Foglia
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - Omar K Matar
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| | - João T Cabral
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
36
|
Hano N, Takafuji M, Ihara H. One-pot preparation of polymer microspheres having wrinkled hard surfaces through self-assembly of silica nanoparticles. Chem Commun (Camb) 2017; 53:9147-9150. [DOI: 10.1039/c7cc05132h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer microspheres with wrinkled hard surfaces composed of self-assembled silica nanoparticles were prepared via suspension polymerization.
Collapse
Affiliation(s)
- Nanami Hano
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku
- Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry
- Kumamoto University
- Chuo-ku
- Japan
- Kumamoto Institute for Photo-Electro Organics
| | - Hirotaka Ihara
- Kumamoto Institute for Photo-Electro Organics
- Higashi-ku
- Japan
- Department of New Frontier Science
- Kumamoto University
| |
Collapse
|
37
|
Armada-Moreira A, Taipaleenmäki E, Itel F, Zhang Y, Städler B. Droplet-microfluidics towards the assembly of advanced building blocks in cell mimicry. NANOSCALE 2016; 8:19510-19522. [PMID: 27858045 DOI: 10.1039/c6nr07807a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Therapeutic cell mimicry is an approach in nanomedicine aiming at substituting for missing or lost cellular functions employing nature-inspired concepts. Pioneered decades ago, only now is this technology empowered with the arsenal of nanotechnological tools and ready to provide radically new solutions such as assembling synthetic organelles and artificial cells. One of these tools is droplet microfluidics (D-μF), which provides the flexibility to generate cargo-loaded particles with tunable size and shape in a fast and reliable manner, an essential requirement in cell mimicry. This minireview aims at outlining the developments in D-μF from the past four years focusing on the assembly of nanoparticles, Janus-shaped and other non-spherical particles as well as their loading with biological payloads.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark. and Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal and Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Essi Taipaleenmäki
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Fabian Itel
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark.
| |
Collapse
|